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Abstract Defintion: Pauli Commuting Local Hamiltonians

Learning an unknown Hamiltonian from local measurements is an | | A k-CLH H = > ", H; on n-qubit is a Pauli CLH if it satisfies
increasingly important task in the NISQ era. Recent work by [BAL19] o Vi€ ml H = CLm](Li) 9.0 where ol — 202 52 0
proposed an approach to learn non-commuting local Hamiltonians, o J

though their method fails for commuting Hamiltonians. o Vi,j € [m], |H;, H;] =0.

A Pauli CLH can be described by a Stabilizer tableau |AG04], namely

. h 1 Pauli . Hamiltoni
We provide a method to learn Pauli commuting local Hamiltonians, each local term can be represented by a (2n + 1)-tuple:

which is a subclass of general CLHs. Given exp(n) copies of the Gibbs
state p of a Pauli commuting local Hamiltonian H on n qubits, one can a; mgi) ... B gi) MO 7(7:5)

1
1 h a Hamiltoni
earn such a Hamiltonian by 0 a mgl) - x%l) z§1) .” Zr,(ll) 7(1
1. Applying a linear-depth Clifford circuit on given copies; .
2. Performing classical post-processing. H. o Xy (m) %m) my rgm)
Our result sheds light on learning general commuting local Hamilto- : Y 1Z
nians using local measurements. (P) (A) N 1 (B)

Commutation. Vi, j, [H;, H;] =0 < X1 . Z0) ¢ XU) . Z#) =,
Linear column operations on the tableau. It is equivalent to apply

Consider an "inverse problem" of finding ground states by given a Clitford gates [AGO4], such as Hadamard, 5, CNOT:
Hamiltonian (i.e., the local Hamiltonian problem), namely e Hady: swap X with Z; and p’ :=p & (X; © Z;).
o Si: 72, =7y, P Xand p' =pPh (X; ©Z;).

® CNOTi’jZ X; .= Xz D Xj, Zg L= Zz &, Zj
and p' =pD (Xz ® Zj ® (Xj S Z; P 1))

Problem Statement: A Quantum Perspective

m copies of the Leaning a local Hamiltonian Coefficients of a
Gibbs state p by an algorithm P local Hamiltonian

Q1: What's the sample complexity m?

Q2: What's the time complexity of a learning algorithm A? Proof Technique: Mapping Pauli CLHs into Classical Hamiltonians

Applying a O(n/ log n)-depth Clifford circuit [AG04, JST*20]:

Problem Statement: A Classical Perspective (1)
1) Gaussian Elimin: ( p | A | B ) 53" ( P

The classical analog is learning a Markov random field (e.g. [KM17]): ( (2)
p

. S
Gibbs distribution defined on z = (21, -+ ,2,) € {£1}7?, 2) Making Full-rank.: =

3) Cholesky Decom: X7 [ #'”
Pr|Z = z| x exp(—H,) := exp Z Aiizizi + Z 0.2 | . ) Cholesky Decom: ~—
1€ [n]

1#j€(n]
Configuration graph G = (|n|, ) where (¢,j) € Eif A; ; # 0.

(5)
4) Gaussian Elimin.: CN—O>T ( P

Let X := {z|j # 4,(¢,7) € E} and Y := An efficient classical post-processing condition:

(1 — z;)/2 be random variables. Note X; is rank(A|B) = m and all rows in (A|B) are linearly independent.
only dependent on the neighbors of ¢ due to

the Markovianity Pr|A|B] = Pr|A, C|B|.

Task. Given m random samples (Xj, Y;) sat-
isfying E|Y;|X; = x| = 0(A; - x 4 0;) where Open Problem: Towards an Efficient Classical Post-processing
o(x)=1/(14+e" "), recover A; and 6;.

Now we obtain a 1-local classical Hamiltonian since Bég) = (. It can
A B C be learned efficiently in both time complexity and sample complexity.

A classical algorithm for learning classical Hamiltonians. [KM17]
provides an algorithm for learning a k-local classical Hamiltonian
with run-time n®(*) and sample complexity n®*).

m copies of the Gibbs state of Pauli CLH Main issues. The resulting classical Hamiltonian H' is non-necessarily

local since Bég) # 0 in general, so applying [KM17] for H' directly re-

Mapping Gibbs states of a Pauli CLH into . Learning candidates of local terms in quires exp(n) run-time and exp(n) samples. Could we learn a classical
Gibbs states of a classical Hamiltonian ~ Hamiltonian using O(log n) samples Hamiltonian obtained from a Pauli CLH efficiently?

[AGO4,JST+20] [BAL19,CW19]

Draw samples from the classical Gibbs distribution Open Problem: Learning CLHs by Matrix MWU Methods
local measurements

Classical post-processing with exp(n) samples: Learning a classical Hamiltonian
[KM17]

Main Algorithm: Learning a Pauli CLH

[KM17] is based on multiplicative weight updates (MWU) and Markov
property of Gibbs distributions. Notice Markov property holds for

: : e : . commuting local Hamiltonians due to the Koashi-Imoto decomposition
Mappling a classical Ham'ét;m:n hza:]Ck into a Pauli CLH |KIO2]. Could we learn CLHs using Matrix MWU methods?
[AGO4,JST+20]

Coefficients (associated with local terms) of a Pauli CLH Acknowledgment. The author thanks Itai Arad for introducing the
problem that considers here and helptul discussion.

Proof Technique: Learning candidates of local terms
y

Consider H L :. Zm:} CmS m defined on a A [AGO04] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys Rev A,
local patch L with a Gibbs state p, [BAL19] ™ 70(5):052328, 2004.

1 1 1N S1 AO0O [BAL19] E. Bairey, I. Arad, and N. H Lindner. Learning a local hamiltonian from local measure-
implies that V local observables A,, inside L, A7 U U ments. Phys Rev Lett, 122(2):020504, 2019.

anj\f—l cmTr(i Ig[Sm7 An]) — (0 and |{An on L}‘ < . . [CW19] TJ. Cotler and E. Wilczek. Quantum overlapping tomography. arXiv:1908.02754, 2019.
o [JSTT20] J.Jiang, X. Sun, S. Teng, B. Wu, K. Wu, and J. Zhang. Optimal space-depth trade-off of

pOly (TL) . Let matrix Kyp, 1= Tr<1/0 [S m; An] ) ° : i1ln cnot circuits in quantum logic synthesis. In 40th SODA, pages 213-229. SIAM, 2020.

. . . [KIO2] Masato Koashi and Nobuyuki Imoto. Operations that do not disturb partially known
Claim. If A, is a local term in H;, then VS,,, - quantum states. Phys Rev A, 66(2):022318, 2002.

[ Sm7 An] — (, i.e., the n-th row of K is all-zero. AN ‘ ‘ [KM17] A. Klivans and R. Meka. Learning graphical models using multiplicative weights. In
2017 IEEE 58th Annual Symposium on FOCS, pages 343-354. IEEE, 2017.




