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Abstract

Recent advancements in quantum devices have posed an intriguing challenge of verify-
ing their intended functionality. These devices, typically time-bounded, are often designed
to prepare specific n-qubit states, denoted as ρ0 and ρ1. The problem of (tolerant) quan-
tum state testing aims to design algorithms that can efficiently decide whether ρ0 is either
ϵ1-close to or ϵ2-far from ρ1 with respect to a chosen distance-like measure.

This problem generalizes classical (tolerant) distribution testing [Can20] to the quan-
tum domain and forms a part of quantum property testing [MdW16], an emerging field
dedicated to developing efficient quantum testers for properties of quantum objects. The
computational complexity of time-bounded quantum state testing varies significantly with
the choice of closeness measure, exhibiting a dichotomy-like behavior :

• For both the trace distance (ℓ1 norm) and the quantum (von Neumann) entropy
difference, the problems correspond to the complexity class QSZK [Wat02, Wat09b,
BASTS10], which is widely believed to be strictly more powerful than BQP.

• For the Hilbert-Schmidt distance (ℓ2 norm) or the quantity Tr(ρ0ρ1), the problems
correspond to the complexity class BQP [BCWdW01], capturing the computational
power of efficient quantum computation.

This dissertation aims to deepen our understanding of the aforementioned dichotomy-
like behavior by addressing time-bounded and space-bounded closeness testing problems
of quantum states from complexity-theoretic perspectives. Specifically, we investigate the
following problems:

(i) What is the computational hardness of approximating the von Neumann entropy?
We study the time-bounded state testing with respect to quantum q-Tsallis entropy
Sq(ρ) := 1−Tr(ρq)

q−1 , which naturally lower bounds the von Neumann entropy S(ρ) :=
−Tr(ρ ln ρ) and converges to it as q approaches to 1. Our results are as follows:

⋄ For the regime 1+Ω(1) ≤ q ≤ 2, which includes the purity Tr(ρ2), the problem
is BQP-complete. Moreover, the BQP containment holds when q ≥ 1 + Ω(1).

⋄ For the regime 1 < q < 1+ 1
n−1 , the problem is QSZK-hard, leading to hardness

of approximating von Neumann entropy as long as BQP ⊊ QSZK.

The hardness results are derived from reductions based on new inequalities for the
quantum q-Jensen-(Shannon-)Tsallis divergence with 1 ≤ q ≤ 2.

(ii) Does this dichotomy-like behavior also arise in quantum state testing under other
resource constraints? We introduce space-bounded variants of quantum state test-
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ing, focusing on state-preparation circuits acting on O(log n) qubits. We establish
the following novel complete characterizations of quantum logspace:

⋄ In one-sided error scenarios, space-bounded state testing with respect to both
the trace distance and the Hilbert-Schmidt distance is coRQUL-complete, mak-
ing it the first family of natural complete problems for this class.

⋄ In two-sided error scenarios, space-bounded state testing with respect to com-
mon distance-like measures is BQL-complete.

Our main technical contribution is a space-efficient variant of quantum singular
value transformation [GSLW19], offering a unified framework for designing quan-
tum logspace algorithms and enabling simultaneous time-space upper bounds. Our
results have broader implications beyond quantum logspace:

⋄ We prove that QSZK is in QIP(2) with a quantum linear-space honest prover,
slightly improving from the best known upper bound QIP(2) [Wat02, JUW09].

⋄ In the context of quantum interactive proofs, we introduce a space-bounded
variant of quantum statistical zero-knowledge (QSZKUL), where the verifier
uses unitary quantum logspace, and show that this model is as weak as BQL.

(iii) How can the QSZK containment regime for the time-bounded state testing problem
with respect to the trace distance (QSD) be improved? The current QSZK contain-
ment of QSD is limited to the constant polarizing regime, owing to the limitations
of the polarization lemma [SV03, Wat02]. Inspired by recent advancements in the
classical setting [BDRV19], we extend the QSZK containment regime of QSD by
introducing proper quantum analogs of the problems defined with respect to the
triangular discrimination and the Jensen-Shannon divergence. We study whether
the quantum analogs behave similarly to their classical counterparts and examine
the limitations of existing approaches to polarization regarding quantum distances.
Furthermore, we prove that QSD with some exponentially small errors is in PP,
suggesting that dimension-preserving polarization is unlikely to be achievable unless
QSZK ⊆ PP. Additionally, the same problem without error is in NQP.

ii



List of publications

Publications included in this thesis

[LW25] Yupan Liu and Qisheng Wang. On estimating the trace of quantum state powers.
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2025).

Submitted manuscripts included in this thesis

[LLW23] François Le Gall, Yupan Liu, and Qisheng Wang. Space-bounded quantum state
testing via space-efficient quantum singular value transformation. In submission.

[Liu23] Yupan Liu. Quantum state testing beyond the polarizing regime and quantum
triangular discrimination. In submission.

[LLNW24] François Le Gall, Yupan Liu, Harumichi Nishimura, and Qisheng Wang. Space-
bounded quantum interactive proof systems. In submission.

*Only Section 5 in Reference [LLNW24] is included in this thesis.

It is noteworthy that both [LW25] and [LLNW24] would be also presented as contributed
talks at the 28th Annual Quantum Information Processing Conference (QIP 2025).

Other publications during candidature

[DLLM23] Hugo Delavenne, François Le Gall, Yupan Liu, and Masayuki Miyamoto. Quan-
tum Merlin-Arthur proof systems for synthesizing quantum states. To appear in
Quantum.

iii



Acknowledgements

First and foremost, I express my sincere gratitude to my advisor, François Le Gall, for
his exceptional mentorship throughout my PhD at Nagoya University. I deeply appreci-
ate his non-interventionist mentoring style, which encourages independence while offering
support whenever needed. François is always willing to help his students in various ways,
including giving insightful suggestions on prioritizing research projects with his remark-
able overview of the field, offering advice on scientific writing and submission strategies,
and providing financial support for academic visits and conference participation.

I am grateful to my collaborators and colleagues during my time in Nagoya. Harumichi
Nishimura, who is super knowledgeable and a pioneer in quantum complexity theory, has
always been patient in working through technical details and providing detailed feedback.
I wrote the most papers together with Qisheng Wang, who is always ready to discuss
research problems. He had many great insights about quantum property testing and is
a very persistent problem solver, always keen on tackling the next problem. I am also
thankful to Masayuki Miyamoto and Hugo Delavenne for the stateQMA project, as well
as to Atsuya Hasegawa, Daiki Suruga, Yibin Wang, and others who are or were members
of Francois’ group for their support.

I would also like to thank the individuals who hosted my academic visits during
my PhD, as well as for the enjoyable discussions with them and their group members.
Zhengfeng Ji for hosting my short visit to Tsinghua University, as well as for virtually
hosting me in his group seminar during the Spring 2021 semester. Tom Gur for inviting
me to visit Cambridge, and Ashley Montanaro for hosting my short visit to Bristol during
the same trip. Anurag Anshu, Henry Yuen, and Bill Fefferman for hosting my short visits.

This dissertation would not have been possible without the support of the Graduate
School of Mathematics at Nagoya University, which provided the resources and facilities
essential for my research. I also acknowledge the financial support of the JST SPRING
grant No. JPMJSP2125, specifically the “THERS Make New Standards Program for the
Next Generation Researchers”, and the MEXT Q-LEAP grant No. JPMXS0120319794,
which allowed me to dedicate myself fully to my studies.

Before my years at Nagoya, many people greatly influenced my academic journey.
I am indebted to Itai Arad, who mentored me during my summer internship at CQT
in my junior year and later became my MSc co-advisor. As an ambitious yet clueless
young student, I was profoundly impacted by Itai’s down-to-earth approach to research,
conveyed through both his words and actions. I feel very fortunate to have completed
my MSc at HUJI, where there are numerous (regular) theory seminars and high-quality
courses in theoretical computer science, which helped me build a solid understanding
of the field. Special thanks to Guy Kindler, from whom I formally learned the concept

iv



of zero-knowledge proofs in his course – a fundamental concept closely related to the
class QSZK, which is frequently discussed in this dissertation. I also gained practical and
valuable knowledge from him on scientific writing. I am also thankful to Dorit Aharonov,
who has deeply influenced my research taste at a high level, even though I am no longer
a big fan of physics-motivated problems. Her short yet wise and precise advice – ranging
from presentation and communication to general principles for selecting research problems
– during my first two years at HUJI has been invaluable. Lastly, I extend my heartfelt
thanks to Xin Wan, who supervised my final-year project and taught me how to approach
new topics in a developing field.

My life has been greatly enriched by my friends, mostly from the communities of
theoretical computer science and quantum information. Some of these connections date
back to my undergraduate years through online interactions, while others began during
my time in Hangzhou, Shenzhen, Singapore, Jerusalem, and Nagoya. Although I do
not intend to name everyone individually, I deeply cherish the conversations, discussions,
lunches, coffee breaks, and hikes we shared. I am sincerely grateful for their support and
companionship.

Finally, I am forever grateful to my parent for their unwavering belief in me and for
hosting me during my darkest times. Their love and support have been my greatest
source of motivation and encouragement.

v



Contents

1 Introduction 1

1.1 Background: Time-bounded distribution and state testing . . . . . . . . 2
1.1.1 ℓ1 norm scenarios and the complexity classes SZK and QSZK . . . 2
1.1.2 Entropy difference scenarios . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 ℓ2 norm scenarios and the purity . . . . . . . . . . . . . . . . . . 5

1.2 Background: Space-bounded quantum computation . . . . . . . . . . . . 5
1.2.1 Complete characterizations of quantum logspace . . . . . . . . . . 6
1.2.2 Quantum logspace with one-sided errors . . . . . . . . . . . . . . 7

1.3 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 A dichotomy theorem on approximating von Neumann entropy . . 8
1.3.2 Space-bounded quantum state testing via space-efficient quantum

singular value transformation . . . . . . . . . . . . . . . . . . . . 9
1.3.3 QSZK containments of QSD beyond the polarizing regime . . . . 11

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries 14

2.1 Space-bounded quantum computation . . . . . . . . . . . . . . . . . . . . 15
2.2 Singular value decomposition and transformation . . . . . . . . . . . . . 18
2.3 Polynomial approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Chebyshev polynomials and truncated expansions . . . . . . . . . 20
2.4 Classical and quantum algorithmic toolkit . . . . . . . . . . . . . . . . . 22

2.4.1 Tools for space-bounded randomized algorithms . . . . . . . . . . 22
2.4.2 Quantum subroutines for time- and space-bounded settings . . . . 23
2.4.3 Quantum algorithmic toolkit for time-bounded settings . . . . . . 24

3 Closeness testing of distributions and states 26

3.1 Closeness measures for classical probability distributions . . . . . . . . . 26
3.2 Closeness measures for quantum states . . . . . . . . . . . . . . . . . . . 29

vi



3.3 Time-bounded quantum state testing . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Computational hardness of QSD and QSCMM . . . . . . . . . . 37
3.3.2 Quantitative lower bounds beyond the white-box model . . . . . . 39

3.4 Space-bounded distribution testing and related works . . . . . . . . . . . 40

4 On estimating the trace of quantum state powers 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Proof techniques: BQP containment for q constantly larger than 1 46
4.1.3 Proof techniques: Hardness via QJTq-based reductions . . . . . . 48

4.2 Efficient quantum algorithms for estimating q-quantum Tsallis entropy . 50
4.2.1 Efficient uniform approximations to positive constant power functions 51
4.2.2 Quantum q-Tsallis entropy approximation for q constantly larger

than 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Properties of quantum Jensen-Tsallis divergence and Tsallis entropy . . . 55

4.3.1 Data-processing inequality for QJTq from the joint convexity . . . 56
4.3.2 Inequalities between the trace distance and QJTq . . . . . . . . . 58
4.3.3 Bounds for the Tsallis binary entropy . . . . . . . . . . . . . . . . 60
4.3.4 Useful bounds on Tsallis entropy . . . . . . . . . . . . . . . . . . 63

4.4 Hardness and lower bounds via QJTq-based reductions . . . . . . . . . . 66
4.4.1 Pure-state reduction: PureQSD ≤ ConstRankTsallisQEDq

for 1 ≤ q ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Mixed-state reductions . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.3 Computational hardness results . . . . . . . . . . . . . . . . . . . 74
4.4.4 Quantum query complexity lower bounds . . . . . . . . . . . . . . 78
4.4.5 Quantum sample complexity lower bounds . . . . . . . . . . . . . 79

5 Space-efficient quantum singular value transformation 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Space-efficient quantum singular value transformations . . . . . . . . . . 84

5.2.1 Space-efficient bounded polynomial approximations . . . . . . . . 86
5.2.2 Applying averaged Chebyshev truncation to bitstring indexed en-

codings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Examples: The sign function and the normalized logarithmic function . . 104
5.4 Application: Space-efficient error reduction for unitary quantum compu-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



6 Space-bounded quantum state testing and its applications 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.2 Time-bounded and space-bounded testing: A comparison . . . . . 113
6.1.3 Proof overview: A general framework for quantum state testing . 114
6.1.4 Proof overview: The equivalence of QSZKUL and BQL . . . . . . . 115

6.2 Space-bounded quantum state testing . . . . . . . . . . . . . . . . . . . . 116
6.2.1 Space-bounded quantum state testing: a general framework . . . 119
6.2.2 GapQSDlog is in BQL . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.3 GapQEDlog and GapQJSlog are in BQL . . . . . . . . . . . . . . 123
6.2.4 CertQSDlog and CertQHSlog are in coRQUL . . . . . . . . . . . 127
6.2.5 BQL- and coRQUL-hardness of space-bounded state testing problems133

6.3 Application: Algorithmic Holevo-Helstrom measurement and an improved
upper bound of QSZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Algorithmic Holevo-Helstrom measurement: Proof of Theorem 6.26 137
6.3.2 A slightly improved upper bound for QSZK: Proof of Theorem 6.27 139

6.4 Application: Space-bounded unitary quantum statistical zero-knowledge . 141
6.4.1 Definitions of space-bounded unitary quantum interactive proofs . 142
6.4.2 Definition of space-bounded unitary quantum statistical zero-knowledge144
6.4.3 IndivProdQSD is QSZKULHV-hard . . . . . . . . . . . . . . . . 146
6.4.4 QSZKULHV is in BQL . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Quantum state testing beyond the polarizing regime 151

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.1.2 Proof techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Quantum analogs of the triangular discrimination . . . . . . . . . . . . . 156
7.2.1 QTD vs. trace distance . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2.2 QTD vs. (squared) Bures distance . . . . . . . . . . . . . . . . . . 160
7.2.3 QTD vs. QJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Complete problems for QSZK on the quantum state testing . . . . . . . . 163
7.3.1 QSZK containment using the quantum entropy extraction . . . . . 163
7.3.2 QJSP is in QSZK . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.3 QSZK containments using the polarization lemma . . . . . . . . . 166
7.3.4 QSZK-hardness of QJSP, QEDP, measQTDP, and QTDP . . 171

viii



7.4 Easy regimes for the class QSZK . . . . . . . . . . . . . . . . . . . . . . . 173
7.4.1 QSDP without error is in NQP . . . . . . . . . . . . . . . . . . . 173
7.4.2 QSDP with some inverse-exponential errors is in PP . . . . . . . 175

8 Conclusions 177

ix



List of Figures

6.1 General framework for quantum state testing T (Qρ, UA, Pd′). . . . . . . . 114
6.2 Quantum tester T (Q,UA, Pd′ , ϵ): the circuit implementation. . . . . . . . 119
6.3 Algorithmic Holevo-Helstrom measurement. . . . . . . . . . . . . . . . . 138
6.4 A 2l-turn space-bounded quantum interactive proof system (with snapshots).143
6.5 Quantum states ξ′

0, · · · , ξ′
l and ξ, · · · , ξl+1 prepared by the simulator. . . 146

7.1 Quantum circuit Q′
0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Quantum circuit Q′
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

x



List of Tables

4.1 Computational hardness of TsallisQEDq and TsallisQEAq. . . . . . 44
4.2 (Rank-dependent) bounds on query and sample complexities for estimating Sq(ρ). 45
4.3 Reductions for TsallisQEDq and TsallisQEAq , and the related inequalities. 49

6.1 Time- and space-bounded distribution or state testing. . . . . . . . . . . 113
6.2 The correspondence between the distance-like measures and measurements. 118

7.1 Easy and hard regimes for SZK and QSZK. . . . . . . . . . . . . . . . . . 154
7.2 A comparison between classical and quantum distances with usages related to

QSZK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xi



Chapter 1

Introduction

In recent years, the development of quantum devices has posed an intriguing chal-
lenge of verifying their intended functionality. This has made it increasingly important
to characterize the computational power of feasible quantum computation models that
operate under restricted resources, such as time (i.e., the number of gates in the circuit)
and space (i.e., the number of qubits on which the circuit acts).

To be precise, every quantum algorithm, viewed as a quantum device, evolves an
n-qubit quantum state ρ. This mixed state ρ is represented by a positive semidefinite
square matrix of dimension 2n that satisfies Tr(ρ) = 1. In scenarios where the quantum
device operates independently of any external environment, the resulting quantum state
is a pure state, meaning Tr(ρ2) = 1. Equivalently, such a state can be expressed as
ρ = |ψ⟩⟨ψ|, where the pure state |ψ⟩ is a vector on the unit sphere in C2n .

A quantum algorithm often begins with the pure state |0⟩⊗n and proceeds through a
sequence of local operations known as quantum gates. Each gate is a unitary operator
that acts on a constant number of qubits while being implicitly tensored with the identity
operator on the remaining qubits. To extract the information from the computation,
particularly the resulting quantum state, a measurement is typically performed on the
designated output qubit. This final measurement, conducted in the computational basis
{|0⟩, |1⟩}, converts the final state into a probabilistic output by projecting the output
qubit onto one of the eigenstates associated with the measurement outcomes.

The problem of (tolerant) quantum state testing aims to design algorithms that can
efficiently test whether a quantum state ρ approximately has a certain property, assuming
the state either nearly has the property or is somehow “far” from having it. Given the
ability to produce copies of ρ, two notable examples illustrate this framework:

(1) The property Purity serves as a simple and interesting example. A quantum state
ρ satisfies this property if and only if it is a pure state, equivalently Tr(ρ2) = 1.

(2) Closeness testing of quantum states provides another illustrative case. Here, a
quantum device is designed to prepare a specific quantum state ρ0, but a possibly
malicious party could provide another device that outputs a different n-qubit state
ρ1, claiming that ρ0≈ϵ ρ1. The task is to test whether ρ0 is ϵ1-close to or ϵ2-far from
ρ1 with respect to a specified distance-like measure.

Quantum state testing generalizes the concept of (tolerant) classical distribution test-
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ing (see [Can20]), a specialized topic within classical property testing – a fundamental
area in theoretical computer science (see [Gol17]). Moreover, quantum state testing con-
stitutes a key instance of quantum property testing (see [MdW16]), an emerging field
focused on designing quantum testers for the properties of quantum objects.

The remainder of this chapter reviews prior works on time-bounded (white-box) close-
ness testing of probability distributions and quantum states (Section 1.1). Subsequently,
Section 1.3 outlines the contributions of this dissertation and highlights their significance.
Finally, the organization of the dissertation is presented in Section 1.4.

1.1 Background: Time-bounded distribution and state testing

In this section, we review prior works on time-bounded distribution and state test-
ing, with a particular focus on the closeness testing of distributions or states prepared
by (poly)time-bounded classical or quantum circuits, given access to the “source code”
of the respective devices. Our discussion emphasizes white-box scenarios, where “source
code” refers to the description of classical or quantum preparation circuits using a poly-
nomial number of elementary gates. For an overview of time-bounded closeness testing
of probability distributions with respect to total variation distance or (Shannon) entropy
difference, we also recommend a brief survey [GV11] by Goldreich and Vadhan.

As a general outline, the computational complexity of time-bounded closeness testing
of probability distributions or quantum states varies significantly depending on the chosen
closeness measure, exhibiting a dichotomy-like behavior:

• For the ℓ1 norm and the entropy difference, time-bounded closeness testing appears
to be much harder than preparing distributions or states, as SZK and QSZK are
widely believed to be strictly more powerful than BPP and BQP, respectively.

• For the ℓ2 norm, time-bounded closeness testing is as easy as preparing distributions
or states, corresponding to complexity class BPP or BQP.

In broad terms, the complexity classes BPP and BQP capture the computational power
of bounded-error efficient (i.e., polynomial-time) classical (specifically, randomized) and
quantum computation, respectively. In contrast, the complexity classes SZK and QSZK
consist of promise problems that possess classical and quantum statistical zero-knowledge
proofs, which are specialized types of classical and quantum interactive proof systems,
respectively. The computational power of these models is typically enhanced by the
interactions between the prover and the verifier in the proof system, where the verifier is
limited to efficient classical (more precisely, randomized) or quantum computation, and
the prover is untrusted but computationally unbounded.

Next, we discuss prior works that further clarify this dichotomy-like behavior.

1.1.1 ℓ1 norm scenarios and the complexity classes SZK and QSZK

The (white-box) time-bounded distribution testing problem, specifically the case with
respect to the total variation distance, known as Statistical Difference (SD), was
first introduced by Sahai and Vadhan [SV03]. Interestingly, their original motivation
was to establish a natural complete characterization of the complexity class SZK, which
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consists of promise problems that possess statistical zero-knowledge proofs. Statistical
zero-knowledge is a foundational concept in complexity theory and cryptography, partic-
ularly in the study of interactive proofs. For further details or comprehensive surveys,
please refer to [Vad99, Gol13]; for its quantum analog, see [VW16].

This promise problem SD[α, β] involves two (time-)efficiently samplable probability
distributions, D0 and D1, and asks whether D0 is α-far from or β-close to D1 with respect
to the total variation distance ∥D0 − D1∥TV. Here, a distribution Db for b ∈ {0, 1} is
considered efficiently samplable if there exists an explicit polynomial-size classical circuit
Cb that takes m random bits as input and outputs the n-bit distribution Db, where m and
n represent the input length and the output length, respectively, and m is a polynomial
of n. While sampling from such distributions is in BPP, testing the closeness between
them is seemingly much harder, as it is SZK-complete [SV03, GSV98].

Importantly, the SZK containment of SD[α, β] for the natural parameter regime α(n)−
β(n) ≥ 1/poly(n), referred to as GapSD, remains an open problem. Specifically, the
works of [SV03, GSV98] established that SD[α, β] is in SZK for the constant polarizing
regime, i.e., α2 − β > 0. This approach extends to the parameter regime α2(n)− β(n) ≥
1/O(log n), as clarified in [Gol19]. More recently, Berman, Degwekar, Rothblum, and
Vasudevan [BDRV19] improved the parameter regime to α2(n) − β(n) ≥ 1/poly(n) by
employing a series of tailor-made reductions between time-bounded distribution testing
problems with respect to carefully chosen closeness measures.

In the quantum world, Watrous [Wat02], building on the pioneering work [SV03],
introduced the time-bounded state testing problem with respect to the trace distance,
known as Quantum State Distinguishability (QSD). This problem QSD[α, β] in-
volves two (time-)efficiently preparable quantum states, ρ0 and ρ1, and asks whether ρ0
is α-far from or β-close to ρ1 with respect to the trace distance T(ρ0, ρ1). Here, a state ρb
for b ∈ {0, 1} is considered efficiently preparable if there exists an explicit polynomial-size
quantum circuit Qb that, given the input state |0⟩⊗m, produces the n-qubit state ρb after
tracing out the non-output qubits, where m and n represent the input length and the
output length, respectively, and m is a polynomial of n.

Analogous to its classical counterpart, QSD is QSZK-complete [Wat02, Wat09b],
where QSZK refers to the class of promise problems that possess quantum statistical
zero-knowledge proofs. However, the QSZK containment techniques in [Wat02, Wat09b]
demonstrated that QSD[α, β] is in QSZK only for the polarizing regime, i.e., α2(n) −
β(n) ≥ 1/O(log n). This technical limitation leads to an intriguing question:

Problem 1.1. How can the QSZK containment regime for the time-bounded state testing
problem QSD be improved beyond the polarizing regime?

We can similarly define GapQSD, corresponding to QSD[α, β] under the natu-
ral parameter regime α(n) − β(n) ≥ 1/poly(n). Both Problem 1.1 and its classical
counterpart essentially address the respective upper bounds of GapSD and GapQSD.
For GapSD, the strongest known upper bound is AM ∩ coAM [BL13], which matches
the best known upper bound of the class SZK [For87, AH91]. In contrast, the best
known upper bound of GapQSD is PSPACE, as implicitly shown in [Wat02, Proposi-
tion 21]. Meanwhile, the previously strongest known upper bound of the class QSZK is
QIP(2) [Wat02, Wat09b, JUW09], where QIP(2) denotes the class of promise problems
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that admit two-message quantum interactive proof systems and it holds that QIP(2) ⊆
PSPACE [JUW09].

Why do parameter regimes matter? In computational complexity theory, we typi-
cally use worst-case hardness, where a few C-hard instances are sufficient to identify that
a computational problem Prob is hard for the class C. However, to demonstrate a C
containment of Prob, we need to show this containment holds for all instances of Prob
with completeness c and soundness s (the acceptance probability for yes instances and
no instances, respectively), such that c(n)− s(n) is at least 1/poly(n).

Otherwise, we may risk having a somewhat “fake” complete problem. For instance, if
a promise problem Prob is proven to be QSZK-hard and contained in QSZK for certain
parameter regime, then we cannot rule out the possibility that those parameter regimes
not yet known to be in QSZK may be inherently QIP(2)-hard. This possibility suggests
that Prob is not QSZK-complete unless QSZK = QIP(2).

Resolving such parameter regime issues is often technically challenging. A specific
example is the low-rank variant of GapQSD, where the rank of states ρ0 and ρ1 is
at most polynomial in n. By leveraging rank-dependent inequalities between the trace
distance and the Hilbert-Schmidt distance, such as [AS17, Equation (1.31)] or [CCC19,
Equation 6], we can show that this low-rank variant of GapQSD is in BQP for certain
parameter regime (with polynomial precision). This is achieved through a clever use of
the SWAP test [BCWdW01]. However, a BQP containment of this problem under the
natural regime, as established in [WZ24a], requires more sophisticated techniques.

1.1.2 Entropy difference scenarios

Beyond the ℓ1 norm, the (quantum) entropy difference is another widely studied
closeness measure in time-bounded distribution and state testing. The time-bounded
distribution testing problem with respect to the Shannon entropy difference, known as
Entropy Difference (ED), was introduced by Goldreich and Vadhan [GV99]. This
problem ED[g] considers two (time-)efficiently samplable distributions D0 and D1 and
asks whether their Shannon entropies satisfy H(D0)−H(D1) ≥ g or H(D1)−H(D0) ≥ g
for g = 1. The problem ED also serves as a complete characterization of the class SZK,
and the SZK containment naturally extends to any g(n) ≥ 1/poly(n).

In the quantum realm, Ben-Aroya, Schwartz, and Ta-Shma [BASTS10] investigated
the time-bounded state testing problem with respect to the von Neumann entropy differ-
ence, referred to as Quantum Entropy Difference (QED). This problem QED[g]
involves two (time-)efficiently preparable quantum states, ρ0 and ρ1, and asks whether
their von Neumann entropies satisfy S(ρ0)− S(ρ1) ≥ g or S(ρ1)− S(ρ0) ≥ g for g = 1/2.
Like its classical counterpart, the problem QED is QSZK-complete, and the QSZK con-
tainment automatically holds for any g(n) ≥ 1/poly(n).

In addition to the Shannon entropy difference, the work of [BDRV19] explored the
time-bounded distribution testing problem with respect to its distance version, known
as Jensen-Shannon Divergence Problem (JSP). This problem JSP[α, β] considers
two (time-)efficiently samplable distributions, D0 and D1, and asks whether D0 is α-far
from or β-close to D1 with respect to the Jensen-Shannon divergence JS(D0, D1). The
problem JSP is SZK-complete, and the SZK containment holds in the natural regime
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where α(n)− β(n) ≥ 1/poly(n).
In the quantum domain, the quantum counterparts of the Jensen-Shannon divergence

implicitly appear in the Holevo bound [Hol73a],1 the quantum counterpart of JSP has
not been investigated in previous work, prompting the following open question:

Problem 1.2. How hard is the time-bounded state testing problem with respect to the
quantum counterparts of the Jensen-Shannon divergence?

1.1.3 ℓ2 norm scenarios and the purity

The time-bounded distribution testing problem with respect to the (squared) Eu-
clidean distance appears to be folklore as BPP-complete. The BPP containment follows
from, for example, the approach in [BCH+19, Theorem 7.1], while the BPP hardness is
also straightforward.2

In contrast, time-bounded state testing problems with respect to closeness measures
related to the ℓ2 norm have garnered more attention. For instance, the time-bounded state
testing problem with respect to the quantity Tr(ρ0ρ1) is BQP-complete. The BQP contain-
ment follows directly from the SWAP test [BCWdW01] or a similar technique [EAO+02],
while the BQP hardness is observed in [Kob03, Theorem 9].3 Moreover, since the squared
Hilbert-Schmidt distance HS2(ρ0, ρ1) can be written as a linear combination of quantities
Tr(ρ2

0), Tr(ρ2
1), and Tr(ρ0ρ1), the corresponding state testing problem is BQP-complete,

with the BQP hardness observed in [RASW23].
However, for state testing problems with respect to the purity Tr(ρ2) or the trace of

integer quantum state powers Tr(ρq), only the BQP containment is known [BCWdW01,
EAO+02], leaving an open question:

Problem 1.3. Can estimating the trace of quantum state powers, such as Tr(ρ2), fully
capture the computational power of quantum computing, i.e., is it BQP-complete?

An additional intriguing observation is that the quantum linear entropy, SL(ρ) := 1−
Tr(ρ2), naturally serves as a lower bound of the von Neumann entropy S(ρ). Similar to the
dichotomy-like behavior discussed earlier, time-bounded state testing is computationally
easy for SL(ρ) but appears challenging for S(ρ), raising another interesting question:

Problem 1.4. What is the computational hardness of approximating the von Neumann
entropy S(ρ)? More specifically, how hard are time-bounded state testing problems with
respect to quantities that lie between SL(ρ) and S(ρ)?

1.2 Background: Space-bounded quantum computation

In models of quantum computation, another key resource often considered alongside
time is space, specifically the number of qubits used by the quantum circuit. The study of

1The quantum Jensen-Shannon divergence, as defined in [MLP05], matches the Holevo χ quantity for
size-2 ensembles with a uniform distribution, as seen in the Holevo bound (e.g., [NC10, Theorem 12.1]).

2The BPP hardness owes to the fact that the squared Euclidean distance between the distribution
(pacc, 1− pacc) from the output bit of any BPP algorithm and the distribution (1, 0) is (1− pacc)2.

3For any BQP circuit Cx, the acceptance probability ∥|1⟩⟨1|outCx|0̄⟩∥2
2 = Tr

(
|1⟩⟨1|outCx|0̄⟩⟨0̄|C†

x

)
=

Tr(ρ0ρ1), where ρ0 := |1⟩⟨1|out and ρ1 := Trout
(
Cx|0̄⟩⟨0̄|C†

x

)
.
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space-bounded quantum computation began with Watrous [Wat99, Wat03], who estab-
lished fundamental properties of the complexity class BQSPACE[s(n)] for s(n) ≥ Ω(log n),
including closure under complement. Here, s(n) denotes the number of qubits in the cir-
cuit, and the circuit size (i.e., the number of elementary gates) is at most 2O(s(n)). The
specific case of space-bounded quantum computation with s(n) = Θ(log(n)), referred to
as quantum logspace, is known as BQL, or BQUL if only unitary gates are permitted.

How powerful are the quantum logspace models BQL and BQUL? Watrous [Wat03]
investigated classical simulations of space-bounded quantum computation, presenting
deterministic simulations in O(s2(n)) space and unbounded-error randomized simulations
inO(s(n)) space. A decade later, van Melkebeek and Watson [vMW12] established a time-
space simultaneous unbounded-error randomized simulation, achieving Õ(t(n)) time and
O(s(n) + log t(n)) space for bounded-error quantum algorithms running in t(n) time and
s(n) space. Over the past two decades, significant developments have shown that BQP is
well-defined, summarized chronologically as follows:

• The choice of gateset. The Solovey-Kitaev theorem [Kit97] establishes that most
quantum classes are gateset-independent, given that the gateset is closed under
adjoint and all entries in gates have reasonable precision. The work of [vMW12]
presented a space-efficient counterpart of the Solovay-Kitaev theorem, implying
that BQL is also gateset-independent.

• Error reduction. Error reduction for BQUL poses challenges because sequential
repetition of a BQUL circuit necessitates reusing the workspace, and intermedi-
ate measurements are not allowed in this model. To overcome this, the approach
in [FKL+16] adapted the witness-preserving error reduction for QMA [MW05], in-
corporating additional ideas to suit the space-efficient setting.

• Intermediate measurements. In the space-bounded scenario, the principle of
deferred measurement is not applicable, as it would lead to an exponential increase
in space complexity. Initially, BQL seems more powerful than BQUL since we can-
not even directly prove that BPL ⊆ BQUL. However, recent work by Fefferman and
Remscrim [FR21] (also see [GRZ21]) established the equivalence between BQL and
BQUL, indicating a space-efficient approach to eliminating (non-oblivious) inter-
mediate measurements. For oblivious intermediate measurements, a simultaneous
time-space efficient approach to eliminate them has been proposed [GR22], though
this improvement does not appear to extend to the non-oblivious setting [Zha24].

1.2.1 Complete characterizations of quantum logspace

We now review prior (natural) complete characterizations of quantum logspace with
two-sided errors (BQL and BQUL). Ta-Shma [TS13] proposed the first candidate BQL-
complete problem, building upon the earlier work of [HHL09], which established a BQP-
complete problem for inverting a well-conditioned matrix. Specifically, Ta-Shma showed
that inverting a (polynomial-size) well-conditioned matrix with polynomial precision is
in BQL. Similarly, computing eigenvalues of an Hermitian matrix is also in BQL. These
algorithms offer a quadratic space advantage over the best-known classical algorithms
that saturate the classical simulation bound [Wat99, Wat03, vMW12]. Moreover, an
exponential quantum advantage emerges when the workspace is restricted to logarithmic
size. Later, Fefferman and Lin [FL18] advanced this line of work by establishing the
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first natural BQUL-complete problem. Their approach ingeniously leveraged amplitude
estimation [BBHT98] to avoid the need for (non-oblivious) intermediate measurements.

More recently, Fefferman and Remscrim [FR21] further extended this natural BQUL-
complete problem (or BQL-complete, equivalently) to a family of natural BQL-complete
problems. They showed that a well-conditioned version of standard DET∗-complete prob-
lems is BQL-complete, where DET∗ denotes the class of problems that are NC1 (Tur-
ing) reducible to intDET, including well-conditioned integer determinant (DET), well-
conditioned matrix powering (MATPOW), and well-conditioned iterative matrix prod-
uct (ITMATPROD), among others.

Notably, all previously identified BQL (or BQUL)-complete problems are rooted in
linear algebra, prompting the following intriguing question:

Problem 1.5. Are there BQL-complete problems outside the linear-algebraic domain that
are even more natural within the context of quantum computing?

Furthermore, prior techniques for demonstrating BQL or BQUL containments have all
followed the approach introduced in [TS13], leading to another compelling question:

Problem 1.6. Are there alternative, possibly systematic, approaches for establishing BQL
containment? More ambitiously, can all techniques used for designing time-bounded quan-
tum algorithms be adapted to space-bounded quantum computation?

1.2.2 Quantum logspace with one-sided errors

Watrous [Wat01] introduced the one-sided error counterpart of unitary quantum
logspace (BQUL), namely the classes RQUL and coRQUL. While error reduction for BQUL
was only resolved fifteen years after the model was introduced, error reduction for RQUL
and coRQUL was achieved in the same work that defined these classes. Notably, the ques-
tion of whether intermediate measurements offer computational advantages in one-sided
error scenarios, specifically RQUL vs. RQL and coRQUL vs. coRQL, remains unsolved.

In addition to exploring the fundamental properties of these classes, Watrous demon-
strated that the undirected graph connectivity problem (USTCON) is in RQUL∩coRQUL,
highlighting a quantum advantage. However, several years later, Reingold [Rei08] proved
that USTCON is in L. More recently, Fefferman and Remscrim [FR21] proposed a “verifi-
cation” version of the well-conditioned iterative matrix product problem (vITMATPROD)
as a candidate coRQL-complete problem. While this problem is known to be coRQL-hard,
its containment in coRQL remains unresolved. Specifically, vITMATPROD requires to
decide whether a single entry in the product of a polynomial number of well-conditioned
matrices is equal to zero. These developments raise the following intriguing question:

Problem 1.7. Do the classes RQUL and coRQUL have natural complete problems?

1.3 Our contributions

This section demonstrates how our contributions (partially) resolve the problems out-
lined in Problems 1.1 to 1.7, which were proposed in the background sections.
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1.3.1 A dichotomy theorem on approximating von Neumann entropy

We begin by addressing Problem 1.4. A natural point is the power quantum entropy
of order q, which is closely related to the trace of quantum state powers Tr(ρq). In
particular, the quantum q-Tsallis entropy Sq(ρ), which is a non-additive (but still concave)
generalization of the von Neumann entropy S(ρ), with the von Neumann entropy being
the limiting case of the quantum q-Tsallis entropy as q approaches 1:

Sq(ρ) = 1− Tr(ρq)
q − 1 and lim

q→1
Sq(ρ) = S(ρ) = −Tr(ρ log ρ).

This connection suggests that Sq(ρ) can provide a natural lower bound for S(ρ) when
considering Sq(ρ) with q = 1 + ϵ, where ϵ can be a small constant, such as q = 1.0001.
Furthermore, for 1 ≤ q ≤ 2, the inequality SL(ρ) = S2(ρ) ≤ Sq(ρ) ≤ S(ρ) holds, indicating
that Sq(ρ) serves as a promising candidate quantity for tackling Problem 1.4.

The study of power entropy dates back to Havrda and Charvát [HC67]. Since then,
it has been rediscovered independently by Daróczy [Dar70], and finally popularized by
Tsallis [Tsa88]. Raggio [Rag95] further expanded on this study by introducing the quan-
tum Tsallis entropy. Tsallis entropy has been proven particularly useful in physics, where
it describes systems with non-extensive properties, such as long-range interactions, in
statistical mechanics (see [Tsa01] for further details).

A notable example is the Tsallis entropy Hq(p) with q = 3/2, which is useful for
modeling systems where both frequent and rare events matter.4 For instance, in fluid
dynamics, the distribution that maximizes H3/2 helps model velocity changes in turbulent
flows [Bec02]. Existing efficient quantum algorithms [BCWdW01, EAO+02] are designed
particularly for integer q ≥ 2. Therefore, estimating Sq(ρ) for non-integer q between 1
and 2 appears to be computationally challenging, which in turn motivates Problem 1.4.

Next, we focus on estimating the trace of quantum state powers Tr(ρq), which leads
to the Quantum q-Tsallis Entropy Difference Problem (TsallisQEDq). The
definition of TsallisQEDq is similar to that of QED, with the key difference being the
use of the quantum Tsallis entropy instead of the von Neumann entropy.

Our first main result is a sharp phase transition between the case of q = 1 and constant
q > 1 in the computational complexity of TsallisQEDq, identifying the easy and hard
regimes for approximating the von Neumann entropy (Problem 1.4):

(i) For the regime 1 + Ω(1) ≤ q ≤ 2, which includes the purity Tr(ρ2), the problem is
BQP-complete. Moreover, the BQP containment holds when q ≥ 1 + Ω(1).

(ii) For the regime 1 < q < 1 + 1
n−1 , the problem is QSZK-hard, leading to hardness of

approximating von Neumann entropy as long as BQP ⊊ QSZK.

Remarkably, the BQP containment in Item (i) serves as a time-efficient quantum
estimator for q-Tsallis entropy, exponentially improving the prior best results. Specifically,
several quantum algorithms for estimating the q-Tsallis entropy of an n-qubit quantum
state ρ, where q > 1 is a non-integer constant, have been proposed in [AISW20, WGL+24,
WZL24, WZ24b]. All of these algorithms turn out to have time complexity exp(n) in the

4In contrast, the Tsallis entropy with q = 2 (Gini impurity) is very sensitive to rare events.
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setting that ρ is given by its state-preparation circuit of size poly(n). Additionally, the
BQP hardness in Item (i) implies that Purity Estimation is BQP-hard, which provides
a positive resolution to Problem 1.3.

In terms of techniques, our BQP containments (upper bounds) are achieved by con-
structing (time-)efficiently computable uniform polynomial approximations of positive
power functions, inspired by Serge Bernstein’s works from nearly a century ago [Ber14,
Ber38], and applying them within the quantum singular value transformation frame-
work [GSLW19]. In addition, our hardness results (lower bounds) in Items (i) and (ii)
are derived from reductions based on new inequalities for the quantum q-Jensen-Tsallis
divergence [BH09] with 1 ≤ q ≤ 2. Notably, when q = 1, this divergence coincides with
the quantum Jensen-Shannon divergence [MLP05], which is related to Problem 1.2. The
corresponding time-bounded state testing problem will be addressed later.

1.3.2 Space-bounded quantum state testing via space-efficient quantum
singular value transformation

Does the dichotomy-like behavior also arise in quantum state testing under other
resource constraints? A natural way to explore this question, as previously discussed,
is to consider quantum computation models with limited memory, particularly space-
bounded quantum computation (or quantum logspace).

To address this, we introduce space-bounded variants of quantum state testing prob-
lems (with two-sided errors), focusing on state-preparation circuits that act on O(log n)
qubits, with the number of elementary gates being at most poly(n). We also consider
the quantum state testing problems with one-sided errors, often referred to as quantum
state certification [BOW19], in space-bounded scenarios. Our investigation leads to the
following novel complete characterization of quantum logspace:

(iii) In the two-sided error setting, space-bounded state testing with respect to common
distance-like measures – including the trace distance, the quantum entropy differ-
ence (and its distance version, the quantum Jensen-Shannon divergence), and the
(squared) Hilbert-Schmidt distance – is BQL-complete.

(iv) In the one-sided error setting, space-bounded state certification with respect to the
trace distance and the (squared) Hilbert-Schmidt distance is coRQUL-complete.

The BQL-complete problems in Item (iii) are notably more natural in the context
of quantum computing, resolving Problem 1.5, and are arguably simpler than previous
BQL-complete problems in the linear-algebraic domain. Moreover, the coRQUL-complete
problems in Item (iv) serve as the first family of natural complete problems of quantum
logspace with one-sided errors, corresponding to the classes coRQUL and RQUL. This
provides an answer to Problem 1.7.

The idea for establishing the containments in Items (iii) and (iv) is conceptually sim-
ple: implement the two-outcome measurement tailored to the chosen closeness measure:

Πb = I

2 + (−1)b
2 f(A), where b ∈ {0, 1}.

Here, f(A) represents a specific function applied to the eigenvalues of some Hermitian
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matrix A, which relates to ρ0 and ρ1. An illustrative example is the (squared) Hilbert-
Schmidt distance, where the measurement operator becomes Πb = I

2 + (−1)b

2 SWAP(ρ0, ρ1).
The function SWAP(ρ0, ρ1) can be efficiently implemented by the SWAP test [BCWdW01],
and the corresponding measurement is achievable through the one-bit precision phase es-
timation [Kit95], also known as the Hadamard test [AJL09].

However, for closeness measures beyond the Hilbert-Schmidt distance – widely re-
garded as more challenging in time-bounded state testing problems – new techniques are
required. This challenge leads to the primary technical contribution of this subsection:

(v) A space-efficient variant of quantum singular value transformation [GSLW19]. More
precisely, for any efficiently implementable unitary dilation U (a block-encoding) of
an Hermitian matrix A acting on O(log n) qubits, it is possible to approximately
implement the quantum singular value transform f (SV)(U) corresponding to any
piecewise-smooth function f(x). This quantum circuit implementation requires
O(log n) qubits, and the polynomial approximation P (f)

d of degree poly(n) can also
be constructed in classical (possibly randomized) logspace.

Our technique presented in Item (v) not only provides a unified framework for de-
signing quantum logspace algorithms, offering a positive answer to Problem 1.6, but also
establishes simultaneous time-space upper bounds. As a consequence, our results have
broader implications beyond quantum logspace, including the following:

(vi) We prove that QSZK is in QIP(2) with a quantum linear-space honest prover, slightly
improving from the best known upper bound QIP(2) [Wat02, JUW09], where the
computational power of the honest prover is unbounded.

(vii) In the context of quantum interactive proofs, we introduce a space-bounded variant
of quantum statistical zero-knowledge (QSZKUL), where the verifier uses unitary
quantum logspace. We further establish that this model is as weak as BQL, implying
that the statistical zero-knowledge property in the space-bounded setting negates
the computational advantage typically gained from the interaction.

Interestingly, Item (vii) establishes a correspondence between the white-box state
testing problem and quantum statistical zero-knowledge in the space-bounded scenario.
Specifically, space-bounded state testing with respect to the trace distance (GapQSDlog)
is QSZKUL-complete. This correspondence mirrors the time-bounded setting in both
classical (e.g., [GV11]) and quantum contexts, where QSD is QSZK-complete.

The main technique underlying Item (vi) is an algorithmic version of the Holevo-
Helstrom measurement. Specifically, the celebrated Holevo-Helstrom bound [Hol73b,
Hel69] states that the maximum success probability to discriminate quantum states
ρ0 and ρ1 is given by 1

2 + 1
2T(ρ0, ρ1). This bound is achieved by an optimal two-

outcome measurement {Π0,Π1}, referred to as the Holevo-Helstrom measurement, satis-
fying T(ρ0, ρ1) = Tr(Π0ρ0)− Tr(Π0ρ1).

Our contribution in Item (vi) is an (approximately) explicit implementation of the
Holevo-Helstrom measurement. This implementation is inspired by the BQL containment
of GapQSDlog described in Item (iii). It operates within quantum single-exponential time
– polynomial in the dimension of the state – and linear space, achieving an additive error
of 2−n. By leveraging this technique, Item (vi) is obtained by inspecting the “distance
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test” in [Wat02] since GapQSD is QSZK-hard.

1.3.3 QSZK containments of QSD beyond the polarizing regime

In this subsection, we address Problem 1.1 by presenting a partial solution inspired
by the classical work [BDRV19], which tackled the classical counterpart of Problem 1.1.
Notably, while we establish improved QSZK containments of QSD, our results are lim-
ited to slightly weaker parameters. This limitation arises from fundamental differences
between classical and quantum closeness measures.

More specifically, the improved SZK containment of SD, established in [BDRV19], is
achieved through a series of tailor-made reductions involving time-bounded distribution
testing problems with respect to the triangular discrimination and the Jensen-Shannon
divergence. These two closeness measures, in particular, capture the limitation of two
known approaches to polarization:

• The original polarization approach [SV03] reduces errors alternately for yes in-
stances (direct product lemma) and no instances (XOR lemma). This approach is
fully characterized by triangular discrimination, as the corresponding distribution
testing problem TDP[α, β] is in SZK for the regime α(n)− β(n) ≥ 1/O(log n).

• The entropy extraction approach [GSV99] relies crucially on the Jensen-Shannon
divergence, which can be viewed as a distance version of entropy difference, as ob-
served implicitly in [Vad99]. Hence, the corresponding distribution testing problem
JSP[α, β] is in SZK for the natural parameter regime α(n)− β(n) ≥ 1/poly(n).

While classical distances (more formally, classical closeness measures) often have sev-
eral quantum counterparts, the trace distance uniquely serves as the quantum analog of
the total variation distance. Consequently, the polarization lemma applies almost directly
to the trace distance, as noted in [Wat02]. However, tackling Problem 1.1 requires defin-
ing proper quantum analogs of the time-bounded distribution testing problems TDP and
JSP. This task is challenging because quantum analogs of the corresponding closeness
measures either have several choices or have not been defined yet.

To overcome this, we introduce two time-bounded state testing problems: the Mea-
sured Quantum Triangular Discrimination Problem (measQTDP) and the
Quantum Jensen-Shannon Divergence Problem (QJSP). Notably, the latter cor-
responds exactly to Problem 1.2. We then establish that both measQTDP and QJSP
are QSZK-complete, which allows us to improve the QSZK containment regime for QSD:

(viii) measQTDP[α, β] is in QSZK for the regime α(n) − β(n) ≥ 1/O(log n), while
QJSP[α, β] is in QSZK for the regime α(n)− β(n) ≥ 1/poly(n).
Additionally, the latter result improves the QSZK containment of QSD[α, β], ex-
tending it to the regime α2(n)−

√
2 ln 2β(n) ≥ 1/poly(n), as opposed to the polar-

izing regime α2(n)− β(n) ≥ 1/O(log n).

The improved QSZK containment of QSD, as presented in Item (viii), is slightly
weaker than the classical work [BDRV19]. This disparity arises because quantum analogs
of the triangular discrimination, which are central to establish Item (viii), exhibit distinct
behaviors from the classical equivalent.
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Our definitions of measQTDP and QJSP serve as proper quantum analogs of TDP
and JSP, respectively, since these time-bounded state testing problems capture the lim-
itations of known approaches to polarize quantum distances:

• The original polarization approach [SV03, Wat02] is captured by the measured
quantum triangular discrimination, as the corresponding state testing problem
measQTDP is in QSZK for the natural parameter regime with logarithmic preci-
sion. Interestingly, another natural quantum analog, the quantum triangular dis-
crimination does not achieve a similar result.

• The quantum entropy extraction approach [BASTS10] is fully characterized by the
quantum Jensen-Shannon divergence. This is because not only the corresponding
state testing problem QJSP is in QSZK for the natural parameter regime, but also
a simple QSZK-hardness proof for QED follows from this containment.

In addition to examining the limitations of quantum polarizations, we also identify
easy regimes for the class QSZK. Specifically, we prove that QSD with some exponentially
small errors is in PP, suggesting that dimension-preserving polarization – where the
number of qubits in the polarized states is as same as in the original states – is unlikely
to be achievable unless QSZK ⊆ PP. Furthermore, we show that QSD without error
is in NQP, a subclass of PP that serves as a precise variant of BQP with an exact zero
acceptance probability for no instances [ADH97, YY99].

1.4 Organization

In Chapter 2, we introduce our notations and provide a brief review of space-bounded
quantum computation, a basic mathematical background related to QSVT, and useful
classical and quantum algorithmic tools.

In Chapter 3, we define closeness measures for classical probability distributions and
quantum states, discuss relevant results on (time-bounded) distribution and state testing
(including quantitative bounds), and briefly review space-bounded distribution testing.

In Chapter 4, we present our work on estimating the trace of quantum state powers,
which can be viewed as a dichotomy theorem on approximating von Neumann entropy.
This chapter is based on [LW25], a joint work with Qisheng Wang.

In Chapter 5, we develop space-efficient quantum singular value transformation and
apply it to space-efficient error reduction for unitary quantum computations. This part
is based on joint work with François Le Gall and Qisheng Wang [LLW23, Section 3].

In Chapter 6, we introduce space-bounded quantum state testing and explore two
topics extending beyond quantum logspace: (1) implementing an algorithmic Holevo-
Helstrom measurement, which leads to a slightly improved upper bound for QSZK;
and (2) demonstrating the weakness of space-bounded unitary quantum statistical zero-
knowledge, as an example of quantum interactive proofs. This chapter is primarily based
on [LLW23, Sections 4 and 5], with Section 6.4 drawing on joint work with François Le
Gall, Harumichi Nishimura, and Qisheng Wang [LLNW24, Section 5].

In Chapter 7, we establish the QSZK containment of QSD beyond the polarizing
regime, based on a single-author work [Liu23].
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In Chapter 8, the final chapter, we summarize the dissertation and highlight several
open problems for future research.
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Chapter 2

Preliminaries

We assume that the reader is familiar with quantum computation and the theory of
quantum information. For an introduction, the textbooks by [NC10] and [dW19] provide
a good starting point, while for a more comprehensive survey on classical and quantum
complexity theory, refer to [AB09, Wat09a], respectively.

Throughout this dissertation, the following conventions are adopted:

(1) The notation [n] represents the set {1, 2, . . . , n}.

(2) The notation Õ(f) is defined as O(f polylog(f)).

(3) The notation |0̄⟩ is used to denote |0⟩⊗a with a > 1.

(4) The operator norm (i.e., the Schatten ∞-norm) of a matrix A is denoted by ∥A∥.

Logarithm function and its generalization. Since this dissertation involves various
notions of entropy-like quantities, we adopt specific conventions for the logarithm function
and its generalization. Unless stated otherwise in a particular section, the terms log(x)
and ln(x) are used interchangeably to denote the natural logarithm for any x ∈ R+, while
the term log2(x) specifically refers to the base-2 logarithm for any x ∈ R+.

To generalize the natural logarithm, we define the q-logarithm function lnq : R+ → R
for any real q ̸= 1 as follows:

∀x ∈ R+, lnq(x) := 1− x1−q

q − 1 .

It is easy to verify that limq→1 lnq(x) = ln(x) for all x ∈ R+. For q ̸= 1, however, the
q-logarithm exhibits distinct behavior; for example, it satisfies the relation

lnq(xy) = lnq(x) + lnq(y) + (1− q) lnq(x) lnq(y).
Further properties of the q-logarithm can be found in [Tsa01, Appendix] and [Yam02].

Linear maps and quantum channels. We recommend [AS17, Section 2.3] as an in-
troduction on superoperators and quantum channels. LetH1 andH2 be finite-dimensional
Hilbert spaces with dim(Hi) = Ni = 2ni for i ∈ {1, 2}. Let L(H1,H2) denote linear maps
from H1 to H2, and specifically, let L(H) denote linear maps from H to H. A map
Φ: L(H1) → L(H2) is called self-adjointness-preserving if Φ(X†) = (Φ(X))† for any
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X ∈ L(H1). We further say that a self-adjointness-preserving map Φ: L(H1) → L(H2)
is a quantum channel if Φ is a completely positive trace-preserving map. Here, a map
Φ is trace-preserving if Tr(Φ(X)) = Tr(X) for any X ∈ L(H1). Let {|vi⟩}i∈[N1] denote
an orthonormal basis of H1, and a map Φ is defined as completely positive if Φ ⊗ In is
positive for any n ∈ N, where In represents the identity matrix of dimension n.

Let D(H) be the set of all density matrices (often referred to as quantum states),
which are positive semi-definite and trace-one matrices on H. Let the trace norm of a
linear map X be ∥X∥1 := Tr

(√
X†X

)
. For any quantum channels E and F that act on

D(H), the diamond norm distance between them is defined as the following:
∥E − F∥⋄ := sup

ρ∈D(H⊗H′)
∥(E ⊗ IH′)(ρ)− (F ⊗ IH′)(ρ)∥1.

Promise problems and reductions. We say that P = (Pyes,Pno) is a promise prob-
lem, if it satisfies the conditions Pyes ∩ Pno = ∅ and Pyes ∪ Pno ⊆ {0, 1}∗.

We then proceed with the concept of reductions between promise problems. This
concept serves as a fundamental tool for characterizing computational hardness, especially
in the context of complexity classes. Following the definitions presented in [Gol08, Section
2.2.1], two types of reductions are considered from a promise problem P = (Pyes,Pno) to
another promise problem P ′ = (P ′

yes,P ′
no):

• Karp reduction. A deterministic polynomial-time computable function f is called
a Karp reduction from a promise problem P to another promise problem P ′ if, for
every x, the following holds: x ∈ Pyes if and only if f(x) ∈ P ′

yes, and x ∈ Pno if and
only if f(x) ∈ P ′

no.

• Turing reduction. A promise problem P is Turing-reducible to a promise problem
P ′ if there exists a deterministic polynomial-time oracle machine A such that, for
every function f that solves P ′ it holds that Af solves P . Here, Af (x) denotes the
output of machine A on input x when given oracle access to f .

It is noteworthy that Karp reduction is a special case of Turing reduction.

This chapter is organized as follows. Section 2.1 provides a brief overview of space-
bounded quantum computation. Section 2.2 describes the basics of singular value de-
composition and transformation. Section 2.3 presents techniques in polynomial approx-
imation, including best uniform approximation of positive constant powers, Chebyshev
polynomials, and Chebyshev truncated expansions. Finally, Section 2.4 outlines the clas-
sical and quantum algorithmic tools employed in this dissertation.

2.1 Space-bounded quantum computation

We say that a function s(n) is space-constructible if there exists a deterministic space
s(n) Turing machine that takes 1n as an input and output s(n) in the unary encoding.
Moreover, we say that a function f(n) is s(n)-space computable if there exists a determinis-
tic space s(n) Turing machine that takes 1n as an input and output f(n). Our definitions
of space-bounded quantum computation are formulated in terms of quantum circuits,
whereas many prior works focused on quantum Turing machines [Wat99, Wat03, vMW12].
For a discussion on the equivalence between space-bounded quantum computation using
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quantum circuits and quantum Turing machines, we refer readers to [FL18, Appendix A]
and [FR21, Section 2.2].

We begin by defining time-bounded and space-bounded quantum circuit families, and
then proceed to the corresponding complexity class BQUSPACE[s(n)]. It is worth noting
that we use the abbreviated notation Cx to denote that the circuit C|x| takes input x.

Definition 2.1 (Time- and space-bounded quantum circuit families). A (unitary) quan-
tum circuit is a sequence of quantum gates, each of which belongs to some fixed gateset
that is universal for quantum computation, such as {H,CNOT,T}.
For a promise problem P = (Pyes,Pno), we say that a family of quantum circuits {Cx :
x ∈ P} is t(n)-time-bounded if there is a deterministic Turing machine that, on any
input x ∈ P, runs in time O(t(|x|)), and outputs a description of Cx such that Cx accepts
(resp., rejects) if x ∈ Pyes (resp., x ∈ Pno).
Similarly, we say that a family of quantum circuits {Cx : x ∈ P} is s(n)-space-bounded if
there is a deterministic Turing machine that, on any input x ∈ P, runs in space O(s(|x|))
(and hence time 2O(s(|x|))), and outputs a description of Cx such that Cx accepts (resp.,
rejects) if x ∈ Pyes (resp., x ∈ Pno), as well as Cx is acting on O(s(|x|)) qubits and has
2O(s(|x|) gates..

Definition 2.2 (BQUSPACE[s(n), a(n), b(n)], adapted from Definition 5 in [FR21]). Let
s : N → N be a space-constructible function such that s(n) ≥ Ω(log n). Let a(n) and
b(n) be functions that are computable in deterministic space s(n). A promise problem
(Pyes,Pno) is in BQUSPACE[s(n), a(n), b(n)] if there exists a family of s(n)-space-bounded
(unitary) quantum circuits {Cx}x∈P , where n = |x|, satisfying the following:

• The output qubit is measured in the computational basis after applying Cx. We
say that Cx accepts x if the measurement outcome is 1, whereas Cx rejects x if the
outcome is 0.

• Pr[Cx accepts x] ≥ a(|x|) if x ∈ Pyes, whereas Pr[Cx accepts x] ≤ b(|x|) if x ∈ Pno.

We remark that Definition 2.2 is gateset-independent, given that the gateset is closed
under adjoint and all entries in chosen gates have reasonable precision. This property
is due to the space-efficient Solovay-Kitaev theorem presented in [vMW12]. Moreover,
we can achieve error reduction for BQUSPACE[s(n), a(n), b(n)] as long as a(n) − b(n) ≥
2−O(s(n)), which follows from [FKL+16] or our space-efficient QSVT-based construction
in Section 5.4. We thereby define BQUSPACE[s(n)] := BQUSPACE[s(n), 2/3, 1/3] to repre-
sent (two-sided) bounded-error unitary quantum space, and BQUL := BQUSPACE[O(log n)]
to denote unitary quantum logspace.

We next consider general space-bounded quantum computation, which allows (oblivi-
ous) intermediate measurements and reset-to-zero operations. As a corollary of the Stine-
spring dilation theorem (e.g., [AS17, Theorem 2.25], see also [AKN98, Section 4.1]), for
any quantum channel Φ mapping from density matrices on k1 qubits to density matrices
on k2 qubits, we can exactly simulate this quantum channel Φ by a unitary quantum
circuit acting on 2k1 + k2 qubits. Therefore, we extend Definition 2.1 to general quantum
circuits, which allows local operations, such as intermediate measurements in the com-
putational basis, resetting qubits to their initial states, and tracing out qubits. Now we
proceed with a definition on BQSPACE[s(n)].
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Definition 2.3 (BQSPACE[s(n), a(n), b(n)], adapted from Definition 7 in [FR21]). Let
s : N → N be a space-constructible function such that s(n) ≥ Ω(log n). Let a(n) and
b(n) be functions that are computable in deterministic space s(n). A promise problem
(Pyes,Pno) is in BQSPACE[s(n), a(n), b(n)] if there exists a family of s(n)-space-bounded
general quantum circuits {Φx}x∈P , where n = |x|, satisfying the following holds:

• The output qubit is measured in the computational basis after applying Φx. We
say that Φx accepts x if the measurement outcome is 1, whereas Φx rejects x if the
outcome is 0.

• Pr[Φx accepts x] ≥ a(|x|) if x ∈ Pyes, whereas Pr[Φx accepts x] ≤ b(|x|) if x ∈ Pno.

It is noteworthy that unitary quantum circuits, which correspond to unitary channels,
are a specific instance of general quantum circuits that correspond to quantum channels.
we thus infer that BQUSPACE[s(n)] ⊆ BQSPACE[s(n)] for any s(n) ≥ Ω(log n). How-
ever, the opposite direction was a long-standing open problem. Recently, Fefferman and
Remscrim [FR21] demonstrated a remarkable result that

BQSPACE[s(n)] ⊆ BQUSPACE[O(s(n))].
In addition, it is evident that BQSPACE[s(n)] can achieve error reduction since it ad-
mits sequential repetition simply by resetting working qubits. Therefore, we can define
BQSPACE[s(n)] := BQSPACE[s(n), 2/3, 1/3] to represent (two-sided) bounded-error gen-
eral quantum space, and denote general quantum logspace by BQL := BQSPACE[O(log n)].

We now turn our attention to one-sided bounded-error unitary quantum space, par-
ticularly RQUSPACE[s(n)] and coRQUSPACE[s(n)] for s(n) ≥ Ω(log n). These complex-
ity classes were first introduced by Watrous [Wat01] and have been further discussed
in [FR21]. We proceed with the definitions:

RQUSPACE[s(n), a(n)] := BQUSPACE[s(n), a(n), 0]
coRQUSPACE[s(n), b(n)] := BQUSPACE[s(n), 1, b(n)]

It is noteworthy that RQUSPACE[s(n), a(n)] and coRQUSPACE[s(n), b(n)] can achieve
error reduction, as shown in [Wat01] or our space-efficient QSVT-based construction
in Section 5.4. We define the following

RQUSPACE[s(n)] := BQUSPACE
[
s(n), 1

2 , 0
]

coRQUSPACE[s(n)] := BQUSPACE
[
s(n), 1, 1

2

]
to represent one-sided bounded-error unitary quantum space and logspace counterparts

RQUL := RQUSPACE[O(log n)] and coRQUL := coRQUSPACE[O(log n)].
Remark 2.4 (RQUL and coRQUL are gateset-dependent). We observe that changing the
gateset in space-efficient Solovay-Kitaev theorem [vMW12] can cause errors, revealing the
gateset-dependence of unitary quantum space classes with one-sided bounded-error. To
address this issue, we adopt a larger gateset G for RQUSPACE[s(n)] and coRQUSPACE[s(n)],
which includes any single-qubit gates whose amplitudes can be computed in deterministic
O(s(n)) space.
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2.2 Singular value decomposition and transformation

We recommend [Bha96, HJ12, Hal87] for comprehensive textbooks on matrix anal-
ysis and linear algebra. For any d̃ × d (complex) matrix A, there is a singular value
decomposition of A such that A = ∑min{d,d̃}

i=1 σi|ψ̃i⟩⟨ψi|, where:

• The singular values σ1 ≥ σ2 ≥ · · · ≥ σmin{d,d̃} ≥ 0, where non-zero singular values
σi are the square roots of non-zero the eigenvalues of A†A or AA†.

• |ψ̃1⟩, · · · , |ψ̃d̃⟩ form an orthonormal basis and are eigenvectors of AA†.

• |ψ1⟩, · · · , |ψd⟩ form an orthonormal basis and are eigenvectors of A†A.

Notably, the largest singular value of A coincides with the operator norm of A, specif-
ically ∥A∥ = σ1(A). Let ∥|ψ⟩∥2 :=

√
⟨ψ|ψ⟩ be the Euclidean norm of a vector |ψ⟩. Next,

we list the families of matrices that are commonly used in this work. It is noteworthy
that they all admit a singular value decomposition:

• Hermitian matrices. H† = H, if and only if ⟨ψ|H|ψ⟩ ∈ R for all |ψ⟩ such that
∥|ψ⟩∥2 = 1, if and only if the absolute values of the eigenvalues of H coincide with
its singular value.

• Unitary matrices. UU † = U †U = I, if and only if ∥U |ψ⟩∥2 = ∥U †|ψ⟩∥2 = 1 for
all |ψ⟩ such that ∥|ψ⟩∥2 = ∥|ψ⟩∥2 = 1, if and only if all eigenvalues λi of U has
modulus |λi| = 1, implying that all singular values of U are 1.

• Positive semi-definite matrices. P = CC† for some matrix C, if and only if
⟨ψ|P |ψ⟩ ≥ 0 for all |ψ⟩ such that ∥|ψ⟩∥2 = 1, if and only if all eigenvalues of P are
non-negative.

• Orthogonal projection matrices. Π2 = Π = Π†, if and only if Π2 = Π and
∥Π|ψ⟩∥2 ≤ 1 for all |ψ⟩ such that ∥|ψ⟩∥2 = 1, if and only if all eigenvalues of
Π are either 0 or 1 (see [Hal87, III.75] and [HJ12, Corollary 3.4.3.3] for the last
characterization).

• Partial isometries. GG†G = G, if and only if G†GG† = G†, if and only if
∥G|ψ⟩∥2 = 1 for all |ψ⟩ ∈ ker(G)⊥ such that ∥|ψ⟩∥2 = 1, if and only if G†G is an
orthogonal projection onto ker(G)⊥ (see [Hal87, Exercise III.76.5]). Consequently,
the non-zero singular values of a partial isometry G are all 1. Moreover, an injective
partial isometry is an isometry, and an invertible partial isometry is unitary.

For any matrix A satisfying ∥A∥ ≤ 1, there is a unitary U with orthogonal projections
Π̃ and Π such that A = Π̃UΠ.1 With these definitions in place, we can view the singular
value decomposition as the projected unitary encoding (see Definition 5.3):

Definition 2.5 (Singular value decomposition of a projected unitary, adapted from Defi-
nition 7 in [GSLW19]). Given a projected unitary encoding of A, denoted by U , associated
with orthogonal projections Π and Π̃ on a finite-dimensional Hilbert space HU : A = Π̃UΠ.
Then the singular value decomposition of A ensures that orthonormal bases of Π and Π̃
such that:

1As indicated in [HJ12, 2.7.P2], such a matrix U is called a unitary dilation of A. This unitary
dilation U exists if and only if A is a contraction, namely ∥A∥ ≤ 1.
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• Π: {|ψi⟩ : i ∈ [d]}, where d := rank(Π), of a subspace Img(Π) = span {|ψi⟩};

• Π̃:
{
|ψ̃i⟩ : i ∈ [d̃]

}
, where d̃ := rank(Π̃), of a subspace Img(Π̃) = span

{
|ψ̃i⟩

}
.

We say that a function f : R → C is even if f(−x) = f(x) for all x ∈ R, and that it
is odd if f(−x) = −f(x) for all x ∈ R. Next, we define the singular value transformation
of matrices:

Definition 2.6 (Singular value transformation by even or odd functions, adapted from
Definition 9 in [GSLW19]). Let f : R→ C be an even or odd function. We consider a lin-
ear operator A ∈ Cd̃×d satisfying the singular value decomposition A = ∑min{d,d̃}

i=1 σi|ψ̃i⟩⟨ψ̃i|.
We define the singular value transformation corresponding to f as follows:

f (SV)(A) :=


∑min{d,d̃}
i=1 f(σi)|ψ̃i⟩⟨ψi|, for odd f,∑d
i=1 f(σi)|ψi⟩⟨ψi|, for even f.

Here, σi := 0 for i ∈ {min{d, d̃}+ 1, · · · , d− 1, d}.

Finally, for any d × d Hermitian matrix A, there is a spectral decomposition of A
such that A = ∑d

i=1 λi|ψi⟩⟨ψi| where all eigenvalues {λi}di=1 are real and {|ψi⟩}di=1 is an
orthonormal basis. As a consequence, if f is an even or odd function,

f(A) =
d∑
i=1

f(λi)|ψi⟩⟨ψi| = f (SV)(A)

can be achieved by singular value transformation defined in Definition 2.6.

2.3 Polynomial approximations

This subsection introduces several useful tools for polynomial approximations.
Let f(x) be a continuous function defined on the interval [−1, 1] that we aim to

approximate using a polynomial of degree at most d. We define P ∗
d as a best uniform

(polynomial) approximation on [−1, 1] to f of degree d if, for any degree-d polynomial
approximation Pd of f , the following holds:

max
x∈[−1,1]

|f(x)− P ∗
d (x)| ≤ max

x∈[−1,1]
|f(x)− Pd(x)|.

Let Rd[x] be the set of all polynomials (with real coefficients) of degree at most d.
Equivalently, the best uniform approximation P ∗

d to f is the polynomial that solves the
minimax problem minPd∈Rd[x] maxx∈[−1,1]|f(x)− Pd(x)|.

The best uniform polynomial approximation of positive constant powers, originally
established by Bernstein [Ber14, Ber38], is particularly required:

Lemma 2.7 (Best uniform approximation of positive constant powers, adapted from
Section 7.1.41 in [Tim63]). For any positive integer r and order α ∈ (−1, 1), let P ∗

d ∈ R[x]
be the best uniform approximation for f(x)=xr−1|x|1+α of degree d =

⌈
(βα/ϵ)

1
r+α

⌉
, where

βα is a constant depending on α. Then, for sufficiently small ϵ, it holds that
max
x∈[−1,1]

|P ∗
d (x)− f(x)| ≤ ϵ.
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2.3.1 Chebyshev polynomials and truncated expansions

We begin by defining Chebyshev polynomials, and then introduce Chebyshev trunca-
tion and averaged Chebyshev truncation, with the latter being known as the de La Vallée
Poussin partial sum. We recommend [Riv90, Chapter 3] for a comprehensive review of
Chebyshev series and Chebyshev expansion.

Definition 2.8 (Chebyshev polynomials). The Chebyshev polynomials (of the first kind)
Tk(x) are defined via the following recurrence relation:

T0(x) := 1, T1(x) := x, and Tk+1(x) := 2xTk(x)− Tk−1(x).
For x ∈ [−1, 1], an equivalent definition is Tk(cos θ) = cos(kθ).

To apply Chebyshev polynomials (of the first kind) for Chebyshev expansion, it is
necessary to first define an inner product between two functions, f and g, as long as the
following integral exists:

⟨f, g⟩ := 2
π

∫ 1

−1

f(x)g(x)√
1− x2

dx = 2
π

∫ 0

−π
f(cos θ)g(cos θ)dθ. (2.1)

The Chebyshev polynomials form an orthonormal basis in the inner product space
induced by ⟨·, ·⟩ defined in Equation (2.1). As a result, any continuous and integrable
function f : [−1, 1]→ R whose Chebyshev coefficients satisfy limk→∞ ck = 0, where ck is
defined in Equation (2.2), has a Chebyshev expansion given by:

f(x) = 1
2c0T0(x) +

∞∑
k=1

ckTk(x) where ck := ⟨Tk, f⟩. (2.2)

A natural approach to approximating functions with a Chebyshev expansion is to
consider the truncated version of the Chebyshev expansion P̃d = c0/2+∑d

k=1 ckTk, denoted
as Chebyshev truncation. Remarkably, P̃d provides a nearly best uniform (polynomial)
approximation to f :

Lemma 2.9 (Nearly best uniform approximation by Chebyshev truncation, adapted from
Theorem 3.3 in [Riv90]). For any continuous and integrable function f : [−1, 1]→ R, let
εd(f) be the truncation error that corresponds to the degree-d best uniform approximation
on [−1, 1] to f , then the degree-d Chebyshev truncation polynomial P̃d satisfies

εd(f) ≤ max
x∈[−1,1]

|f(x)− P̃d(x)| ≤
(

4 + 4
π2 log d

)
εd(f)

Consequently, if there is a degree-d polynomial P ∗
d ∈ R[x] such that maxx∈[−1,1] |f(x) −

P ∗
d (x)| ≤ ϵ, then the degree-d Chebyshev truncation polynomial P̃d satisfies

max
x∈[−1,1]

|f(x)− P̃d(x)| ≤ O(ϵ log d).

It is noteworthy that the proof of Lemma 2.9 in [Riv90] relies only on the linear
decay of Chebyshev coefficients ck for any Chebyshev expansion. However, for functions
with a Chebyshev expansion whose Chebyshev coefficients decay almost exponentially,
Chebyshev truncation is “asymptotically” as good as the best uniform approximation:

Lemma 2.10 (A sufficient condition that Chebyshev truncation is “asymptotically” best,
adapted from Equation (3.44) in [Riv90]). For any function f that admits a Chebyshev
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expansion, consider a degree-d Chebyshev truncation polynomial P̃d, and let εd(f) be the
truncation error corresponds to the degree-d best uniform approximation on [−1, 1] to f .
If the Chebyshev coefficients of P̃d satisfy ∑∞

k=2 |cd+j| ≤ η|cd+1|, then

εd(f) ≤ max
x∈[−1,1]

|f(x)− P̃d(x)| ≤ 4
π

(1 + η)εd(f).

Although Lemma 2.10 improves the truncation error in Lemma 2.9 from O(ϵ log d)
to O(ϵ), it only applies to a fairly narrow range of functions, such as sine and cosine
functions. Leveraging an average of Chebyshev truncations, known as the de La Vallée
Poussin partial sum, we obtain the degree-d averaged Chebyshev truncation P̂d′ , which is
a polynomial of degree d′ = 2d− 1:

P̂d′(x) := 1
d

d′∑
l=d

P̃l(x) = ĉ0

2 +
d′∑
k=1

ĉkTk(x) where ĉk =

ck, 0 ≤ k ≤ d′

2d−k
d
ck, k > d

. (2.3)

As a consequence, we can achieve the truncation error 4ϵ for any function that admits
Chebyshev expansion:

Lemma 2.11 (Asymptotically best approximation by averaged Chebyshev truncation,
adapted from Exercise 3.4.6 and 3.4.7 in [Riv90]). For any function f that has a Cheby-
shev expansion, consider the degree-d averaged Chebyshev truncation P̂d′ defined in Equa-
tion (2.3). Let εd(f) be the truncation error corresponds to the degree-d best uniform
approximation on [−1, 1] to f . If there is a degree-d polynomial P ∗

d ∈ R[x] such that
maxx∈[−1,1] |f(x)− P ∗

d (x)| ≤ ϵ, then

max
x∈[−1,1]

∣∣∣f(x)− P̂d′(x)
∣∣∣ ≤ 4εd(f) ≤ 4 max

x∈[−1,1]
|f(x)− P ∗

d (x)| ≤ 4ϵ.

Lastly, we provide upper bounds for the ℓ1 norm of the coefficient vector ĉ :=
(ĉ0, · · · , ĉd) in Lemma 2.12. Interestingly, Chebyshev coefficients ck (and so do ĉk) decay
a bit faster if the function f becomes a bit smoother.

Lemma 2.12 (ℓ1-norm bounds on the averaged truncated Chebyshev coefficient vector).
For any function f that admits a Chebyshev expansion and is bounded with maxx∈[−1,1] |f(x)| ≤
B for some constant B > 0, we have the following ℓ1-norm bounds for the coefficient vec-
tor ĉ corresponds to the degree-d averaged Chebyshev truncation P̂d′ with d′ = 2d− 1:

• For any function f satisfying our conditions, we have ∥c∥1 ≤ O(B log d);
• If the function f is additionally (at least) twice continuously differentiable, ∥c∥1 ≤
O(B).

Proof. By substituting cos θ for x and calculating a direct integral, we obtain:

ck = 2
π

∫ 0

−π
cos(kθ)f(cos θ)dθ

≤ 2
π

∫ 0

−π
cos(kθ)

(
max

x∈{−1,1}
|f(x)|

)
dθ

≤ 2B
π

∫ 0

−π
cos(kθ)dθ

= 2B
π
· sin(kπ)

k
.

(2.4)
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Here, the third line follows from the fact that f is bounded with maxx∈[−1,1] |f(x)| ≤ B
for some constant B > 0. Hence, by combining Equation (2.4) and the Euler-Maclaurin
formula, we know that the coefficient vector ĉ satisfies

∥ĉ∥1 =
d∑

k=0
|ck|+

2d−1∑
k=d+1

2d− k
d
|ck| ≤

2B
π

2d−1∑
k=0

1
k
≤ O(B log d).

For any function f that exhibits better smoothness, we can derive a sharper bound by
considering ck = 2

π

∫ 0
−π cos(kθ)f(cos θ)dθ as Fourier coefficients of the function f(cos θ).

For any function f that is (at least) twice continuously differentiable, the decay properties
of its Fourier coefficients (e.g., [SS03, Exercise 3.18(a)]) imply that |ck| ≤ O(B/k2).
Hence, we obtain an improved norm bound ∥ĉ∥1 ≤

∑2d−1
k=0 O(B/k2) ≤ O(B) as per the

Euler-Maclaurin formula.

2.4 Classical and quantum algorithmic toolkit

Our convention assumes that for any algorithm A in bounded-error randomized time
t(n) and space s(n), A outputs the correct value with probability at least 2/3 (viewed as
“success probability”).

2.4.1 Tools for space-bounded randomized algorithms

We first proceed with space-efficient success probability estimation:

Lemma 2.13 (Space-efficient success probability estimation by sequential repetitions).
Let A be a randomized (resp., quantum) algorithm that outputs the correct value with
probability p, has time complexity t(n), and space complexity s(n). We can obtain an
additive-error estimation p̂ such that |p− p̂| ≤ ϵ, where ϵ ≥ 2−O(s(n)). Moreover, this esti-
mation can be computed in bounded-error randomized (resp., quantum) time O(ϵ−2t(n))
and space O(s(n)).

Proof. Consider a m-time sequential repetition of the algorithm A, and let Xi be a
random variable indicating whether the i-th repetition succeeds, then we obtain a random
variable X = 1

m

∑m
i=1 Xi such that E[X] = p. Now let X̂ = 1

m

∑m
i=1 X̂i be the additive-

error estimation, where X̂i is the outcome of A in the i-th repetition. By the Chernoff-
Hoeffding bound (e.g., Theorem 4.12 in [MU17]), it holds that

Pr
[
|X̂ − p| ≥ ϵ

]
≤ 2 exp(−2mϵ2).

By choosing m = 2ϵ−2, this choice of m ensures that this procedure based on A succeeds
with probability at least 2/3.

Furthermore, the space complexity of our algorithm is O(s(n)) since we can simply
reuse the workspace. Also, the time complexity is m · t(n) = O(ϵ−2t(n)) as desired.

Notably, when applying Lemma 2.13 to a quantum algorithm, we introduce interme-
diate measurements to retain space complexity through reusing working qubits. While
space-efficient success probability estimation without intermediate measurements is pos-
sible,2 we will use Lemma 2.13 for convenience, given that BQL = BQUL [FR21].

2More specifically, Fefferman and Lin [FL18] noticed that one can achieve space-efficient success prob-
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Next, we move on to sub-stochastic matrix powering via space-bounded random walks.
In particular, a matrix B is said to be sub-stochastic if all its entries are non-negative
and the sum of entries in each row (resp., column) is strictly less than 1. Furthermore,
a matrix B is row-stochastic if all its entries are non-negative and the sum of entries in
each row is equal to 1.

Lemma 2.14 (Sub-stochastic matrix powering in bounded space). Let B be an l ×
l upper-triangular sub-stochastic matrix, where each entry of B requires at most ℓ-bit
precision. Then, there exists an explicit randomized algorithm that computes the matrix
power Bk[s, t] in log2(l+1) space and O(ℓk) time. Specifically, the algorithm accepts with
probability Bk[s, t].

Proof. Our randomized algorithm uses the equivalence between space-bounded random-
ized computation and Markov chains, see [Sak96, Section 2.4] for a detailed introduction.

First, we construct a row-stochastic matrix B̂ from B by adding an additional column
and row. Let B̂[i, j] denote the entry at the i-th column and the j-th row of B̂, i.e.,

B̂[i, j] :=


B[i, j], if 1 ≤ i, j ≤ l;
1−∑l

s=j B[s, j], if i = l + 1 and 1 ≤ j ≤ l + 1;
0, if 1 ≤ i ≤ l and j = l + 1.

Next, we view B̂ as a transition matrix of a Markov chain since B̂ is row-stochastic.
We consequently have a random walk on the directed graph G = (V,E) where V =
{1, 2, · · · , l} ∪ {⊥} and (u, v) ∈ E iff B̂(u, v) > 0. In particular, the probability that a
k-step random walk starting at node s and ending at node t is exactly B̂k[s, t] = Bk[s, t].
This is because the walker who visits the dummy node ⊥ will not reach other nodes.

Finally, as B̂ is a (l+ 1)× (l+ 1) matrix, the matrix powering of B̂k can be computed
in log2(l) space. In addition, the overall time complexity is O(ℓk) since we simulate the
dyadic rationals (with ℓ-bit precision) of a single transition exactly by ℓ coin flips.

2.4.2 Quantum subroutines for time- and space-bounded settings

We now provide present quantum subroutines that apply to both time-bounded and
space-bounded settings. Specifically, we set s(n) = n when using these subroutines in
time-bounded scenarios, while s(n) = O(log n) is often used for space-bounded settings.

The first subroutine is the SWAP test, initially proposed for pure states in [BCWdW01].
Later, in [KMY09], it was shown that the SWAP test can also be applied to mixed states.

Lemma 2.15 (SWAP test for mixed states, adapted from [KMY09, Proposition 9]).
Suppose ρ0 and ρ1 are two s(n)-qubit mixed quantum states. There is a (2s + 1)-qubit
quantum circuit that outputs 0 with probability 1+Tr(ρ0ρ1)

2 , using 1 sample of each ρ0 and
ρ1 and O(n) one- and two-qubit quantum gates.

The second subroutine is the quantum amplitude estimation:

ability estimation for quantum algorithms without intermediate measurements via quantum amplitude
estimation [BHMT02].
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Lemma 2.16 (Quantum amplitude estimation, [BHMT02, Theorem 12]). Suppose that
U is a unitary operator such that

U |0⟩|0⟩ = √p|0⟩|ϕ0⟩+
√

1− p|1⟩|ϕ1⟩,

where |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states and p ∈ [0, 1]. Then, there is a
quantum query algorithm using O(M) queries to U that outputs p̃ such that

Pr
|p̃− p| ≤ 2π

√
p(1− p)
M

+ π2

M2

 ≥ 8
π2 .

Moreover, if U acts on s(n) qubits, then the quantum query algorithm can be implemented
by using O(Ms) one- and two-qubit quantum gates.

Furthermore, a subroutine of quantum amplitude estimation (Lemma 2.16) can also
be employed in the one-sided error setting. Specifically, this technique, also known as the
exact amplitude amplification [BHMT02], is adapted from the Grover search when the
number of solutions is one quarter [BBHT98]:
Lemma 2.17 (Exact amplitude amplification, adapted from [BHMT02, Equation 8]).
Suppose U is a unitary of interest such that U |0̄⟩ = sin(θ)|ψ0⟩+cos(θ)|ψ1⟩, where |ψ0⟩ and
|ψ1⟩ are normalized pure states and ⟨ψ0|ψ1⟩ = 0. Let G = −U(I−2|0̄⟩⟨0̄|)U †(I−2|ψ0⟩⟨ψ0|)
be the Grover operator. Then, for every integer j ≥ 0, it holds that

GjU |0̄⟩ = sin((2j + 1)θ)|ψ0⟩+ cos((2j + 1)θ)|ψ1⟩.

In particular, with a single application of G, we obtain GU |0̄⟩ = sin(3θ)|ψ0⟩+cos(3θ)|ψ1⟩,
signifying that GU |0̄⟩ = |ψ0⟩ when sin(θ) = 1/2.

The third subroutine prepares a purified density matrix, originally stated in [LC19]:
Lemma 2.18 (Block-encoding of density matrix, [GSLW19, Lemma 25]). Suppose ρ
is an s(n)-qubit density matrix and U is an (a + s)-qubit unitary operator such that
U |0⟩⊗a|0⟩⊗s = |ρ⟩ and ρ = Tra(|ρ⟩⟨ρ|). Then, we can construct an O(a+s)-qubit quantum
circuit Ũ that is a (1, O(a+s), 0)-block-encoding of ρ, using O(1) queries to U and O(a+s)
one- and two-qubit quantum gates.

The fourth subroutine is a specific version of one-bit precision phase estimation [Kit95],
often referred to as the Hadamard test [AJL09], as stated in [GP22]:
Lemma 2.19 (Hadamard test for block-encodings, adapted from [GP22, Lemma 9]).
Suppose U is an (a + s)-qubit unitary operator that is a block-encoding of s(n)-qubit
operator A. Then, we can implement an O(a + s)-qubit quantum circuit that, on input
s(n)-qubit quantum state ρ, outputs 0 with probability 1+Re(Tr(Aρ))

2 , by using 1 query to
controlled-U and O(1) one- and two-qubit quantum gates.

Moreover, if an (s + a)-qubit unitary operator O prepares a purification of ρ, then,
by combining Lemma 2.16, we can estimate Tr(Aρ) to within additive error ϵ by using
O(1/ϵ) queries to each of U and O and O((s+ a)/ϵ) one- and two-qubit quantum gates.

2.4.3 Quantum algorithmic toolkit for time-bounded settings

We begin by presenting the quantum singular value transformation [GSLW19], start-
ing with the introduction of the notion of block-encoding:
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Definition 2.20 (Block-encoding). A linear operator A on an (n+a)-qubit Hilbert space
is said to be an (α, a, ϵ)-block-encoding of an n-qubit linear operator B, if

∥α(⟨0|⊗a ⊗ In)A(|0⟩⊗a ⊗ In)−B∥ ≤ ϵ,

where In is the n-qubit identity operator and ∥·∥ is the operator norm.

Then, we state the quantum singular value transformation:

Lemma 2.21 (Quantum singular value transformation, [GSLW19, Theorem 31]). Sup-
pose that unitary operator U is an (α, a, ϵ)-block-encoding of Hermitian operator A, and
P ∈ R[x] is a polynomial of degree d with |P (x)| ≤ 1

2 for x ∈ [−1, 1]. Then, we can
implement a quantum circuit Ũ that is a (1, a+2, 4d

√
ϵ/α+δ)-block-encoding of P (A/α),

by using O(d) queries to U and O((a+1)d) one- and two-qubit quantum gates. Moreover,
the classical description of Ũ can be computed in deterministic time poly(d, log(1/δ)).

Next, we provide the quantum samplizer, which helps us establish the sample complex-
ity upper bound from the query complexity upper bound (i.e., a quantum query-to-sample
simulation). We begin by introducing the notion of samplizer in [WZ24b]:

Definition 2.22 (Samplizer). A samplizer Samplize∗⟨∗⟩ is a mapping that converts quan-
tum query algorithms (quantum circuit families with query access to quantum unitary
oracles) to quantum sample algorithms (quantum channel families with sample access to
quantum states) such that: For any δ > 0, quantum query algorithm AU , and quantum
state ρ, there exists a unitary operator Uρ that is a (2, a, 0)-block-encoding of ρ for some
a > 0, satisfying ∥∥∥Samplizeδ⟨AU⟩[ρ]−AUρ

∥∥∥
⋄
≤ δ,

where E [ρ](·) is a quantum channel E with sample access to ρ.

We then include an efficient implementation of the samplizer in [WZ24b], which
is based on quantum principal component analysis [LMR14, KLL+17] and generalizes
[GP22, Corollary 21] and [WZ23, Theorem 1.1].

Lemma 2.23 (Optimal samplizer, [WZ24b, Theorem 4]). There is a samplizer Samplize∗⟨∗⟩
such that for δ > 0 and quantum query algorithm AU with query complexity Q, the im-
plementation of Samplizeδ⟨AU⟩[ρ] uses Õ(Q2/δ) samples of ρ.
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Chapter 3

Closeness testing of distributions
and states

This chapter will begin with a review of commonly used classical closeness measures in
Section 3.1, followed by their quantum counterparts in Section 3.2. Next, Section 3.3 dis-
cusses useful hardness and containment results, including quantitative bounds, on time-
bounded quantum state testing. Finally, prior works closely related to space-bounded
distribution testing are reviewed in Section 3.4.

For convenience, we adopt the convention D1 ≤ D2 to denote an inequality between
two distances or divergences, whether classical or quantum. In particular, this notation –
commonly reflected in the titles of technical lemmas (e.g., Lemma 3.10) – indicates that
D1 is bounded above by a function f of D2, i.e., D1 ≤ f(D2), or that D2 is bounded
below by a function g of D1, i.e., g(D1) ≤ D2.

3.1 Closeness measures for classical probability distributions

We now review several commonly used classical distances and divergences.

Total variation distance and Hellinger distance. We begin by defining the total
variation distance as the following:

Definition 3.1 (Total variation distance). Let p0 and p1 be two probability distributions
over [N ]. The total variation distance between two p0 and p1 is defined by

TV(p0, p1) := 1
2∥p0 − p1∥1 = 1

2
∑
x∈[N ]

|p0(x)− p1(x)|.

Next, we define the (squared) Hellinger distance and the inner product ⟨P |Q⟩ between
normalized non-negative vectors, where the latter is commonly referred to as the Hellinger
affinity or Bhattacharyya coefficient:

Definition 3.2 (Hellinger distance). Let p0 and p1 be two probability distributions over
[N ]. The (square) Hellinger distance between two distributions p0 and p1 is defined by

H2(p0, p1) := 1
2
∑
x∈[N ]

(
√
p0(x)−

√
p1(x))2 = 1− ⟨P0|P1⟩.
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Here, |P0⟩ := ∑
x

√
p0(x)|x⟩ and |P1⟩ := ∑

x

√
p1(x)|x⟩.

The inequalities between the total variation distance and the (squared) Hellinger
distance are established in [Kai67] as follows:

H2(p0, p1) ≤ TV(p0, p1) ≤
√

2H(p0, p1).

Triangular discrimination. We then define the triangular discrimination:

Definition 3.3 (Triangular discrimination). Let p0 and p1 be two probability distributions
over [N ]. The triangular discrimination (also known as Le Cam divergence) between p0
and p1 is defined by

TD(p0, p1) := 1
2
∑
x∈X

(p0(x)− p1(x))2

p0(x) + p1(x) .

The triangular discrimination is a symmetrized variant of the χ2 divergence, given by

∀b ∈ {0, 1}, TD(p0, p1) = χ2
(
pb
∥∥∥p0 + p1

2

)
.

Inequalities relating the triangular discrimination to aforementioned closeness mea-
sures have been established in [Top00] and [LC86, Page 48], respectively:

TV2(p0, p1) ≤ TD(p0, p1) ≤ TV(p0, p1),
H2(p0, p1) ≤ TD(p0, p1) ≤ 2H2(p0, p1).

Jensen-Shannon divergence. We start by defining the Shannon entropy:

Definition 3.4 (Shannon entropy). Let p be a probability distribution over [N ]. The
Shannon entropy of p is defined by

H(p) = −
∑
x∈[N ]

p(x) ln(p(x)).

For N = 2, the notation is slightly abused to denote the (Shannon) binary entropy as
H(p0) = H(1− p0) = H(p).

For convenience, the Shannon entropy and the binary Shannon entropy, both expressed
using the base-2 logarithm, are denoted by Hbit(p) and Hbit(p0), respectively.

Next, we proceed by defining the Jensen-Shannon divergence:

Definition 3.5 (Jensen-Shannon divergence). Let p0 and p1 be two probability distribu-
tions over [N ]. The Jensen-Shannon divergence between p0 and p1 is defined by

JS(p0, p1) := H
(
p0 + p1

2

)
− 1

2(H(p0) + H(p1)).

For convenience, the Jensen-Shannon divergence expressed in terms of the base-2 loga-
rithm is denoted by JSbit(p0, p1), and is given by JS(p0, p1)/ ln 2.

The Jensen-Shannon divergence, a symmetrized variant of the Kullback–Leibler di-
vergence (also known as relative entropy), can be expressed as:

JS(p0, p1) = 1
2KL

(
p0

∥∥∥∥p0 + p1

2

)
+ 1

2KL
(
p1

∥∥∥∥p0 + p1

2

)
.
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Furthermore, the Jensen-Shannon divergence and the total variation distance are
related through the following inequalities:

Lemma 3.6 (JS vs. TV, adapted from [Top00, Theorem 5] and [FvdG99]). Let p0 and
p1 be two probability distributions over [N ], the following inequalities hold

∞∑
v=1

TV(p0, p1)2v

2v(2v − 1) = ln(2)− H
(

1− TV(p0, p1)
2

)
≤ JS(p0, p1) ≤ ln(2) · TV(p0, p1).

Jansen-Tsallis divergence. We begin by defining the Tsallis entropy:

Definition 3.7 (q-Tsallis entropy). Let p be a probability distribution over [N ]. The
q-Tsallis entropy of p is defined by1

Hq(p) :=
1−∑x∈[N ] p(x)q

q − 1 = −
∑
x∈[N ]

p(x)q lnq(p(x)).

The Shannon entropy is the limiting case of the q-Tsallis entropy as q → 1, specifically
H1(p) := lim

q→1
Hq(p) = H(p).

For N = 2, the notation is slightly abused to denote the q-Tsallis binary entropy as
Hq(p0) = Hq(1− p0) = Hq(p).

It is noteworthy that the properties in Lemma 3.8 were also provided in [Tsa88] with-
out proofs. In addition, by considering the eigenvalues of any quantum state, Lemma 3.8
straightforwardly extends to quantum q-Tsallis entropy (see Definition 3.27).

Lemma 3.8 (Basic properties of Tsallis entropy, partially adapted from [Dar70]). Let
p and p′ be two probability distributions over [N ] with N ≥ 2, and let ν be the uniform
distribution over [N ]. For the Tsallis entropy Hq(p) with q > 0, the following holds:

• Concavity: For any λ ∈ [0, 1], Hq((1− λ)p+ λp′) ≥ (1− λ)Hq(p) + λHq(p′).
Equivalently, F (q;x) := x−xq

q−1 is concave in x ∈ [0, 1] for any fixed q > 0, and
Hq(p) = ∑

i∈[N ] F (q; p(i)).

• Extremes: 0 ≤ Hq(p) ≤ Hq(ν) = 1−n1−q

q−1 . Specifically, Hq(p) = Hq(ν) occurs when

p = ν, and Hq(p) = 0 occurs when p(i) =

1, i = k

0, i ̸= 1
for any k ∈ [N ].

• Monotonicity: For any q and q′ satisfying 0 < q ≤ q′, Hq(p) ≥ Hq′(p).

Proof. For the first item, by inspecting the proof of [Dar70, Theorem 6], we know that
x−xq

1−21−q · 1−21−q

q−1 = F (q;x) is concave in x ∈ [0, 1] for any fixed q ̸= 1. It is easy to verify
that Hq(p) = ∑

i∈[N ] F (q; p(i)), we have that Hq(p) is concave.

For the second item, note that q−1
1−21−q ≥ 0 for q ̸= 1 and limq→1

q−1
1−21−q = 1

ln 2 . Hence,
by [Dar70, Theorem 6], we deduce 0 ≤ Hq(p) ≤ Hq(ν). Moreover, because F (q;x) is
non-negative and F (q;x) = 0 occurs when x = 1, we conclude that Hq(p) = 0 occurs
when p satisfies the desired condition.

1The definition of the q-logarithm function lnq(x) is provided in the paragraph Logarithm function
and its generalization in Chapter 2.
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For the third item, since limq→1 Hq(x) = H(x), it is enough to show that ∂
∂q

Hq(x) ≤ 0
for any q ̸= 1 and x ∈ [0, 1]. Given that Hq(p) = ∑

i∈[n] F (q; p(i)), it remains to prove
that ∂

∂q
F (q;x) ≤ 0, specifically:

∂

∂q
F (q;x) = − x− xq

(q − 1)2 −
xq log(x)
q − 1 ≤ 0⇔ G(q;x) := xq−x− (q−1)xq log(x) ≤ 0. (3.1)

A direct calculation implies that ∂
∂q
G(q;x) = −(q − 1)xq ln2(x) for any x ∈ [0, 1].

This inequality shows that for any fixed x ∈ [0, 1], G(q;x) is monotonically increasing for
0 < q ≤ 1 and monotonically decreasing for q > 1. Hence, by noticing

∀x ∈ [0, 1], max
q≥0

G(q;x) ≤ G(1;x) = 0,

we establish Equation (3.1) and the monotonicity.

Next, a generalization of the Jensen-Shannon divergence, based on the q-Tsallis en-
tropy, is defined as the following:

Definition 3.9 (q-Jensen-(Shannon-)Tsallis divergence, adapted from [BR82]). Let p0
and p1 be two probability distributions over [N ]. The q-Jensen-(Shannon-)Tsallis diver-
gence between p0 and p1 is defined as

JTq(p0, p1) :=

Hq

(
p0+p1

2

)
− 1

2 (Hq(p0) + Hq(p1)) , q ̸= 1
H
(
p0+p1

2

)
− 1

2 (H(p0) + H(p1)) , q = 1
.

Specifically, the Jensen-Shannon divergence JS(p0, p1) = JT1(p0, p1).

We then provide a lower bound of the Jensen-Tsallis divergence in terms of the total
variation distance, generalizing the lower bound in Lemma 3.6 for the case q = 1:

Lemma 3.10 (TV ≤ JTq, adapted from [BH09, Theorem 9]). Let p0 and p1 be two
probability distributions over [N ]. For any 1 ≤ q ≤ 2, it holds that:2

Hq

(1
2

)
− Hq

(
1
2 −

TV(p0, p1)
2

)
≤ JTq(p0, p1).

It is important to note, the joint convexity of JTq [BR82, Corollary 1] plays a key role
in proving Lemma 3.10. And additionally, for N ≥ 3, the joint convexity of JTq holds if
and only if q ∈ [1, 2], as stated in [BR82, Corollary 2].

3.2 Closeness measures for quantum states

We now review previous results on quantum analogs of the aforementioned clas-
sical closeness (or, distance-like) measures. Classical distances and divergences often
have quantum counterparts, sometimes even with multiple formulations. On one side,
quantum measures typically reduce to their classical versions when the quantum states
ρ0 = diag(p0) and ρ1 = diag(p1) are diagonal. On the other side, for any classical
f -divergence df , a quantum analog can be defined in two main ways:

2It is evident that Hq

( 1−x
2
)

= Hq

( 1+x
2
)

for any x ∈ [0, 1]. Moreover, the proof of the lower bound
in [BH09, Theorem 9] uses the notation V (p0, p1) :=

∑n
i=1 |p0(i) − p1(i)| = ∥p0 − p1∥1 = 2TV(p0, p1)

defined in [Top00], where p0 and p1 are probability distributions over [N ].
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• By replacing arithmetic operations in the classical divergence with their matrix-
theoretic counterparts, which, due to the non-commutative nature of matrices, al-
lows for several options and results in (at least) one quantum f divergence Df ;

• By considering the probability distributions induced by applying the same POVM
M to both states, which leads to the measured quantum f -divergence Dmeas

f .

For a comprehensive overview of other quantum analogs of f -divergence and their rela-
tionships, please refer to [Hia21].

More precisely, let df (·, ·) be a classical f -divergence. For two N -dimensional quantum
(mixed) states ρ0 and ρ1, the measured quantum f -divergence Dmeas

f (·, ·) is defined based
on the “farthest” probability distributions induced by a POVM M:

Dmeas
f (ρ0, ρ1) := sup

POVM M

{
df
(
p

(M)
0 , p

(M)
1

)}
,

where p(M)
b := (Tr(ρbM1), · · · ,Tr(ρbMN)) for b ∈ {0, 1}.

(3.2)

Quantum analogs of total variation distance and Hellinger distance. We start
by defining the trace distance, which is a distance metric (e.g., [Wil13, Lemma 9.1.8]):

Definition 3.11 (Trace distance). Let ρ0 and ρ1 be two quantum states. The trace
distance between ρ0 and ρ1 is defined by

T(ρ0, ρ1) := 1
2Tr(|ρ0 − ρ1|) = 1

2Tr
((

(ρ0 − ρ1)†(ρ0 − ρ1)
)1/2

)
.

The trace distance satisfies the following basic properties:

• The trace distance is 1, the maximum value, if ρ0 and ρ1 have orthogonal supports.

• As explained in, e.g., [NC10, Theorem 9.1], the trace distance corresponds to a
measured version of the total variation distance in terms of Equation (3.2).

• For pure states |ψ0⟩ and |ψ1⟩, it holds that T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) =
√

1− |⟨ψ0|ψ1⟩|2,
as indicated in [Wil13, Equation (9.134)].

We then present four additional properties of the trace distance.

Theorem 3.12 (Holevo-Helstrom bound, [Hol73b, Hel69]). Given a quantum (mixed)
state ρ, either ρ0 or ρ1, that is chosen uniformly at random, the maximum success proba-
bility to discriminate between ρ0 and ρ1 by performing a POVM is given by 1

2 + 1
2T(ρ0, ρ1).

Lemma 3.13 (Trace distance on tensor-product states, adapted from Exercise 9.1.2 and
Corollary 9.1.10 in [Wil13]). For any quantum states ρ1⊗· · ·⊗ρk and ρ′

1⊗· · ·⊗ρ′
k, where

ρi and ρ′
i use the same number of qubits for all i ∈ [k], it holds that

(1) ∀i ∈ [k], T(ρi, ρ′
i) ≤ T(ρ1 ⊗ · · · ⊗ ρk, ρ′

1 ⊗ · · · ⊗ ρ′
k).

(2) T(ρ1 ⊗ · · · ⊗ ρk, ρ′
1 ⊗ · · · ⊗ ρ′

k) ≤
∑
i∈[k] T(ρi, ρ′

i).

Lemma 3.14 (Data-processing inequality of T, adapted from [NC10, Theorem 9.2]). Let
ρ0 and ρ1 be quantum states. For any quantum channel E, it holds that

T(E(ρ0), E(ρ1)) ≤ T(ρ0, ρ1).
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Lemma 3.15 (Unitary invariance of T, adapted from [NC10, Equation (9.21)]). Let ρ0
and ρ1 be quantum states. For any unitary transformation U , it holds that

T
(
Uρ0U

†, Uρ1U
†
)

= T(ρ0, ρ1).

Next, we turn to the quantum analog of the Hellinger distance. Although the (squared)
Hellinger distance is closely related to the inner product, several quantum analogs exist
due to the non-commuting nature of matrices. We begin by defining the (squared) Bures
distance, which is based on the (Uhlmann) fidelity:

Definition 3.16 (Squared Bures distance and Uhlmann fidelity). Let ρ0 and ρ1 be two
quantum states. The squared Bures distance B2(·, ·) and the Uhlmann fidelity F(·, ·) be-
tween ρ0 and ρ1 are defined by

B2(ρ0, ρ1) := 2(1− F(ρ0, ρ1)) and F(ρ0, ρ1) := Tr|√ρ0
√
ρ1|.

The Bures distance is the first quantum analog of the Hellinger distance, as it precisely
correspond to the measured Hellinger distance [FC94]. We now provide the inequalities
between the trace distance and the Bures distance (or the Uhlmann fidelity):

Lemma 3.17 (Trace distance vs. Bures distance, adapted from [FvdG99]). Let ρ0 and
ρ1 be two quantum states. The following inequalities hold:

1
2B2(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ B(ρ0, ρ1) and 1− F(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤

√
1− F2(ρ0, ρ1).

The (Uhlmann) fidelity attains its maximum value of 1 when ρ0 and ρ1 are equal. For
a pure state |ψ⟩⟨ψ| and a mixed state ρ, it holds that F2(|ψ⟩⟨ψ|, ρ) = Tr(|ψ⟩⟨ψ|ρ).

In addition, since the matrices (ABA)1/2 and A1/2B1/2A1/2 are not equal in general,
the Uhlmann fidelity differs from the quantum Hellinger affinity

Q1/2(ρ0, ρ1) := Tr(√ρ0
√
ρ1).

This difference gives rise to the second quantum analog of the Hellinger distance:

Definition 3.18 (Quantum squared Hellinger distance). Let ρ0 and ρ1 be two quantum
states. The quantum squared Hellinger distance between ρ0 and ρ1 is defined by

QH2(ρ0, ρ1) := 1
2Tr(√ρ0 −

√
ρ1)2 = 1−Q1/2(ρ0, ρ1).

It is noteworthy that F(ρ0, ρ1) ≥ Q1/2(ρ0, ρ1). For a more detailed overview of different
variants of the fidelity, we recommend two comprehensive reviews [CS20, BGJ19].

(Squared) Hilbert-Schmidt distance. We now define the (squared) Hilbert-Schmidt
distance, which serves as a quantum analog of the (squared) Euclidean distance:

Definition 3.19 (Squared Hilbert-Schmidt distance). Let ρ0 and ρ1 be two quantum
states. The (squared) Hilbert-Schmidt distance between ρ0 and ρ1 is defined by

HS2(ρ0, ρ1) := 1
2Tr(ρ0 − ρ1)2 = 1

2(Tr(ρ2
0) + Tr(ρ2

1))− Tr(ρ0ρ1).
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Since a quantum state ρ is a pure state if and only if Tr(ρ2) = 1, the following equality
holds for two pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|:

Tr(|ψ0⟩⟨ψ0||ψ1⟩⟨ψ1|) = 1− HS2(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|).

We then relate the Hilbert-Schmidt distance to the trace distance as follows:
Lemma 3.20 (Trace distance vs. Hilbert-Schmidt distance, adapted from [CCC19, Equa-
tion 6]). Let ρ0 and ρ1 be two quantum states. The following inequalities hold:

HS(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤

√√√√ 2rank(ρ0)rank(ρ1)
rank(ρ0) + rank(ρ1)

HS(ρ0, ρ1).

Notably, Lemma 3.20 serves as a special instance of the rank-dependent bounds for
the Schatten p-norms, as described in [AS17, Equation (1.31)].

Quantum analogs of Jensen-Shannon Divergence. We begin by defining the von
Neumann entropy, a quantum analog of the Shannon entropy:
Definition 3.21 (von Neumann entropy). Let ρ be a quantum (mixed) state. The von
Neumann entropy of ρ is defined by

S(ρ) = −Tr(ρ ln(ρ)).
For convenience, the von Neumann entropy is denoted by Sbit(ρ) when the base-2 matrix
logarithm is used, and is given by S(ρ)/ ln 2.

For classical-quantum states, the following decomposition theorem holds:
Lemma 3.22 (Joint entropy theorem, adapted from Theorem 11.8(5) in [NC10]). Sup-
pose pi are probabilities corresponding to a distribution D, |i⟩ are orthogonal states of a
system A, and {ρi}i is any set of density operators for another system B. Then

S
(∑

i

pi|i⟩⟨i| ⊗ ρi
)

= H(D) +
∑
i

piS(ρi).

We now consider quantum analogs of the Jensen-Shannon divergence, which trace back
to the renown Holevo bound [Hol73a]. The definition of the quantum Jensen-Shannon
divergence, as presented in [MLP05], is stated below:
Definition 3.23 (Quantum Jensen-Shannon divergence, adapted from [MLP05]). Let ρ0
and ρ1 be two quantum (mixed) states. The quantum Jensen-Shannon divergence between
ρ0 and ρ1 is defined by

QJS(ρ0, ρ1) := S
(
ρ0 + ρ1

2

)
− 1

2(S(ρ0) + S(ρ1)).

For convenience, the quantum Jensen-Shannon divergence is denoted by QJSbit(ρ0, ρ1)
when the base-2 matrix logarithm is used, and is given by QJS(ρ0, ρ1)/ ln 2.

The quantum Jensen-Shannon divergence satisfies several basic properties:

• This quantity can be interpreted as a symmetrized version of the quantum relative
entropy, defined as D(ρ0∥ρ1) := Tr(ρ0(ln(ρ0)− ln(ρ1))). Specifically:

QJS(ρ0, ρ1) = 1
2

(
D
(
ρ0

∥∥∥∥ρ0 + ρ1

2

)
+ D

(
ρ1

∥∥∥∥ρ0 + ρ1

2

))
. (3.3)

32



• Unlike the quantum relative entropy. which is unbounded, the (base-2) quantum
Jensen-Shannon divergence QJSbit(·, ·) is bounded above by 1. The maximum is
attached if and only if ρ0 and ρ1 have support on orthogonal subspaces.3

• The square root of the quantum Jensen-Shannon divergence is a distance metric,
as proven in [Vir21, Sra21], and thus satisfies the triangle inequality.

Another quantum analog of the Jensen-Shannon divergence is the measured quantum
Jensen-Shannon divergence, denoted by QJSmeas(ρ0, ρ1). This quantity, also referred to
as the quantum Shannon distinguishability, is defined in terms of Equation (3.2). In
contrast to QJS(·, ·), the quantum analog QJSmeas(·, ·) lacks an explicit formula, as it
coincides with a solution of some transcendental equation [FC94]. For convenience, when
the base-2 matrix logarithm is used, the measured quantum Jensen-Shannon divergence
is denoted by QJSmeas

bit (ρ0, ρ1) and is given by QJSmeas
bit (ρ0, ρ1) = QJSmeas(ρ0, ρ1)/ ln 2.

Interestingly, using the notation in [NC10, Theorem 12.1], the quantum Jensen-
Shannon divergence coincides with the Holevo χ quantity on size-2 ensembles with a
uniform distribution. Consequently, the Holevo bound [Hol73a] implies the following:

Lemma 3.24 (QJSmeas ≤ QJS). For any quantum states ρ0 and ρ1, it holds that
QJSmeas(ρ0, ρ1) ≤ QJS(ρ0, ρ1).

Proof. We begin with an equivalent characterization of the Jensen-Shannon divergence,
building upon its basic property (e.g., [BDRV19, Proposition 4.1]):
Proposition 3.24.1 (Mutual information characterization of Jensen-Shannon diver-
gence). For any distributions p0 and p1, let T be a binary indicator variable that chooses
the value of x according to p0 if T = i where i ∈ {0, 1}, and let X be a random variable
associated with a uniform mixture distribution between p0 and p1. Then, it holds that

JS(p0, p1) = I(T ;X) = H(T )− H(T |X) = 1− H(T |X).

We then observe that QJS(ρ0, ρ1) corresponds exactly to the Holevo χ quantity [NC10,
Section 12.1.1] for the ensemble {1/2, ρ0; 1/2, ρ1}, while QJSmeas(ρ0, ρ1) is equivalent to
the accessible information of the same ensemble. This equivalence allows the proof to
follow directly from the Holevo bound.

Next, we provide the inequalities between the quantum Jensen-Shannon divergence
and the trace distance in Lemma 3.25 and Lemma 3.26.

Lemma 3.25 (T ≤ QJS, adapted from [Hol73a, FvdG99]). Let ρ0 and ρ1 be two quantum
states. Then, the following inequalities hold:

QJSbit(ρ0, ρ1) ≥ QJSmeas
bit (ρ0, ρ1) ≥ 1− Hbit

(
1− T(ρ0, ρ1)

2

)
=

∞∑
v=1

T(ρ0, ρ1)2v

ln(2) · 2v(2v − 1) .

Proof. We first fix some POVM measurement E = {Ex}x∈U , where U = supp (ρ0) ∪
supp (ρ1). And let p(E)

z be the induced distribution with respect to the POVM E of ρz for
3This follows from the properties of von Neumann entropy, such as [NC10, Theorem 11.8], which

imply QJSbit(ρ0, ρ1) ≤ Hbit(1/2) = 1.
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z ∈ {0, 1}. By utilizing the left-hand side inequality in Lemma 3.6, we have

QJSmeas
E∗ (ρ0, ρ1) ≥ QJSmeas

E (ρ0, ρ1) = JS(p(E)
0 , p

(E)
1 ) ≥

∞∑
v=1

SD
(
p

(E)
0 ,p

(E)
1

)2v

2v(2v−1) . (3.4)

Here, E∗ is an optimal measurement of QJSmeas(ρ0, ρ1). Let g(x) := ∑∞
v=1

x2v

2v(2v−1) , then
g(x) is monotonically increasing on 0 ≤ x ≤ 1. Since Equation (3.4) holds for arbitrary
POVM E , as well as the trace distance is the measured version of the statistical distance,
we complete the proof by choosing the one that maximizes T(ρ0, ρ1).

Lemma 3.26 (QJS ≤ T, adapted from [BH09, Theorem 14]). Let ρ0 and ρ1 be two
quantum states. Then, the following inequalities hold:

QJS(ρ0, ρ1) ≤ ln 2 · T(ρ0, ρ1).

It is noteworthy that the proof of Lemma 3.26 primarily adapts the argument used
to establish a similar result for classical distances (e.g., [Vad99, Claim 4.4.2]).

Proof of Lemma 3.26. We begin with the construction in [BH09, Theorem 14]. Consider
a single qutrit register B with basis vectors |0⟩, |1⟩, |2⟩. Define ρ̃0 and ρ̃1 on H ⊗ B as
below, where B = C3 is the Hilbert space corresponding to the register B:

ρ̃0 :=ρ0 + ρ1 − |ρ0 − ρ1|
2 ⊗ |2⟩⟨2|+ ρ0 − ρ1 + |ρ0 − ρ1|

2 ⊗ |0⟩⟨0| := σ2 ⊗ |2⟩⟨2|+ σ0 ⊗ |0⟩⟨0|,

ρ̃1 :=ρ0 + ρ1 − |ρ0 − ρ1|
2 ⊗ |2⟩⟨2|+ ρ1 − ρ0 + |ρ0 − ρ1|

2 ⊗ |1⟩⟨1| := σ2 ⊗ |2⟩⟨2|+ σ1 ⊗ |1⟩⟨1|.

Here, σ0 corresponds to the regime that ρ0 is “larger than” ρ1 (where ρ0 and ρ1 are
“distinguishable”) and so does σ1, whereas σ2 corresponds to the regime that ρ0 is “indis-
tinguishable” from ρ1. One can see this construction generalizes the proof of the classical
counterparts, such as [Vad99, Claim 4.4.2], to quantum distances.

Then it is left to show QJS(ρ0, ρ1) ≤ QJS(ρ̃0, ρ̃1) = T(ρ0, ρ1). By the data-processing
inequality of the quantum relative entropy (e.g., [Pet07, Theorem 3.9]), we obtain

QJS(ρ0, ρ1) = QJS(TrB(ρ̃0),TrB(ρ̃1))
≤ QJS(ρ̃0, ρ̃1)

= −Tr
(
ρ̃0 + ρ̃1

2 ln ρ̃0 + ρ̃1

2

)
+ 1

2 (Tr (ρ̃0 ln ρ̃0) + Tr (ρ̃1 ln ρ̃1)) .
(3.5)

Here, the first line is because of TrB(ρ̃k) = ρk for k ∈ {0, 1}, and the third line owes to
QJS(ρ0, ρ1) = S(ρ0+ρ1

2 )− 1
2(S(ρ0)+S(ρ1)) for any states ρ0 and ρ1. Notice that σ0⊗|0⟩⟨0|,

σ1 ⊗ |1⟩⟨1|, and σ2 ⊗ |2⟩⟨2| are orthogonal to each other, and ln(A+B) = ln(A) + ln(B)
when A and B are orthogonal (i.e., AB = BA = 0), we have derived that

Tr
(
ρ̃0 + ρ̃1

2 ln ρ̃0 + ρ̃1

2

)
=Tr(σ2 ln σ2) +

∑
k∈{0,1}

Tr
(
σ0

2 ln σ0

2

)
,

∀k ∈ {0, 1}, Tr (ρ̃k ln ρ̃k) =Tr(σ2 ln σ2) + Tr(σk ln σk).
(3.6)

Plugging Equation (3.6) into Equation (3.5), we finish the proof:

QJS(ρ0, ρ1) ≤ Tr
[
σ0

2

(
ln σ0 − ln σ0

2

)]
+ Tr

[
σ1

2

(
ln σ1 − ln σ1

2

)]
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= ln 2
2 · Tr(σ0 + σ1)

= ln 2 · T(ρ0, ρ1),
where the third line is due to σ0 + σ1 = |ρ0 − ρ1|.

Quantum analogs of Jansen-Tsallis divergence. We start by defining the quantum
q-Tsallis entropy, generalizing the von Neumann entropy:
Definition 3.27 (Quantum q-Tsallis entropy and von Neumann entropy). Let ρ be a
(mixed) quantum state. The quantum q-Tsallis entropy of ρ is defined by

Sq(ρ) := 1− Tr(ρq)
q − 1 = −Tr(ρq lnq(ρ)).

As q → 1, the quantum q-Tsallis entropy converges to the von Neumann entropy.

The quantum Tsallis entropy serves as a non-additive generalization of the von Neu-
mann entropy:
Lemma 3.28 (Pseudo-additivity of Sq, adapted from [Rag95, Lemma 3]). For any quan-
tum states ρ0 and ρ1, and any q ≥ 1, we have:

Sq(ρ0 ⊗ ρ1) = Sq(ρ0) + Sq(ρ1)− (q − 1)Sq(ρ0)Sq(ρ1).
Specifically, the equality Sq(ρ0 ⊗ ρ1) = Sq(ρ0) + Sq(ρ1) holds if and only if (a) q = 1, or
(b) for q > 1, either of the states ρ0 or ρ1 is pure.

Next, a generalization of the quantum Jensen-Shannon divergence [MLP05], based on
the quantum q-Tsallis entropy, is defined as follows:
Definition 3.29 (Quantum q-Jensen-Tsallis Divergence, adapted from [BH09]). Let ρ0
and ρ1 be two quantum states. The quantum q-Jensen-(Shannon-)Tsallis divergence be-
tween ρ0 and ρ1 is defined by

QJTq(ρ0, ρ1) :=

Sq
(
ρ0+ρ1

2

)
− 1

2 (Sq(ρ0) + Sq(ρ1)) , q ̸= 1
S
(
ρ0+ρ1

2

)
− 1

2 (S(ρ0) + S(ρ1)) , q = 1
.

Specifically, for pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|, it holds that

QJTq(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) = Sq
( |ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2
)
.

Similar to the quantum Jensen-Shannon divergence, the square root of QJTq is a
distance metric when 0 ≤ q ≤ 2, as established in [Sra21]. However, QJTq does not satisfy
an equality similar to Equation (3.3) with respect to the quantum Tsallis relative entropy,
defined as Dq(ρ0∥ρ1) := 1−Tr(ρq

0ρ
1−q
1 )

1−q (see, e.g., [FYK04]). Moreover, a symmetrized version
of Dq(·∥·) results in a different quantity (see [JMDA21]).

Lastly, we provide more useful properties of QJTq. By combining [FYK07, Theorem
1.5] and [Fur05, Remark V.3], we can immediately derive Lemma 3.30 and Lemma 3.31.
In particular, the equality in Lemma 3.31 holds even in a stronger form:

Sq

∑
i∈[k]

µqiρi

 = Hq(µ) +
∑
i∈[k]

µiSq(ρi)
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for orthogonal quantum states ρ1, · · · , ρk. Additionally, it is noteworthy that Lemma 3.31
admits a simple proof in [Kim16, Lemma 1].

Lemma 3.30 (Unitary invariance of QJTq, adapted from [FYK07, Theorem 1.5]). For
any quantum states ρ0 and ρ1, and any unitary transformation U acting on ρ0 or ρ1, the
following equality holds:

QJTq(U †ρ0U,U
†ρ1U) = QJTq(ρ0, ρ1).

Lemma 3.31 (Joint q-Tsallis entropy theorem, adapted from [FYK07, Theorem 1.5]).
Let k be an integer, and let {ρi}i∈[k] be a set of (mixed) quantum states. Let k-tuple
µ := (µ1, · · · , µk) be a probability distribution. Then, for any q ≥ 0, it holds that:

Sq

∑
i∈[k]

µi|i⟩⟨i| ⊗ ρi

 = Hq(µ) +
∑
i∈[k]

µqiSq(ρi).

Following the discussion in [Ras11, Section 3], Fannes’ inequality for QJTq, where
0 ≤ q ≤ 2, was established in [FYK07, Theorem 2.4]. Notably, for QJTq with q > 1, a
sharper Fannes-type inequality was provided in [Zha07, Theorem 2]:

Lemma 3.32 (Fannes’ inequality for QJTq, adapted from Theorem 2 and Corollary 2
in [Zha07]). For any quantum states ρ0 and ρ1 of dimension N , we have:

∀q > 1, |Sq(ρ0)− Sq(ρ1)| ≤ T(ρ0, ρ1)q · lnq(N − 1) + Hq(T(ρ0, ρ1)).
Moreover, for the case of q = 1 (von Neumann entropy), we have:

|S(ρ0)− S(ρ1)| ≤ T(ρ0, ρ1) · ln(N − 1) + H(T(ρ0, ρ1)).

3.3 Time-bounded quantum state testing

In this section, we focus on the problem of closeness testing for quantum states.
We begin by defining the time-bounded state testing problem with respect to the trace
distance, denoted as QSD[α, β], along with a variant of this promise problem:

Definition 3.33 (Quantum State Distinguishability, QSD, adapted from [Wat02, Section
3.3]). Let Q0 and Q1 be quantum circuits acting on m qubits (“input length”) and having
n specified output qubits (“output length”), where m(n) is polynomial in n. Let ρi denote
the quantum state obtained by running Qi on the state |0⟩⊗m and tracing out the non-
output qubits. Let α(n) and β(n) be efficiently computable functions. Decide whether :

• Yes: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≥ α(n);

• No: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≤ β(n).

Furthermore, the version of this problem restricted to pure states, where ρ0 and ρ1 are
pure states, is referred to as PureQSD.

While Definition 3.33 aligns with the classical counterpart of QSD defined in [SV03,
Section 2.2], it is slightly more restrictive than the definition in [Wat02, Section 3.3]. In
particular, Definition 3.33 assumes that the input length m and the output length n are
polynomially equivalent, whereas [Wat02, Section 3.3] allows for cases where the output
length (e.g., a single qubit) is much smaller than the input length.
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We next consider a restricted variant of the complement of QSD, which involves
testing the closeness of a quantum state to the maximally mixed state with respect to the
trace distance. This problem can be similarly defined and denoted as QSCMM[β, α]:

Definition 3.34 (Quantum State Closeness to Maximally Mixed State, QSCMM, adapt
from [Kob03, Section 3]). Let Q be a quantum circuit acting on m qubits and having n
specified output qubits, where m(n) is polynomial in n. Let ρ denote the quantum state
obtained by running Q on the state |0⟩⊗m and training out the non-output qubits. Let
α(n) and β(n) be efficiently computable functions. Decide whether :

• Yes: A quantum circuit Q such that T(ρ, (I/2)⊗n) ≤ β(n);

• No: A quantum circuit Q such that T(ρ, (I/2)⊗n) ≥ α(n).

In addition to QSD, PureQSD, and QSCMM, we also consider the time-bounded
state testing problem with respect to the quantum entropy difference, denoted as QED[g]:

Definition 3.35 (Quantum Entropy Difference Problem, QED. adapted from [BASTS10]).
Let Q0 and Q1 be quantum circuits acting on m qubits and having n specified output qubits,
where m(n) is polynomial in n. Let ρi denote the quantum state obtained by running Qi

on the state |0⟩⊗m and tracing out the non-output qubits. Let g(n) be an efficiently com-
putable function. Decide whether :

• Yes: A pair of quantum circuits (Q0, Q1) such that S(ρ0)− S(ρ1) ≥ g(n);

• No: A pair of quantum circuits (Q0, Q1) such that S(ρ1)− S(ρ0) ≥ g(n).

As implicitly shown in [BASTS10], the QSZK containment of QED[g(n)] holds even
when g(n) is polynomially small:

Theorem 3.36 (Implicitly in [BASTS10]). For any efficiently computable function g(n)
satisfying g(n) ≥ 1/poly(n), the following holds:

QED[g(n)] is in QSZK.

Proof. To establish the QSZK containment, it suffices to show a promise gap amplification
that reduces QED[g(n)] to QED[1/2], as QED[1/2] is QSZK-hard [BASTS10, Wat02].

We begin by considering two new states ρ̃0 and ρ̃1, defined as ρ̃b = ρ
⊗p(n)
b for b ∈ {0, 1},

where p(n) is a polynomial function satisfying p(n)g(n) ≥ 1/2. By the additivity of von
Neumann entropy for independent quantum systems, the following holds for yes instances:

S(ρ̃0)− S(ρ̃1) = p(n) · (S(ρ0)− S(ρ1)) ≥ p(n)g(n) ≥ 1/2.
Similarly, for no instances, we deduce that S(ρ̃1)− S(ρ̃0) ≥ 1/2 as desired.

3.3.1 Computational hardness of QSD and QSCMM

Inspired by the polarization lemma for the total variation distance [SV03], a corre-
sponding polarization lemma for the trace distance was established in [Wat02]. This result
follows from the trace distance exhibiting similar behavior to the total variation distance
in this context, as both satisfy analogous inequalities for the relevant closeness measures.
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Since the polarization lemma for the total variation distance enables an improved SZK-
hardness of SD, as stated in [BDRV19, Theorem 3.14], an analogous improvement in
QSZK-hardness of QSD can be deduced under the same parameters:4

Lemma 3.37 (QSD is QSZK-hard). Let α(n) and β(n) be efficiently computable func-
tions satisfying α2(n)− β(n) ≥ 1/O(log n). For any constant τ ∈ (0, 1/2),

QSD[α, β] is QSZK-hard under Karp reduction,
when α(n) ≤ 1− 2−nτ and β(n) ≥ 2−nτ for every n ∈ N.

Let QSD denote the complement of QSD. Noting that QSZK is closed under the
complement [Wat02, Wat09b], QSD is also QSZK-hard.

In terms of the pure-state restriction of QSD, following the construction in [RASW23,
Theorem 12] (see also [LLW23, Lemma 17] and [WZ24a, Theorem IV.1]), we can establish
that PureQSD is BQP-hard under Karp reduction:

Lemma 3.38 (PureQSD is BQP-hard). Let α(n) and β(n) be efficiently computable
functions such that α(n) − β(n) ≥ 1/poly(n). For any polynomial l(n), let n′ := n + 1,
PureQSD[α(n′), β(n′)] is BQP-hard when α(n′) ≤

√
1− 2−2l(n′−1) and β(n′) ≥ 2−(l(n′−1)+1)/2

for every integer n′ ≥ 2.
Specifically, by choosing l(n′ − 1) = n′, it holds that: For every integer n′ ≥ 2,

PureQSD
[√

1− 2−2n′ , 2−(n′+1)/2
]

is BQP-hard under Karp reduction.

Proof. As BQP is closed under complement, it suffices to show that PureQSD is coBQP-
hard under Karp reduction. For any promise problem (Pyes,Pno) ∈ coBQP[b(n), a(n)]
with a(n)−b(n) ≥ 1/poly(n), we assume without loss of generality that the coBQP circuit
Ĉx has an output length of n. Using error reduction for coBQP via a sequential repetition,
for any polynomial l(n), we can achieve that the acceptance probability Pr[Cx accepts] ≤
2−l(n) for yes instances, whereas Pr[Cx accepts] ≥ 1− 2−l(n) for no instances.

Next, we construct a new quantum circuit C ′
x with an additional single-qubit register

F initialized to zero. The circuit C ′
x is defined as C ′

x := C†
xX

†
OCNOTO→FXOCx, where

the single-qubit register O corresponds to the output qubit. It is evident that the output
length n′ of C ′

x satisfies n′ = n+ 1. We say that C ′
x accepts if the measurement outcomes

of all qubits are all zero. Then, we have:

Pr[C ′
x accepts] =

∥∥∥(|0̄⟩⟨0̄|⊗|0⟩⟨0|F)C ′
x(|0̄⟩ ⊗ |0⟩F)

∥∥∥2

2

=
∣∣∣⟨0̄|C†

x|1⟩⟨1|OCx|0̄⟩
∣∣∣2

= Pr[Cx accepts]2.

(3.7)

Here, the second line owes to CNOTO→F = |0⟩⟨0|O ⊗ IF + |1⟩⟨1|O ⊗XF. By defining two
pure states |ψ0⟩ := |0̄⟩ ⊗ |0⟩F and |ψ1⟩ := C ′

x(|0̄⟩ ⊗ |0⟩F) corresponding to Q0 = I and
Q1 = C ′

x, respectively, we can derive the following:
Pr[C ′

x accepts] = |⟨ψ0|ψ1⟩|2 = 1− T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|). (3.8)

Combining Equation (3.7) and Equation (3.8), we conclude that:
4This work does not distinguish QSZK from its honest-verifier variant QSZKHV, as these two classes

are equivalent [Wat09b].
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• For yes instances, Pr[Cx accepts] = |⟨ψ0|ψ1⟩| ≤ 2−l(n) implies that

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥
√

1− 2−2l(n) ≥
√

1− 2−2l(n′−1).

• For no instances, Pr[Cx accepts] = |⟨ψ0|ψ1⟩| ≥ 1− 2−l(n) yields that
T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤

√
1− (1− 2−l(n))2

=
√

2−l(n)+1 − 2−2l(n)

≤ 2− l(n)+1
2

≤ 2− l(n′−1)+1)
2 .

Next, combining the proof strategy outlined in [Kob03, Section 3] and the reduction
from QEA to QSCMM in [BASTS10, Section 5.3], the NIQSZK hardness of QSCMM
was established in [CCKV08, Section 8.1] with an appropriate parameter trade-off:

Lemma 3.39 (QSCMM is NIQSZK-hard, adapted from [CCKV08, Section 8.1]).
For any n ≥ 3, QSCMM[1/n, 1− 1/n] is NIQSZK-hard under Karp reduction.

Here, NIQSZK is the class of promise problems possessing non-interactive quantum
statistical zero-knowledge, as introduced in [Kob03].

3.3.2 Quantitative lower bounds beyond the white-box model

Quantitative lower bounds for closeness testing problems, particularly those concern-
ing query and sample complexities for states and distributions, are established in the
context of the quantum purified access input model, which was implicitly introduced
in [Wat02]. The previously defined notions of QSD, QSCMM, and QED correspond
to white-box scenarios. However, query and sample complexity bounds are typically
demonstrated in black-box scenarios, defined as follows:

• White-box input model: The input of the problem QSD consists of descriptions
of polynomial-size quantum circuits Q0 and Q1. Specifically, for b ∈ {0, 1}, the
description of Qb includes a sequence of polynomially many 1- and 2-qubit gates.

• Black-box input model: In this model, instead of providing the descriptions of
the quantum circuits Q0 and Q1, only query access to Qb is allowed, denoted as Ob

for b ∈ {0, 1}. For convenience, we also allow query access to Q†
b and controlled-Qb,

denoted by O†
b and controlled-Ob, respectively.

We now proceed with a query complexity lower bound for QSD. Note that an n-
qubit maximally mixed state (I/2)⊗n is commutative with any n-qubit quantum states
ρ. Consider the spectral decomposition ρ = ∑

i∈[2n] µi|vi⟩⟨vi|, where {|vi⟩}i∈[2n] is an
orthonormal basis, then the following holds:

T
(
ρ, (I/2)⊗n

)
= TV(µ, U2n).

Here, U2n is a uniform distribution over [2n]. Leveraging a similar argument for ρU,
as in Lemmas 3.40 and 3.42, where the eigenvalues of ρU form a uniform distribution on
the support of ρ, we can obtain:
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Lemma 3.40 (Query complexity lower bound for QSD, adapted from [CFMdW10, The-
orem 2]). For any ϵ ∈ (0, 1/2], there exists an n-qubit quantum state ρ of rank r and the
corresponding an n-qubit state ρU. Then, the quantum query complexity required to decide
whether T(ρ, ρU) is at least ϵ or exactly 0, under the purified quantum query access model,
is given by Ω(r1/3).

It is noteworthy that the quantum query model used in [CFMdW10] differs from the
purified quantum query access model. Nevertheless, this lower bound also applies to our
query model, as the discussion after Definition 3 in [GL20].

Next, we present a query complexity lower bound for distinguishing two probability
distributions, as provided in [Bel19]:

Lemma 3.41 (Query complexity for distinguishing probability distributions, adapted
from [Bel19, Theorem 4]). Let Up and Uq be two unitary operators satisfying:

Up|0⟩ =
∑
j∈[N ]

√
p(j)|j⟩|φj⟩ and Uq|0⟩ =

∑
j∈[N ]

√
q(j)|j⟩|ψj⟩.

Here, p and q are probability distributions on [N ], and {|φj⟩} and {|ψj⟩} are orthonormal
bases. Then, for any quantum query algorithm that distinguishes Up and Uq, the required
query complexity is lower-bounded by Ω(1/H(p, q)).

It is noteworthy that Lemma 3.41 was ever used as a tool to prove the quantum query
complexity lower bounds for the closeness testing of probability distributions [LWL24]
and the estimations of trace distance and fidelity [Wan24].

Furthermore, we also need a sample complexity lower bound for QSD, which follows
from [OW21, Theorem 4.2] and is specified in Lemma 3.42. Here, sample complexity
denotes the number of copies of ρ required to accomplish a specific closeness testing task.

Lemma 3.42 (Sample complexity lower bound for QSD, adapted from [OW21, Corollary
4.3]). For any ϵ ∈ (0, 1/2], there exists an n-qubit quantum state ρ of rank r and the
corresponding an n-qubit state ρU. Then, the quantum sample complexity required to
decide whether T(ρ, ρU) is at least ϵ or exactly 0 is given by Ω(r/ϵ2).

3.4 Space-bounded distribution testing and related works

To the best of our knowledge, no prior work has specifically focused on space-bounded
distribution (or quantum state) testing from a complexity-theoretic perspective. Instead,
we review prior works that are closely related to this computational problem.

More precisely, we focus on a computational problem involving two poly(n)-size clas-
sical circuits, C0 and C1, which generate samples from the distributions D0 and D1,
respectively. Each circuit is equipped with a read-once polynomial-length random-coins
tape, setting it apart from time-bounded scenarios such as SD and ED, where random
coins are provided as input to classical circuits C0 and C1 for generating samples from
the corresponding distributions.

The input length and output length of the circuits are O(log n). The task is to decide
whether D0 is α-far from or β-close to D1 with respect to some distance-like measure.
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Furthermore, it is straightforward to observe that space-bounded distribution testing
with respect to the squared Euclidean distance (ℓ2 norm) is BPL-complete, similar to its
time-bounded counterpart.

Several models related to space-bounded distribution testing have been investigated
previously. Earlier streaming-algorithmic works [FKSV02, GMV06] utilize entries of
the distribution as the data stream, with entries given in different orders for different
models. On the other hand, a later work [CLM10] considered a data stream consisting
of a sequence of i.i.d. samples drawn from distributions and studied low-space streaming
algorithms for distribution testing.

For the task of (Shannon) entropy estimation, previous streaming algorithms have the
setting under the assumption of worst-case ordered samples drawn from N -dimensional
distributions. Their algorithm requires polylog(N/ϵ) space, where ϵ is the additive error.
Recently, Acharya, Bhadane, Indyk, and Sun [ABIS19] addressed the entropy estimation
problem with i.i.d. samples drawn from distributions as the data stream and demonstrated
the first O(log(N/ϵ)) space streaming algorithm. The sample complexity, viewed as the
time complexity, was subsequently improved in [AMNW22].

However, for the total variation distance (ℓ1 norm), previous works focused on the
trade-off between the sample complexity and the space complexity (memory constraints),
achieving only a nearly-log-squared space streaming algorithm [DGKR19].

It is noteworthy that the primary distinction between the computational and stream-
ing settings lie in how the sampling devices are accessed. Of course, not all distributions
can be described as a polynomial-size circuit (i.e., a succinct description). The distinction
can be summarized as follows:

• In the computational problem, we have access to the “source code” of the devices
and can potentially use them for purposes like “reverse engineering”.

• In contrast, the streaming setting utilizes the sampling devices in a “black-box”
manner, and then obtains independent and identically distributed (i.i.d.) samples.

As a consequence, a logspace streaming algorithm can imply containment in BPL.
Particularly, in the space-bounded distribution testing testing, the sample-generating
circuits C0 and C1 can produce the i.i.d. samples, which are typically provided through
the data stream in the streaming distribution testing setting.
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Chapter 4

On estimating the trace of quantum
state powers

4.1 Introduction

The time-bounded (tolerant) state testing problems are generally associated with the
class QSZK [Wat02, Wat09b, BASTS10], as discussed in Section 1.1. These problems are
unlikely to be efficiently solvable by a quantum computer unless BQP = QSZK. In con-
trast, when considering some specific closeness measure such as Tr(ρ0ρ1), the correspond-
ing time-bounded state testing problem is captured by the class BQP[BCWdW01, Kob03],
making them computationally as easy as preparing the states. A similar contrast appears
in terms of quantitative bounds, particularly the query and sample complexities. While
the general upper bound for (tolerant) quantum state testing depends (at least) linearly
on the dimension (e.g., [MdW16, Section 4.2]), certain properties of quantum states can
be tested far more efficiently than the general case.

A simple and interesting example is the property Purity, where ρ satisfies the prop-
erty if and only if it is a pure state. This example is essentially an instance of estimating
the trace of quantum state powers, specifically Tr(ρ2). A natural approach to test Purity
is to apply the SWAP test [BCWdW01] to two copies of ρ, and this algorithm accepts
with probability (1 + Tr(ρ2))/2, which is equal to 1 if and only if ρ is pure. Further anal-
ysis deduces that Purity can be tolerantly tested with O(1/ϵ2) copies of ρ.1 Meanwhile,
Ekert et al. [EAO+02] presented an efficient quantum algorithm for estimating Tr(ρq)
where q > 1 is an integer. These fundamental works raise two interesting questions:

(i) Is there an efficient quantum algorithm for estimating the trace of quantum state
powers Tr(ρq) for any non-integer q > 1?

(ii) Can estimating the trace of quantum state powers, e.g., Tr(ρ2), fully capture the
computational power of quantum computing, namely BQP-complete?

In this chapter, we focus on estimating the trace of quantum state powers, or equiv-
alently, the Quantum q-Tsallis Entropy Difference Problem (TsallisQEDq)

1The sample (or query) complexity for Purity varies depending on whether the scenario involves
one-sided or two-sided error. Our upper bound applies to the two-sided error case, whereas the sample
complexity for the one-sided error case is O(1/ϵ), as detailed in [MdW16, Section 4.2].
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and the Quantum q-Tsallis Entropy Approximation Problem (TsallisQEAq).
These two problems constitute the (white-box) quantum state testing problem with re-
spect to the quantum q-Tsallis entropy. For TsallisQEDq, we consider two polynomial-
size quantum circuits (devices), denoted as Q0 and Q1, which prepare n-qubit quantum
states ρ0 and ρ1, respectively, with access to the descriptions of these circuits. Our goal is
to decide whether the difference Sq(ρ0)−Sq(ρ1) is at least 0.001 or at most −0.001.2 The
setting of TsallisQEAq is similar to TsallisQEDq, except that we only consider a sin-
gle n-qubit quantum state ρ, and the task is to decide whether the difference Sq(ρ)− t(n)
is at least 0.001 or at most −0.001, where t(n) is a known threshold.

Next, we will state our main results and provide justifications for their significance.

4.1.1 Main results

We begin by presenting our first main result, which provides a positive answer to
Question (i) for the regime q ≥ 1 + Ω(1):3

Theorem 4.1 (Quantum estimator for q-Tsallis entropy). Given quantum query access
to the state-preparation circuit of an n-qubit quantum state ρ, for any q ≥ 1+Ω(1), there
is a quantum algorithm for estimating Sq(ρ) to additive error 0.001 with query complexity
O(1). Moreover, if the description of the state-preparation circuit is of size poly(n),
then the time complexity of the quantum algorithm is poly(n). Consequently, for any
q ≥ 1 + Ω(1), TsallisQEDq and TsallisQEAq are in BQP.

More specifically, when the desired additive error is set to ϵ, the explicit query
complexity of Theorem 4.1 becomes O(1/ϵ1+ 1

q−1 ), or expressed as poly(1/ϵ) (see The-
orem 4.5). Moreover, if the state-preparation circuit of ρ is of size L(n) = poly(n), Theo-
rem 4.1 provides a quantum algorithm with time complexity O(L/ϵ1+ 1

q−1 ), or equivalently,
poly(n, 1/ϵ). Using the same idea, we can also derive an upper bound Õ(1/ϵ3+ 2

q−1 ), or
expressed as poly(1/ϵ), for the sample complexity needed to estimate Sq(ρ) (see The-
orem 4.6). This is achieved by applying the samplizer from [WZ24b], which allows a
quantum query-to-sample simulation.

There are several quantum algorithms for estimating the q-Tsallis entropy of an n-
qubit mixed quantum state ρ for non-integer constant q > 1 proposed in [AISW20,
WGL+24, WZL24, WZ24b], all of which turn out to have time complexity exp(n) in the
setting that ρ is given by its state-preparation circuit of size poly(n).

• In [AISW20, Theorem 3] and [WZ24b, Theorem 1.2], for non-integer constant q > 1,
they proposed quantum algorithms for estimating the q-Rényi entropy of an n-
qubit quantum state ρ by using S = poly(1/ϵ) · exp(n) samples of ρ and T =
poly(1/ϵ) · exp(n) quantum gates.4 Their result implies an estimator for Sq(ρ)
with the same complexity, because any estimator for q-Rényi entropy implies an

2It is noteworthy that 0.001 is just an arbitrary constant for the precision parameter, which can be
replaced by any inverse polynomial function in general. See Definition 4.17 and Definition 4.18 for formal
definitions.

3We implicitly assume that q satisfies 1 + Ω(1) ≤ q ≤ O(1). Since Sq(ρ) ≤ o(1) when q = ω(1), it is
reasonable to consider constantly large q.

4The explicit sample complexities of the approaches of [AISW20, Theorem 3] and [WZ24b, Theorem 2]
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estimator for q-Tsallis entropy with the same parameter for q > 1 (as noted in
[AOST17, Appendix A]). By preparing each sample of ρ using its state-preparation
circuit of size poly(n), one can estimate Sq(ρ) by using their estimators with overall
time complexity S · poly(n) + T = poly(1/ϵ) · exp(n).

• In [WGL+24, Theorem III.9], for non-integer constant q > 1, they proposed a quan-
tum algorithm for estimating Sq(ρ) with query complexity Õ(r1/{ q−1

2 }/ϵ1+1/{ q−1
2 }) =

poly(r, 1/ϵ), where r is (an upper bound on) the rank of ρ and {x} := x − ⌊x⌋
denotes the fractional part of x. In [WZL24, Corollary 5], for non-integer constant
q > 1, they proposed a quantum algorithm for estimating the q-Rényi entropy of a
quantum state with query complexity Õ(r/ϵ1+ 1

q ) = poly(r, 1/ϵ), which also implies
a quantum algorithm for estimating Sq(ρ) with query complexity poly(r, 1/ϵ) (the
reason has been discussed in the last item). For n-qubit quantum state ρ without
prior knowledge, by taking r = 2n, their query compelxity is then poly(2n, 1/ϵ) =
poly(1/ϵ) · exp(n), which is exponentially larger than our poly(n, 1/ϵ).

Our efficient quantum estimator for Sq(ρ) where q ≥ 1+Ω(1) (Theorem 4.1), combined
with our hardness results for TsallisQEDq and TsallisQEAq (Theorem 4.2), indicates
a sharp phase transition between the case of q = 1 and constant q > 1 and answers to
Question (i) and (ii). For clarity, we summarize our main results in Table 4.1.

q = 1 1 < q ≤ 1+ 1
n−1 1+Ω(1) ≤ q ≤ 2 q > 2

TsallisQEDq
QSZK-complete

[BASTS10]
QSZK-hard

Theorem 4.2(2)
BQP-complete

Theorem 4.1 and Theorem 4.2(1)
in BQP

Theorem 4.1

TsallisQEAq
NIQSZK-complete
[BASTS10, CCKV08]

NIQSZK-hard5

Theorem 4.2(2)
BQP-complete

Theorem 4.1 and Theorem 4.2(1)
in BQP

Theorem 4.1

Table 4.1: Computational hardness of TsallisQEDq and TsallisQEAq.

For the case of q = 1, TsallisQEDq and TsallisQEAq coincide with the Quan-
tum Entropy Difference Problem (QED) and the Quantum Entropy Ap-
proximation Problem (QEA) introduced in [BASTS10], respectively. Moreover,
QED is complete for the class QSZK [BASTS10], whereas QEA is complete for the
class NIQSZK [BASTS10, CCKV08]. These two classes contain BQP and are seemingly
much harder than BQP.6 Meanwhile, the best known upper bound for QSZK is QIP(2)
with a quantum linear-space honest prover [LLW23], and the best known upper bound for
NIQSZK is qq-QAM [KLN19], both of which are contained in QIP(2) ⊆ PSPACE [JUW09].

In terms of quantitative bounds on quantum query and sample complexities, QSZK-
hard or NIQSZK-hard in the white-box setting correspond to rank-dependent complexities

are O(22n/ϵ2) and O(2( 4
q −2)n/ϵ1+ 4

q ·poly(n, log(1/ϵ))), respectively, both of which are poly(1/ϵ) · exp(n).
The number of quantum states in the approach of [AISW20, Theorem 3] was mentioned in [WZ24b] to
be O((22n/ϵ2)3 · polylog(2n, 1/ϵ)) = poly(1/ϵ) · exp(n) by using the weak Schur sampling in [MdW16,
Section 4.2.2] and the quantum Fourier transform over symmetric groups [KS16]. Another possible
implementation noted in [Hay24] is to use the Schur transform in [Ngu23], resulting in O(22n/ϵ2 · 24n ·
polylog(2n, 1/ϵ)) = poly(1/ϵ) · exp(n).

5TsallisQEAq is NIQSZK-hard only for q(n) = 1 + 1
n−1 , as detailed in Theorem 4.2(2).

6Following the oracle separation between NISZK and PP [BCH+19], it holds that NIQSZKO ̸⊆ PPO

and likewise QSZKO ̸⊆ PPO for some classical oracle O.
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in black-box settings. Specifically, we establish lower bounds for both the easy regime
q ≥ 1 + Ω(1) and the hard regime 1 < q ≤ 1 + 1

n−1 , with the upper bounds for the hard
regime derived from those for estimating quantum Rényi entropy, as detailed in Table 4.2.

Regime of q Query Complexity Sample Complexity
Upper Bound Lower Bound Upper Bound Lower Bound

q ≥ 1 + Ω(1) O(1/ϵ1+ 1
q−1 ) Ω(1/

√
ϵ) Õ(1/ϵ3+ 2

q−1 ) Ω(1/ϵ)
Theorem 4.5 Theorem 4.28 Theorem 4.6 Theorem 4.31

1 < q ≤ 1 + 1
n−1

Õ(r/ϵ2) Ω(r0.17−c)7 Õ(r2/ϵ5)8 Ω(r0.51−c′)7

[WZL24] Theorem 4.29 [WZ24b] Theorem 4.32

q = 1 Õ(r/ϵ2)9 Ω̃(
√
r) Õ(r2/ϵ5)8 Ω(r/ϵ)

[WGL+24] [BKT20] [WZ24b] [WZ24b]

Table 4.2: (Rank-dependent) bounds on query and sample complexities for estimating Sq(ρ).

On the other hand, understanding why the regime q ≥ 1 + Ω(1) is computationally
easy can be illustrated by the case of q = 2 (Purity Estimation), particularly deciding
whether Tr(ρ2) is at least 2/3 or at most 1/3. Let {λk}k∈[2n] be the eigenvalues of an
n-qubit quantum state ρ. For any quantum state ρ̂ having eigenvalues at most 1/n, it
follows that Tr(ρ̂2) = ∑

k∈[2n] λ
2
k ≤ n · n−2 = 1/n, hence 0 provides a good estimate

of Tr(ρ̂2) to within additive error 1/3. This intuition implies that only sufficiently large
eigenvalues contribute to estimating the value of Tr(ρ2). Consequently, the computational
complexity of Purity Estimation is supposed to be independent of the rank r.

However, this argument is just the first step towards establishing an efficient quantum
estimator for Sq(ρ).10 We also need to estimate∑k∈Ilarge λ

q
k, where Ilarge is the index set for

sufficiently large eigenvalue λk. For the case of integer q > 1, the approach of [BCWdW01,
EAO+02] equipped with quantum amplitude estimation [BHMT02] provides a solution,
whereas the case of non-integer q ≥ 1 + Ω(1) is more challenging and requires more
sophisticated techniques. Notably, the task is finally resolved by our first main result, as
presented in Theorem 4.1.

Lastly, we provide our second main result, i.e., the computational hardness of Tsal-
lisQEDq and TsallisQEAq, as stated in Theorem 4.2. Let ConstRankTsallisQEDq
and ConstRankTsallisQEAq denote restricted variants of TsallisQEDq and Tsal-
lisQEAq, respectively, such that the ranks of the states of interest are at most O(1).

Theorem 4.2 (Computational hardness of TsallisQEDq and TsallisQEAq, infor-
mal). The promise problems TsallisQEDq and TsallisQEAq capture the computa-

7In these bounds, c > 0 is a constant that can be made arbitrarily small, and we set c′ = 3c.
8In the regime 1 ≤ q ≤ 1 + 1

n−1 , as the rank r approaches 2n, a sample complexity upper bound of
O(4n/ϵ2) with better dependence on ϵ was given in [AISW20].

9As the rank r approaches 2n, a better query complexity upper bound of Õ(2n/ϵ1.5) was shown
in [GL20].

10A similar argument also applies to the classical Tsallis entropy, see [AOST17, Section III.C]. However,
this type of argument does not extend to von Neumann entropy (q = 1), see [QKW24, Section 7].
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tional power of their respective complexity classes in the corresponding regimes of q:11

(1) Easy regimes: For any q ∈ [1, 2], ConstRankTsallisQEDq is BQP-hard under
Karp reduction, and consequently, ConstRankTsallisQEAq is BQP-hard under
Turing reduction. As a corollary, TsallisQEDq and TsallisQEAq are BQP-
complete for 1 + Ω(1) ≤ q ≤ 2.

(2) Hard regimes: For any q ∈
(
1, 1 + 1

n−1

]
, TsallisQEDq is QSZK-hard under

Karp reduction, and consequently, TsallisQEAq is QSZK-hard under Turing re-
duction. Furthermore, for q = 1+ 1

n−1 , TsallisQEAq is NIQSZK-hard under Karp
reduction.

It is noteworthy that BQP-hardness under Turing reduction is as strong as BQP-
hardness under Karp reduction, due to the BQP subroutine theorem [BBBV97].12 More-
over, Theorem 4.2 implies a direct corollary, offering a positive answer to Question (ii):

Corollary 4.3. Purity Estimation is BQP-hard.

Interestingly, the BQP-hardness of a similar problem, specifically deciding whether
Tr(ρ0ρ1) is at least 2/3 or at most 1/3, turns out to be not difficult to show.13 However,
this result does not imply Corollary 4.3.

4.1.2 Proof techniques: BQP containment for q constantly larger than 1

The proof of Theorem 4.1 consists of an efficient quantum (query) algorithm for esti-
mating the value of Tr(ρq) for q > 1, given quantum query access to the state-preparation
circuit Q of the mixed quantum state ρ. Our approach to estimating Tr(ρq) is via one-bit
precision phase estimation [Kit95], also known as the Hadamard test [AJL09], equipped
with the quantum singular value transformation (QSVT) [GSLW19]. Our algorithm is
sketched in the following four steps (see Section 4.2 for more details):

1. Find a good polynomial approximation of xq−1.

2. Implement a unitary block-encoding U of ρq−1 using QSVT, with the state-preparation
circuit Q.

3. Perform the Hadamard test on U and ρ with outcome b ∈ {0, 1}.

4. One can learn the value of Tr(ρq) from a good estimate of b via quantum amplitude
estimation.

The idea is simple. Similar ideas were ever used to estimate the fidelity [GP22], trace
distance [WZ24a, LLW23], and von Neumann entropy [LLW23, WZ24b]. However, all of
the aforementioned quantum algorithms have query or time complexity polynomials in
the rank r of quantum states. Additionally, all these prior works rely on the quantum

11For detailed definitions of Karp reduction and Turing reduction, please refer to Chapter 2.
12Once we have an efficient quantum algorithm A for TsallisQEAq, any problem in BQP can be

solved using A as a subroutine. The BQP subroutine theorem, as stated in [BBBV97, Section 4], implies
that BQPA ⊆ BQP.

13For any BQP circuit Cx, the acceptance probability ∥|1⟩⟨1|outCx|0̄⟩∥2
2 = Tr(ρ0ρ1), where ρ0 := |1⟩⟨1|out

and ρ1 := Trout
(
Cx|0̄⟩⟨0̄|C†

x

)
. Similar observations appeared in [Kob03, Theorem 9].
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singular value transformation [GSLW19], which is a technique for designing quantum
algorithms by approximating the target functions.14 The main technical reason is that
the functions to be approximated in their key steps are not smooth in the whole range of
[0, 1], so they have to use the polynomial approximations of piece-wise smooth functions
in [GSLW19, Corollary 23] to avoid the bad part (which is actually the regime of tiny
eigenvalues);15 this results in an estimation error dependent on r because, technically,
the error for each bad eigenvalue has to be bounded individually (there are at most r
bad eigenvalues), thereby introducing an (at least) linear r-dependence. Specifically, in
their approaches, a target function f(x) is specified and the goal is to estimate the value
of Tr(ρf(ρ)). For example, f(x) = − log(x) for estimating the von Neumann entropy.
The target function f(x) is usually only approximated well in the range x ∈ [δ, 1] for
some parameter δ, while leaving the rest range of x unspecified; more precisely, f(x) is
approximated by a polynomial P (x) by, e.g., [GSLW19, Corollary 23], such that

max
x∈[δ,1]

|P (x)− f(x)| ≤ ϵ, max
x∈[−1,1]

|P (x)| ≤ 1, and deg(P ) = O
(1
δ

log 1
ϵ

)
. (4.1)

Then, they instead estimate the value of Tr(ρP (ρ)). The intrinsic error turns out to be
|Tr(ρf(ρ))− Tr(ρP (ρ))| ≤

∑
λj<δ

|λjf(λj)− λjP (λj)|+
∑
λj≥δ
|λjf(λj)− λjP (λj)|

≤ r · poly(δ) +O(ϵ).
Here, {λj}1≤j≤2n are the eigenvalues of the state ρ, with each λj satisfying 0 ≤ λj ≤ 1.
To make the intrinsic error bounded, δ must be sufficiently small, e.g., δ = 1/poly(r).

The above standard method has drawbacks: the intrinsic error is r · poly(δ) for the
small-eigenvalue part and O(ϵ) for the large-eigenvalue part. While the ϵ-dependence
in the approximation degree is logarithmic (and thus not the dominating term), the δ-
dependence is significant. This suggests the need for the following trade-off: Can we
reduce the error caused by the small-eigenvalue part, at the cost of a possibly worse error
caused by the large-eigenvalue part?

To make this trade-off possible for our purpose, we turn to find polynomials that
uniformly approximate the positive power functions. This is inspired by the Stone-
Weierstrass theorem, stating that any continuous function (e.g., xq) on a closed inter-
val (e.g., [0, 1]) can be uniformly approximated by polynomials. The study of the best
uniform approximation (by polynomials)16 of positive power functions was initiated by
Bernstein [Ber14, Ber38] almost a century ago in an abstract manner.17 The best uni-
form approximation polynomial of xq was shown with a non-constructive proof in [Tim63,
Section 7.1.41], stating that there is a family of polynomials Pd(x) of degree d such that

max
x∈[0,1]

|Pd(x)− xq| → 1
dq
, as d→∞, (4.2)

whose approximation range is in sharp contrast to that in Equation (4.1). However, the
14For example, estimating the fidelity and trace distance requires to approximate the sign function;

and estimating the von Neumann entropy requires to approximate the logarithmic function.
15These eigenvalues correspond to the inputs of the target function.
16The best uniform approximation polynomial of a continuous function f(x) on [−1, 1] is a degree-d

polynomial that minimizes maxx∈[−1,1] |f(x) − Pd(x)| over all degree-d polynomials Pd. For a formal
definition, see Section 2.3.

17Actually, the function |x|q for x ∈ [−1, 1] is commonly considered in the literature. Nevertheless, we
are only interested in the non-negative part, i.e., the range [0, 1].
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coefficients of the leading error terms and the explicit construction of these polynomial
approximations seem still not fully understood (e.g., [Gan02]). Consequently, it is some-
what challenging to directly use such polynomial approximations (e.g., [Tim63, Section
7.1.41]) in a time-efficient manner.

Inspired by the result of the best uniform approximation of positive power functions
in [Tim63], we, instead, aim to find a good enough uniform approximation that is also
efficiently computable. This is achieved by employing the construction of asymptotically
best uniform approximation via combining Chebyshev truncations and the de La Vallée
Poussin partial sum (cf. [Riv90, Chapter 3]). Finally, we obtain a family of efficiently
computable uniform approximation polynomials of (scaled) xq that are suitable for QSVT:

max
x∈[0,1]

∣∣∣∣P (x)− 1
2x

q

∣∣∣∣ ≤ ϵ, max
x∈[−1,1]

|P (x)| ≤ 1, and deg(P ) = O
( 1
ϵ1/q

)
. (4.3)

Using these efficiently computable uniform approximation polynomials, we are able to
give a quantum algorithm for estimating Tr(ρq). First, we approximate the function xq−1

in the range [0, 1] to error ϵ by a polynomial of degree O(1/ϵ
1

q−1 ). Then, we can apply
the algorithm sketched at the very beginning of this subsection. With further analysis,
we can estimate the value of Tr(ρq) to additive error ϵ with quantum query complexity
O(1/ϵ1+ 1

q−1 ), as stated in Theorem 4.5. Using the same idea, we can also estimate Tr(ρq)
to additive error ϵ by using Õ(1/ϵ3+ 2

q−1 ) copies of ρ through the samplizer [WZ24b], as
presented in Theorem 4.6.

To conclude this subsection, it can be seen that our quantum algorithm for estimating
Tr(ρq) is naturally applicable to solving TsallisQEDq and TsallisQEAq. Particularly
for the precision in the regime 1/poly(n) ≤ ϵ ≤ 1, the efficiently-computability of the
uniform approximation polynomials in Equation (4.3) ensures that the description of the
quantum circuit of our algorithm can be computed by a classical deterministic Turing
machine in poly(n) time, which is a significant step to show the BQP-completeness of
TsallisQEDq and TsallisQEAq for 1+Ω(1) ≤ q ≤ 2 and precision 1/poly(n) ≤ ϵ ≤ 1.

4.1.3 Proof techniques: Hardness via QJTq-based reductions

Before we proceed with the proof of Theorem 4.2, we start by reviewing the definition
of the (white-box) quantum state testing problem with respect to the trace distance
(QSD). For simplicity, we adopt a slightly restrictive definition, particularly QSD[1 −
ϵ(n), ϵ(n)], which corresponds to Definition 3.33 with α(n) = 1 − ϵ(n) and β(n) = ϵ(n).
Additionally, the two variants of QSD, specifically PureQSD and QSCMM, as defined
in Section 3.3, are also involved.

The proof of Theorem 4.2, particularly the hardness results under Karp reduction, uses
reductions from the aforementioned variants of QSD to TsallisQEDq or TsallisQEAq
for the respective ranges of q. Next, we will specify two main technical challenges related
to the corresponding inequalities necessary for establishing Theorem 4.2:

(1) For ConstRankTsallisQEDq and TsallisQEDq, the key ingredient of these
reductions is the quantum q-Jensen-(Shannon-)Tsallis divergence (QJTq, see Def-
inition 3.29), first introduced in [BH09]. We notice that QJTq can be viewed as
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a distance version of the quantum q-Tsallis entropy difference for 1 ≤ q ≤ 2,18

and consequently, these reductions heavily rely on the inequalities between QJTq
and the trace distance. However, such inequalities are only known for the case of
q = 1 [FvdG99, Hol73a, BH09], presenting the first technical challenge.

(2) For TsallisQEAq, the reduction essentially relies on the lower and upper bounds
on the quantum q-Tsallis entropy of a quantum state ρ in terms of the trace dis-
tance between the state and the maximally mixed state, when the trace distance
is promised to be a fixed value. These bounds are also only known for the case of
q = 1 [Vaj70, CCKV08, KLN19], leading to the second technical challenge.

For clarity, we summarize the correspondence between our reductions for establishing
Theorem 4.2 and the new inequalities in Table 4.3. The definition and properties of the
q-logarithm, lnq(x), are provided at the beginning of Chapter 2.

Problem Regime of q Reduction from New inequalities
ConstRank

TsallisQEDq
Theorem 4.2(1)

1≤q≤2 PureQSD is BQP-hard
adapted from [RASW23]

Hq

(
1
2

)
−Hq

(
1−T

2

)
≤ QJTq ≤ Hq

(
1
2

)
Tq

Theorem 4.7

TsallisQEDq
Theorem 4.2(2)

1≤q≤1+ 1
n−1

QSD is QSZK-hard
[Wat02, Wat09b]

Hq

(
1
2

)
−Hq

(
1−T

2

)
≤ QJTq

Theorem 4.7

TsallisQEAq
Theorem 4.2(2)

q = 1+ 1
n−1

QSCMM is NIQSZK-hard
[Kob03, BASTS10, CCKV08]

(
1−T− 1

2n

)
lnq(2n) ≤ Sq ≤ lnq(2n(1−T))

Lemma 4.16

Table 4.3: Reductions for TsallisQEDq and TsallisQEAq , and the related inequalities.

Once we have established these new inequalities, together with our new bounds for
the Tsallis binary entropy Hq(x) ≤ Hq

(
1
2

)√
4x(1− x) (see Theorem 4.8, where previously

only the case of q = 1 was known [Lin91, Top01]), we can establish our three hard-
ness results under Karp reduction in Theorem 4.2 through relatively complicated and
detailed analyses. The additional two hardness results for ConstRankTsallisQEAq
and TsallisQEAq under Turing reduction in Theorem 4.2 follow straightforwardly from
a binary search for promise problems.

In the remainder of this subsection, we provide insights into proving the new in-
equalities in Table 4.3. The first technical challenge involves establishing the inequalities
between QJTq and the trace distance. The main barrier is to provide the data-processing
inequality QJTq(Φ(ρ0),Φ(ρ1)) ≤ QJTq(ρ0, ρ1) for 1 < q ≤ 2.19 This implies that apply-
ing any quantum channel Φ on states ρ0 and ρ1 does not increase the divergence between

18For the case of q = 1, similar observations are implicitly used to show that QED is QSZK-
hard [BASTS10], and recently explicitly emphasized in [Liu23] (see Chapter 7), leading to a simple
proof for the QSZK hardness of QED.

19We generalize the approach in [BH09] for q = 1. Using the data-processing inequality with a measure-
ment channel, we can establish the lower bound via the measured version of QJTq (see Equation (3.2))
and the classical counterpart inequality for JTq in [BH09]. For the upper bound, we construct new states
ρ̂0 and ρ̂1 with an ancillary qubit, making QJTq(ρ̂0, ρ̂1) related to the trace distance for 1 < q ≤ 2 (and
coincide with the trace distance for q = 1). Applying the data-processing inequality with the partial
trace, we obtain QJTq(ρ0, ρ1) ≤ QJTq(ρ̂0, ρ̂1).
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them. For q = 1, the quantum Jensen-Shannon divergence (QJS), defined in [MLP05],
can be decomposed into a sum of quantum relative entropy D(ρ0∥ρ1):

QJS(ρ0, ρ1) := S
(
ρ0 + ρ1

2

)
− S(ρ0) + S(ρ1)

2 = 1
2

(
D
(
ρ0

∥∥∥∥ρ0 + ρ1

2

)
+ D

(
ρ1

∥∥∥∥ρ0 + ρ1

2

))
.

(4.4)
Since the data-processing inequality (essentially, the joint convexity) for the quantum
relative entropy was established decades ago [Lie73, Uhl77], and given the equality in
Equation (4.4), it directly follows that the data-processing inequality also holds for QJS.
However, a similar decomposition does not apply to the quantum q-Tsallis entropy when
q ̸= 1. Fortunately, the joint convexity of QJTq for 1 ≤ q ≤ 2, specifically,

QJTq((1− λ)ρ0 + λρ′
0, (1− λ)ρ1 + λρ′

1) ≤ (1− λ)QJTq(ρ0, ρ1) + λQJTq(ρ′
0, ρ

′
1),

was established few years ago [CT14, Vir19], where 0 < λ < 1. As a consequence, once we
establish the data-processing inequality for QJTq, we can then generalize the inequalities
between QJS and the trace distance to QJTq for 1 ≤ q ≤ 2, using the same approach
applied to QJS.

For the second technical challenge, i.e., the bounds for Sq(ρ) when T(Sq(ρ), (I/2)⊗n) =
γ is fixed, it suffices to focus on the classical counterpart,20 as the maximally mixed state
commutes with any state ρ. The lower bound can be established by following the approach
in [KLN19] for q = 1. On the other hand, the upper bound for q = 1 can be derived
using Vajda’s inequality [Vaj70], but similar results for q ̸= 1 are unknown. However, by
assuming an appropriate condition between q and the fixed distance γ, we can deduce an
upper bound analogous to the q = 1 case.

4.2 Efficient quantum algorithms for estimating q-quantum Tsal-
lis entropy

In this section, we propose efficient quantum algorithms for estimating the quantum
Tsallis entropy Sq(ρ) when q ≥ 1 + Ω(1), using either queries to the state-preparation
circuit or samples of the state ρ. The key ingredient underlying our algorithms is an
efficient uniform approximation to positive constant power functions. Specifically, our
polynomial approximation (Lemma 4.4) is “full-range”, meaning it maintains a uniform
error bound across the entire interval [−1, 1]. This differs from the polynomial approxi-
mations commonly used in QSVT, which typically provide separate error bounds for the
intervals [−δ, δ] and [−1,−δ) ∪ (δ, 1].

Utilizing our “full-range” polynomial approximation, we construct a query-efficient
quantum algorithm for estimating Tr(ρq), as established in Theorem 4.5. Consequently,
our quantum query algorithm (Theorem 4.5) directly leads to BQP containments of the
promise problems TsallisQEAq and TsallisQEDq, defined in Section 4.4. Further-
more, by employing the samplizer in [WZ24b], we develop a sample-efficient quantum
algorithm for estimating Tr(ρq), as presented in Theorem 4.6.

20Let p denote the distribution of the eigenvalues of ρ, and let ν be the uniform distribution over 2n

items. This task is exactly equivalent to proving the bounds for Hq(p) when TV(p, ν) = γ is fixed.
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4.2.1 Efficient uniform approximations to positive constant power func-
tions

We start by establishing an efficiently computable uniform approximation to positive
constant powers:

Lemma 4.4 (Efficient uniform polynomial approximation to positive constant powers).
Let r be a positive integer and let α be a real number in (−1, 1). For any ϵ ∈ (0, 1/2),
there is a degree-d polynomial Pd ∈ R[x], where d =

⌈
(β′

α/ϵ)
1

r+α

⌉
and β′

α is a constant
depending on α, that can be deterministically computed in Õ(d) time. For sufficiently
small ϵ, it holds that:

max
x∈[−1,1]

∣∣∣∣12xr−1|x|1+α − Pd(x)
∣∣∣∣ ≤ ϵ and max

x∈[−1,1]
|Pd(x)| ≤ 1.

Furthermore, Pd has the same parity as the integer r − 1.

Proof. Let f(x) := 1
2x

r−1|x|1+α. For any ϵ̃ ∈ (0, 1/8), using Lemma 2.7, we obtain
the degree-d̃ best polynomial approximation P ∗

d̃
(x), where d̃ =

⌈
(βα/ϵ̃)

1
r+α

⌉
and βα is a

constant depending on α, such that

max
x∈[−1,1]

∣∣∣∣12xr−1|x|1+α − P ∗
d̃ (x)

∣∣∣∣ ≤ ϵ̃ and max
x∈[−1,1]

∣∣∣P ∗
d̃ (x)

∣∣∣ ≤ 1
2 + ϵ̃. (4.5)

Next, we consider the degree-d̃ averaged Chebyshev truncation (Equation (2.3)) of
f(x). In particular, let d := 2d̃−1 =

⌈
(β′

α/ϵ)
1

r+α

⌉
, where β′

α is another constant depending
on α and ϵ will be specified later. We obtain the following degree-d polynomial:

Pd(x) = ĉ0

2 +
d∑

k=1
ĉkTk(x), where ĉk :=

ck, 0 ≤ k ≤ d̃
2d̃−k
d̃
ck, k > d̃

and ck := ⟨Tk, f⟩. (4.6)

By leveraging the asymptotically best approximation by averaged Chebyshev trunca-
tion (Lemma 2.11) and Equation (4.5), we can derive that Pd(x) satisfies the following:

max
x∈[−1,1]

∣∣∣∣12xr−1|x|1+α − Pd(x)
∣∣∣∣ ≤ 4ϵ̃ := ϵ and max

x∈[−1,1]
|Pd(x)| ≤ 1

2 + 4ϵ̃ = 1
2 + ϵ < 1.

It remains to show that Pd(x) can be computed in deterministic time Õ(d). A straight-
forward calculation implies that the Chebyshev coefficient {ck}0≤k≤d in Equation (4.6)
satisfy the following:

c2l+1 = c2l−1 ·
r + α− 2l + 1
r + α + 2l + 1 , c2l = c2l−2 ·

r + α− 2l + 2
r + α + 2l ,

c0 = 2
π

∫ 1

−1

1
2x

r−1|x|1+α · T0(x)√
1− x2

dx = −−1 + (−1)r
2
√
π

·
Γ
(

1
2(r + α + 1)

)
Γ
(

1
2(r + α + 2)

) ,
c1 = 2

π

∫ 1

−1

1
2x

r−1|x|1+α · T1(x)√
1− x2

dx = 1 + (−1)r
2
√
π

·
Γ
(

1
2(r + α + 2)

)
Γ
(

1
2(r + α + 3)

) .
Here, the Gamma function Γ(x) :=

∫∞
0 tx−1e−xdt for any x > 0.

Consequently, we can recursively compute the averaged Chebyshev coefficient {ĉk}0≤k≤d
in deterministic time Õ(d). We complete the proof by noting that the Chebyshev poly-
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nomials {Tk(x)}0≤k≤d also can be recursively computed in deterministic time Õ(d).

4.2.2 Quantum q-Tsallis entropy approximation for q constantly larger
than 1

Query-efficient quantum algorithm for estimating Tr(ρq). We now present effi-
cient quantum query algorithms for estimating the q-Tsallis entropy of a mixed quantum
state. For readability, their framework is given in Algorithm 4.2.1.

Algorithm 4.2.1: A framework for estimating q-Tsallis entropy for q ≥ 1+Ω(1)
(query access).

Input : A quantum circuit Q that prepares a purification of an n-qubit mixed
quantum state ρ, and a precision parameter ϵ ∈ (0, 1).

Output: A single bit b ∈ {0, 1} such that Pr[b = 0] ≈ 1
2 + 1

8Tr(ρq).
1. Implement a unitary operator Uρ that is a block-encoding of ρ by
Lemma 2.18, using O(1) queries to Q.

2. Let P (x) be a polynomial that approximates 1
4x

q−1 in the range [0, 1], where
P (x) is determined according to ϵ, n, and q. More precisely, for constant q > 1,
P (x) is chosen by Lemma 4.4.

3. Implement a unitary operator UP (ρ) that is a block-encoding of P (ρ) by
quantum singular value transformation (Lemma 2.21), using O(deg(P )) queries
to Uρ.

4. Perform the Hadamard test on ρ and UP (ρ) by Lemma 2.19, and return the
measurement outcome.

Theorem 4.5 (Trace estimation of quantum state constant powers via queries). Suppose
that Q is a unitary operator that prepares a purification of mixed quantum state ρ. For
every q ≥ 1 + Ω(1), there is a quantum query algorithm that estimates Tr(ρq) to within
additive error ϵ by using O(1/ϵ1+ 1

q−1 ) queries to Q.

Proof. Let Q be an (n + a)-qubit unitary operator that prepares a purification of the
n-qubit mixed quantum state ρ. Then, by Lemma 2.18, we can implement a unitary
operator Uρ that is a (1, n+ a, 0)-block-encoding of ρ, by using O(1) queries to Q.

Let ϵp ∈ (0, 1) be a parameter to be determined later. By Lemma 4.4 with r :=
max{⌊q− 1⌋, 1}, α := q− 1− r, and ϵ := ϵp, there exists a polynomial P ∈ R[x] of degree
d = O(1/ϵ

1
q−1
p ) such that

max
x∈[0,1]

∣∣∣∣P (x)− 1
2x

q−1
∣∣∣∣ ≤ ϵp, and max

x∈[−1,1]
|P (x)| ≤ 1.

By Lemma 2.21 with P := 1
2P , α := 1, a := n + a, ϵ := 0 and d := O(1/ϵ

1
q−1
p ), we can

implement a quantum circuit UP (ρ) that is a (1, n + a + 2, δ)-block-encoding of 1
2P (ρ),

by using O(1/ϵ
1

q−1
p ) queries to Uρ. Moreover, the classical description of UP (ρ) can be

computed in deterministic time poly(1/ϵp, log(1/δ)).
Suppose that UP (ρ) is a (1, n + a + 2, 0)-block-encoding of A, i.e., ∥A − 1

2P (ρ)∥ ≤ δ.
Then, by Lemma 2.19, we can obtain an estimate x̃ of Tr(Aρ) to within additive error
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ϵH by using O(1/ϵH) queries to each of UP (ρ) and Q such that

Pr
[
|x̃− Tr(Aρ)| ≤ ϵH

]
≥ 2

3 . (4.7)

In the overall quantum circuit to obtain x̃, the number of queries to Q is

O
( 1
ϵH

)
·O
(

1
ϵ

1/(q−1)
p

)
= O

(
1

ϵHϵ
1/(q−1)
p

)
,

and the number of one- and two-qubit quantum gates is

O

(
n+ a

ϵHϵ
1/(q−1)
p

)
.

Moreover, the classical description of the overall quantum circuit can be computed in
deterministic time poly(1/ϵp, 1/ϵH , log(1/δ)).

On the other hand, we have∣∣∣∣Tr(Aρ)− Tr
(1

2P (ρ)ρ
)∣∣∣∣ ≤ ∥∥∥∥A− 1

2P (ρ)
∥∥∥∥ ≤ δ, (4.8)

where we use the inequality |Tr(AB)| ≤ ∥A∥Tr(|B|) (which is a special case of the matrix
Hölder inequality, e.g., [Bau11, Theorem 2]). We also have∣∣∣∣Tr

(1
2P (ρ)ρ

)
− Tr

(1
4ρ

q
)∣∣∣∣ ≤ 1

2ϵp. (4.9)

To see Equation (4.9), suppose that ρ = ∑
j λj|ψj⟩⟨ψj| is the spectrum decomposition of

ρ with λj ≥ 0 for all j and ∑j λj = 1. Then,∣∣∣∣Tr
(1

2P (ρ)ρ
)
− Tr

(1
4ρ

q
)∣∣∣∣ =

∣∣∣∣∣∣
∑
j

(1
2P (λj)λj −

1
4λ

q
j

)∣∣∣∣∣∣
≤
∑
j

1
2λj

∣∣∣∣P (λj)−
1
2λ

q−1
j

∣∣∣∣
≤ 1

2
∑
j

λjϵp = 1
2ϵp.

Finally, by combining Equations (4.7) to (4.9), we obtain

Pr
[
|4x̃− Tr(ρq)| ≤ 2ϵp + 4ϵH + 4δ

]
≥ 2

3 .

To make 4x̃ an ϵ-estimate of Tr(ρq) with high probability, it is sufficient to take ϵp =
ϵH = δ = ϵ/10, thereby the required number of queries to Q is

O
( 1
ϵ1+1/(q−1)

)
.

Sample-efficient quantum algorithm for estimating Tr(ρq). We also study the
sample complexity for the trace estimation of quantum state powers, which is obtained by
extending the quantum query algorithm in Theorem 4.5 via the samplizer in Lemma 2.23.
An illustrative framework is given in Algorithm 4.2.2.

Theorem 4.6 (Trace estimation of quantum state constant powers via samples). For
every q ≥ 1 + Ω(1), there is a quantum sample algorithm that estimates Tr(ρq) to within
additive error ϵ by using Õ(1/ϵ3+ 2

q−1 ) samples of ρ.
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Algorithm 4.2.2: A framework for estimating q-Tsallis entropy for q ≥ 1+Ω(1)
(sample access).

Input : Independent and identical samples of an n-qubit mixed quantum state
ρ, and parameters q > 1 and δ, ϵp, δp ∈ (0, 1).

Output: A single bit b ∈ {0, 1} such that Pr[b = 0] ≈ 1
2 + 1

2q+3 Tr(ρq).
Function ApproxPower(q, ϵp, δp)U

Input : A unitary (1, a, 0)-block-encoding U of A, and parameters
q > 1, ϵp, δp ∈ (0, 1).

Output: A unitary operator Ũ .
a. Let P (x) be a polynomial of degree d = O(1/ϵ

1
q−1
p ) such that

maxx∈[0,1]|P (x)− 1
2x

q−1| ≤ ϵp and maxx∈[−1,1]|P (x)| ≤ 1 (by Lemma 4.4).
b. Construct a unitary (1, a+ 2, δp)-block-encoding Ũ of 1

2P (A) (by
Lemma 2.21).

c. Return Ũ .
1. Let b′ be the outcome of the Hadamard test (by Lemma 2.19) performing on
the quantum state ρ and Samplizeδ⟨ApproxPower(q, ϵp, δp)U⟩[ρ] (as if it were
unitary).

2. Return b′.

Proof. Let unitary operator U be a (1, a, 0)-block-encoding of A for some a > 0. Let
ϵp, δp ∈ (0, 1) be parameters to be determined. Using Lemma 4.4 with the parameters
r := max{⌊q−1⌋, 1}, α := q−1− r, and ϵ := ϵp, there is a polynomial P ∈ R[x] of degree
d = O(1/ϵ

1
q−1
p ) such that

max
x∈[0,1]

∣∣∣∣P (x)− 1
2x

q−1
∣∣∣∣ ≤ ϵp and max

x∈[−1,1]
|P (x)| ≤ 1.

By Lemma 2.21 with P := 1
2P , α := 1, a := n + a, ϵ := 0, δ := δp and d := O(1/ϵ

1
q−1
p ),

we can implement a quantum circuit UP (A) that is a (1, n + a + 2, δp)-block-encoding of
1
2P (A), by using O(1/ϵ

1
q−1
p ) queries to U . Moreover, the classical description of UP (A)

can be computed in deterministic time poly(1/ϵp, log(1/δp)). Let ApproxPower(q, ϵp, δp)U
denote the procedure of implementing UP (A) by using queries to U .

For our purpose, we take A := ρ/2. Suppose that UP ( ρ
2 ) is a (1, n + a + 2, 0)-block-

encoding of B, then ∥B − 1
2P (ρ2)∥ ≤ δp. Let b ∈ {0, 1} be the outcome of the Hadamard

test (by Lemma 2.19) on ρ and UP ( ρ
2 ), then

Pr[b = 0] = 1
2 + 1

2 Re[Tr(Bρ)]. (4.10)

Let δ ∈ (0, 1) be a parameter to be determined, and let b′ ∈ {0, 1} be the outcome of the
Hadamard test (by Lemma 2.19) on ρ and Samplizeδ⟨ApproxPower(q, ϵp, δp)U⟩[ρ] (as if it
were UP ( ρ

2 )). Then, ∣∣∣Pr[b = 0]− Pr[b′ = 0]
∣∣∣ ≤ δ. (4.11)

Now we repeat the Hadamard test k times, obtaining outcomes b′
1, b

′
2, . . . , b

′
k ∈ {0, 1},

where k is an integer to be determined. Let X = 1
k

∑k
j=1 b

′
j. Then, by the Hoeffding
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bound (e.g., [MU17, Theorem 4.12]), we have

Pr[|X − E[b′]| ≤ ϵH ] ≥ 1− 2 exp
(
−2kϵ2

H

)
. (4.12)

On the other hand, similar to the proof of Theorem 4.5, we have∣∣∣∣Re[Tr(Bρ)]− Tr
(1

2P
(
ρ

2

)
ρ
)∣∣∣∣ ≤ ∣∣∣∣Tr(Bρ)− Tr

(1
2P

(
ρ

2

)
ρ
)∣∣∣∣

≤
∥∥∥∥B − 1

2P
(
ρ

2

)∥∥∥∥
≤ δp.

(4.13)

We also have ∣∣∣∣Tr
(1

2P
(
ρ

2

)
ρ
)
− Tr

( 1
2q+2ρ

q
)∣∣∣∣ ≤ 1

2ϵp. (4.14)

To see Equation (4.9), suppose that ρ = ∑
j λj|ψj⟩⟨ψj| is the spectrum decomposition of

ρ with λj ≥ 0 for all j and ∑j λj = 1. Then,∣∣∣∣Tr
(1

2P
(
ρ

2

)
ρ
)
− Tr

( 1
2q+2ρ

q
)∣∣∣∣ =

∣∣∣∣∣∣
∑
j

(
1
2P

(
λj
2

)
λj −

1
2q+2λ

q
j

)∣∣∣∣∣∣
≤
∑
j

1
2λj

∣∣∣∣∣∣P
(
λj
2

)
− 1

2

(
λj
2

)q−1
∣∣∣∣∣∣

≤ 1
2
∑
j

λjϵp = 1
2ϵp.

Finally, by combining Equations (4.10) to (4.14), we obtain

Pr
[∣∣∣2q+2(1− 2X)− Tr(ρq)

∣∣∣ ≤ 2q+1(4δ + 4ϵH + 2δp + ϵp)
]
≥ 1− 2 exp(−2kϵ2

H).

By taking δ = ϵH = δp = ϵp := 2−q−5ϵ and k :=
⌈

ln(6)
2ϵ2H

⌉
, we have

Pr
[∣∣∣2q+2(1− 2X)− Tr(ρq)

∣∣∣ ≤ ϵ
]
≥ 2

3 ,

which means that 2q+2(1− 2X) is an ϵ-estimate of Tr(ρq) with high probability.
To complete the proof, we analyze the sample complexity of our algorithm. The

algorithm consists of k repetitions of the Hadamard test, where each repetition re-
quires one sample of ρ and one call to Samplizeδ⟨ApproxPower(q, ϵp, δp)U⟩[ρ]. Here,
ApproxPower(q, ϵp, δp)U uses O(1/ϵ

1
q−1
p ) queries to U . Hence, by applying Lemma 2.23,

we can implement Samplizeδ⟨ApproxPower(q, ϵp, δp)U⟩[ρ] by using Õ(1/(δϵ
2

q−1
p )) samples

of ρ. Therefore, the total number of samples of ρ is

k · Õ
(

1
δϵ

2/(q−1)
p

)
= Õ

( 1
ϵ3+2/(q−1)

)
.

4.3 Properties of quantum Jensen-Tsallis divergence and Tsallis
entropy

In this section, we present inequalities between the quantum q-Jensen-Tsallis diver-
gence (1 ≤ q ≤ 2) and the trace distance. Our results extend the previous results for the
quantum Jensen-Shannon divergence (q = 1, see [BH09, Theorem 14]):
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Theorem 4.7 (QJTq vs. T). For any quantum states ρ0 and ρ1, and 1 ≤ q ≤ 2, we have:

Hq

(1
2

)
− Hq

(
1− T(ρ0, ρ1)

2

)
≤ QJTq(ρ0, ρ1) ≤ Hq

(1
2

)
· T(ρ0, ρ1)q.

To prove Theorem 4.7, we first need to prove the data-processing inequality for QJTq
(Lemma 4.11), which crucially relies on the relatively recent results on the joint con-
vexity of QJTq [CT14, Vir19]. Consequently, we can establish Theorem 4.7 by proving
the inequalities in Section 4.3.2. In particular, the lower bound on QJTq in terms of
T (Lemma 4.12) holds for q ∈ [1, 2], and the upper bound on QJTq in terms of T
(Lemma 4.13) for the same range of q.

Next, to utilize Lemma 4.12, we provide bounds of the Tsallis binary entropy in
Section 4.3.3:

Theorem 4.8 (Tsallis binary entropy bounds). For any p = (x, 1− x), let Hq(x) denote
the Tsallis binary entropy with 1 ≤ q ≤ 2, we have:

Hq(1/2) · 4x(1− x) ≤ Hq(x) ≤ Hq(1/2) · (4x(1− x))1/2.

It is noteworthy that the best known bounds for the Shannon binary entropy (q = 1)
are H(1/2) · 4x(1− x) ≤ H(q) ≤ H(1/2) · (4x(1− x))

1
2H(1/2) , as shown in [Top01, Theorem

1.2]. Our lower bound on the Tsallis binary entropy (Lemma 4.14) matches the case
of q = 1, whereas our upper bound (Lemma 4.15) only aligns with a weaker bound
H(q) ≤ H(1/2) · (4x(1 − x))1/2 in [Lin91, Theorem 8] and the proof of Lemma 4.15 is
more complicated than in the case of q = 1.

Lastly, we provide the inequalities between the Tsallis entropy of a distribution p
and the total variation distance between p and the uniform distribution ν of the same
dimension, as stated in Lemma 4.16. By adding an additional assumption regarding q
and TV(p, ν), this lemma partially generalizes the previous result for the case of q = 1
(cf. [CCKV08, Fact 8.4] and [KLN19, Lemma 16]) to the case of q > 1.

4.3.1 Data-processing inequality for QJTq from the joint convexity

With the correspondence between QJS and the quantum relative entropy (Equa-
tion (3.3)), the joint convexity of QJS directly follows from the joint convexity of the
quantum relative entropy [Lie73, Uhl77] (see also [Rus22] for a simple proof). However,
since QJTq does not correspond to a Tsallis variant of quantum relative entropy (e.g.,
quasi-entropy [Pet07, Equation (3.23)]) in this sense, the joint convexity of QJTq can
only be established by the recent results of [CT14, Vir19]:

Lemma 4.9 (Joint convexity of QJTq, adapted from [CT14, Vir19]). Let k be an integer.
For any i ∈ [k], let ρ(i)

0 and ρ
(i)
1 be two quantum states. Let k-tuple µ := (µ1, · · · , µk) be

a probability distribution. Then, for any q ∈ [1, 2] and t ∈ (0, 1), the joint convexity of
QJTq holds:

QJTq

∑
i∈[k]

µiρ
(i)
0 ,

∑
i∈[k]

µiρ
(i)
1

 ≤ ∑
i∈[k]

µiQJTq
(
ρ

(i)
0 , ρ

(i)
1

)
.
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Proof. Following [CT14, Theorem 2.3(2)], we know that the quantum q-Tsallis entropy
Sq(ρ) for 1 ≤ q ≤ 2 is in the Matrix Entropy Class [CT14, Definition 2.2] (or [Vir19,
Definition 2]). Therefore, as a corollary of [Vir19, Theorem 1], we can obtain: for any
1 ≤ q ≤ 2 and 0 < λ < 1,

QJTq((1− λ)ρ0 + λρ′
0, (1− λ)ρ1 + λρ′

1) ≤ (1− λ)QJTq(ρ0, ρ1) + λQJTq(ρ′
0, ρ

′
1). (4.15)

Hence, we can complete the proof by applying Equation (4.15) inductively.

Remark 4.10 (Data-processing inequality for QJTq,t). It is noteworthy that Lemma 4.9
applies to a generalized version of QJTq, denoted as QJTq,t, such that QJTq,1/2 = QJTq:

∀t ∈ (0, 1), QJTq,t := Sq ((1− t)ρ0 + tρ1)− (1− t)Sq(ρ0)− tSq(ρ1).
Lemma 3.30 also directly extends to QJTq,t, and consequently, Lemma 4.11 holds for
QJTq,t with 1 ≤ q ≤ 2. However, the inequalities between QJTq and the trace distance
provided in this work, particularly Lemma 4.12 and Lemma 4.13, do not extend to QJTq,t

for 1 ≤ q ≤ 2.

Lemma 4.11 (Data-processing inequality for QJTq). For any quantum state ρ0 and ρ1,
any quantum channel Φ, and 1 ≤ q ≤ 2, we have

QJTq(Φ(ρ0),Φ(ρ1)) ≤ QJTq(ρ0, ρ1).

Interestingly, the inequality in Lemma 4.11 cannot hold for 0 ≤ q < 1. We can see this
by considering pure states |ψ⟩⟨ψ| and |ϕ⟩⟨ϕ|, and their average ρ̂ψ,ϕ := 1

2

(
|ψ⟩⟨ψ|+ |ϕ⟩⟨ϕ|

)
,

then QJTq(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = Sq
(
ρ̂ψ,ϕ

)
. Following Lemma 4.11, we have Sq

(
Φ
(
ρ̂ψ,ϕ

))
≤

Sq
(
ρ̂ψ,ϕ

)
for q ∈ [1, 2]. However, using [FYK04, Corollary 2.6], we have Sq

(
Φ
(
ρ̂ψ,ϕ)

)
≥

Sq
(
ρ̂ψ,ϕ

)
for q ∈ [0, 1).

Proof of Lemma 4.11. The case of q = 1 coincides with the quantum Jensen-Shannon
divergence: Using Equation (3.3), QJS(Φ(ρ0),Φ(ρ1)) ≤ QJS(ρ0, ρ1) follows from the
data-processing inequality of the quantum relative entropy [Lin75, Uhl77] (see also [Pet07,
Theorem 3.9]).

It remains to prove the case for 1 < q ≤ 2. We use the standard proof strategy to
derive the data-processing inequality from joint convexity, as in [FYK04, Theorem 2.5].

First, we consider the case of the partial trace TrB on the quantum registers A and B,
where ρ0, ρ1 ∈ L

(
HAB

)
and dim(HB) = NB. Since QJTq(ρ0⊗ ĨB, ρ1⊗ ĨB) = QJTq(ρ0, ρ1)

where ĨB is the maximally mixed state in B, it suffices to consider a quantum channel
on registers A and B that is completely depolarizing on B and identity on A, denoted as
ΦTrB . Noting that ΦTrB can be expressed as a convex combination of unitary channels
(e.g., [Wil13, Exercise 4.4.9] or [Rus22, Equation (9)]), for any quantum state ρAB on
registers A and B, we can obtain:

ΦTrB(ρAB) := TrB(ρAB)⊗ Tr(ρAB)ĨB =
∑
l∈[N2

B ]

1
N2

B
(IA ⊗ Ul)ρAB(IA ⊗ Ul)†,

where Ul is a unitary operator on B for each l ∈ [N2
B].

Using the joint convexity (Lemma 4.9) and the unitary invariance (Lemma 3.30) of
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QJSq, we derive the data-processing inequality concerning the quantum channel ΦTrB :

QJTq (TrB(ρ0),TrB(ρ1))
= QJTq(ΦTrB(ρ0),ΦTrB(ρ1))

≤
∑
l∈[N2

B ]

1
N2

B
QJTq

(
(IA ⊗ Ul)ρ0(IA ⊗ Ul)†, (IA ⊗ Ul)ρ1(IA ⊗ Ul)†

)

=
∑
l∈[N2

B ]

1
N2

B
QJTq (ρ0, ρ1)

= QJTq(ρ0, ρ1).

(4.16)

Next, we move to the general case. By leveraging the Stinespring dilation theorem
(e.g., [AS17, Theorem 2.25]), for any quantum channel Φ on the registers (A,B), we
have the following representation with some unitary UΦ on the registers (A,B,E) where
dim(HE) ≤ dim(HAB)2:

Φ(ρAB) = TrE
(
UΦ(ρAB ⊗ |0̄⟩⟨0̄|E)U †

Φ

)
.

Consequently, we can obtain the following for any quantum channel Φ:
QJTq(Φ(ρ0),Φ(ρ1)) ≤ QJTq

(
UΦ(ρ0 ⊗ |0̄⟩⟨0̄|E)U †

Φ, UΦ(ρ1 ⊗ |0̄⟩⟨0̄|E)U †
Φ

)
= QJTq

(
ρ0 ⊗ |0̄⟩⟨0̄|E, ρ1 ⊗ |0̄⟩⟨0̄|E

)
= QJTq(ρ0, ρ1).

Here, the first line owes to Equation (4.16), the second line is due to the unitary invariance
of QJTq (Lemma 3.30), and the last line is because Tr

(
(ρb ⊗ |ϕ⟩⟨ϕ|E)q

)
= Tr(ρqb) for any

b ∈ {0, 1} and q ∈ [1, 2]. We now complete the proof.

4.3.2 Inequalities between the trace distance and QJTq

We begin by establishing the lower bound on QJTq in terms of the trace distance, as
stated in Lemma 4.12. The measured variant of the q-Jensen-Tsallis divergence (JTq),
denoted by QJTmeas

q , is derived from the definition provided in Equation (3.2).

Lemma 4.12 (T ≤ QJTq). For any quantum states ρ0 and ρ1, we have:

∀q ∈ [1, 2], Hq

(1
2

)
− Hq

(
1
2 −

T(ρ0, ρ1)
2

)
≤ QJTmeas

q (ρ0, ρ1) ≤ QJTq(ρ0, ρ1).

Proof. The case of q = 1 follows from [BH09, Theorem 14]. An alternative proof can be
derived by combining [FvdG99, Theorem 1] with the Holevo bound, see Lemma 3.24 and
Lemma 3.25 in Section 3.2 for details.

Our focus will be on the cases where 1 < q ≤ 2. We first prove the second inequality.
Let M∗ be an optimal POVM corresponding to QJTmeas

q (ρ0, ρ1), then this POVM M∗

corresponds to a quantum-to-classical channel ΦM∗(ρ) = ∑N
i=1|i⟩⟨i|Tr(ρM∗

i ), e.g., [AS17,
Equatin (2.41)]. Leveraging the data-processing inequality for QJTq (Lemma 4.11), for
1 < q ≤ 2, we obtain:

QJTmeas
q (ρ0, ρ1) = QJTq (ΦM∗(ρ0),ΦM∗(ρ1)) ≤ QJTq(ρ0, ρ1).
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Next, let us move to the first inequality. Let pM
b be the induced distribution with

respect to the POVM M of ρb for any b ∈ {0, 1}. Utilizing Lemma 3.10, for 1 < q ≤ 2,
we can derive that:

QJSmeas
q,M∗(ρ0, ρ1) ≥ QJSmeas

q,M (ρ0, ρ1)
= JTq

(
pM

0 , pM
1

)
≥ Hq

(1
2

)
− Hq

1
2 −

TV
(
pM

0 , pM
1

)
2

.
(4.17)

We then consider the function g(q;x) and its first derivative ∂
∂x
g(q;x):

g(q;x) := Hq

(1
2

)
− Hq

(1− x
2

)
= 2−q

q − 1 ((1 + x)q + (1− x)q − 2) ,

∂

∂x
g(q;x) = 2−qq

q − 1
(
(1 + x)q−1 − (1− x)q−1

)
.

Since it is easy to see that ∂
∂x
g(q;x) ≥ 0 for 0 ≤ x ≤ 1 when 1 < q ≤ 2, we know that

g(q;x) is monotonically increasing for 0 ≤ x ≤ 1. Noting that Equation (4.17) holds for
arbitrary POVMM, and the trace distance is the measured version of the total variation
distance (e.g., [NC10, Theorem 9.1]), we thus complete the proof by choosing the POVM
that maximizes T(ρ0, ρ1).

Next, we demonstrate the upper bound on QJTq in terms of the trace distance:

Lemma 4.13 (QJTq ≤ T). For any quantum states ρ0 and ρ1, we have:

∀q ∈ [1, 2], QJTq(ρ0, ρ1) ≤ Hq

(1
2

)
· 12Tr(|ρ0 − ρ1|q) ≤ Hq

(1
2

)
· T(ρ0, ρ1)q.

Proof. We begin with the construction for establishing QJTq ≤ ln 2 · T for q = 1 as
in [BH09, Theorem 14], see also the proof of Lemma 3.26. Our analysis differs since we
need to address the cases of 1 ≤ q ≤ 2. Consider a single qutrit register B with basis
vectors |0⟩, |1⟩, |2⟩. Define ρ̂0 and ρ̂1 on H ⊗ B as below, where B = C3 is the Hilbert
space corresponding to the register B:

ρ̂0 :=ρ0 + ρ1 − |ρ0 − ρ1|
2 ⊗ |2⟩⟨2|+ ρ0 − ρ1 + |ρ0 − ρ1|

2 ⊗ |0⟩⟨0| := σ2 ⊗ |2⟩⟨2|+ σ0 ⊗ |0⟩⟨0|,

ρ̂1 :=ρ0 + ρ1 − |ρ0 − ρ1|
2 ⊗ |2⟩⟨2|+ ρ1 − ρ0 + |ρ0 − ρ1|

2 ⊗ |1⟩⟨1| := σ2 ⊗ |2⟩⟨2|+ σ1 ⊗ |1⟩⟨1|.

Intuitively, σb represents the case where ρb is “larger than” ρ1−b for b ∈ {0, 1} (i.e., ρ0
and ρ1 are “distinguishable”), while σ2 represents the case where ρ0 is “indistinguishable”
from ρ1. This construction generalizes the proof of the classical analogs (e.g., [Vad99,
Claim 4.4.2]).

Since QJTq is contractive when applying a partial trace (Lemma 4.11), we obtain:
QJTq(ρ0, ρ1) = QJTq(TrB(ρ̂0),TrB(ρ̂1))

≤ QJTq(ρ̂0, ρ̂1)

= 1
q − 1

(
Tr
((

ρ̂0 + ρ̂1

2

)q)
− 1

2Tr(ρ̂q0)−
1
2Tr(ρ̂q1)

)
.

(4.18)
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As that σ0 ⊗ |0⟩⟨0|, σ1 ⊗ |1⟩⟨1|, and σ2 ⊗ |2⟩⟨2| are orthogonal to each other, we have:

Tr
((

ρ̂0+ρ̂1

2

)q)
= Tr

(σ2⊗|2⟩⟨2|+
∑

b∈{0,1}

σb
2 ⊗|b⟩⟨b|

)q = Tr
(
σq2 +σq0

2q +σq1
2q
)
,

∀b ∈ {0, 1}, Tr(ρ̂qb) = Tr ((σ2 ⊗ |2⟩⟨2|+ σb ⊗ |b⟩⟨b|)q) = Tr (σq2 + σqb ) .
(4.19)

Plugging Equation (4.19) and Hq

(
1
2

)
= 1−21−q

q−1 into Equation (4.18), we obtain:

QJTq(ρ0, ρ1) ≤ Hq

(1
2

)
· 12Tr(σq0 + σq1)

≤ Hq

(1
2

)
· 12(Tr(σ0)q + Tr(σ1)q)

= Hq

(1
2

)
· T(ρ0, ρ1)q.

(4.20)

Here, the second line is due to the monotonicity of the Schatten p-norm (e.g., [AS17,
Equation (1.31)]), equivalently, Tr(M q) ≤ Tr(M)q for any positive semi-definite matrix
M and q ≥ 1. The last line owes to the fact that

Tr(σb) = (−1)bTr
(
ρ0 − ρ1

2

)
+ 1

2Tr(|ρ0 − ρ1|) = 1
2Tr(|ρ0 − ρ1|) for b ∈ {0, 1}.

Lastly, since σ0 and σ1 are orthogonal to each other, we complete the proof by plug-
ging the equality Tr(σq0 + σq1) = Tr((σ0 + σ1)q) = Tr(|ρ0 − ρ1|q) into the first line in
Equation (4.20).

4.3.3 Bounds for the Tsallis binary entropy

In this subsection, we establish lower and upper bounds (Lemma 4.14 and Lemma 4.15,
respectively) for the Tsallis binary entropy, which are useful when applying the lower
bound on QJTq in terms of the trace distance (Lemma 4.12).

We begin by proving an lower bound, which extends the bound
H(1/2) · 4x(1− x) ≤ H(x)

from the case of q = 1, as stated in [Top01, Theorem 1.2], to a broader range of q:

Lemma 4.14 (Tsallis binary entropy lower bound). For any p = (x, 1 − x), let Hq(x)
denote the Tsallis binary entropy with q ∈ [0, 2] ∪ [3,+∞), we have:

Hq(1/2) · 4x(1− x) ≤ Hq(x).

Proof. We need only consider the cases where q ∈ I := [0, 1) ∪ (1, 2] ∪ [3,+∞), as the
case q = 1 directly follows from [Top01, Theorem 1.2]. Our proof strategy is inspired by
the approach used in that theorem. We start by defining functions F (q;x) and G(q;x)
on 0 ≤ x ≤ 1 and q ∈ I:

F (q;x) := Hq(x)
x(1− x) = 1− xq − (1− x)q

(q − 1)x(1− x) and G(q;x) := xq−1 − 1
(q − 1)(x− 1) .

It is evident that F (q; 0) = F (q; 1) =∞ and F (q; 1/2) = 4Hq(1/2). We then assume
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that G(q;x) is convex on x ∈ [0, 1] for any fixed q ∈ I: For any x ∈ [0, 1] and q ∈ (1, 2],
∂2G(q;x)
∂x2 = (q − 2)xq−3

x− 1 − 2xq−2

(x− 1)2 + 2(xq−1 − 1)
(x− 1)3(q − 1) ≥ 0. (4.21)

Since F (q;x) = G(q;x)+G(q; 1−x), Equation (4.21) implies that F (q, x) is convex on
x ∈ [0, 1] for any fixed q ∈ I. By noticing that F (q;x) = F (q; 1−x) for any x ∈ [0, 1], we
can obtain that: for any q ∈ I, F (q;x) is monotonically decreasing on x ∈ (0, 1/2) and
monotonically increasing on x ∈ (1/2, 1). Consequently, we establish the lower bound by
noticing that:

For any x ∈ [0, 1] and q ∈ I, F (q;x) ≥ F (q; 1/2) = 4Hq(1/2).

It remains to prove Equation (4.21). Noting that (x − 1)3 ≤ 0 for any 0 ≤ x ≤ 1,
Equation (4.21) holds if and only if the following holds:

f(q;x) := (q − 2)(x− 1)2xq−3 − 2(x− 1)xq−2 + 2(xq−1 − 1)
q − 1 ≤ 0.

A direct calculation implies that ∂
∂x
f(q;x) = (q−3)(q−2)(x−1)2xq−4 ≥ 0 for any q ∈ I

and x ∈ [0, 1] since I ∪ (2, 3) = ∅. Hence, for any fixed q ∈ I, f(q;x) is monotonically
increasing for any x ∈ (0, 1). Therefore, we complete the proof by concluding that

max
x∈[0,1]

f(q;x) ≤ f(q, 1) = 0.

Next, we will show an upper bound for the range of 1 < q ≤ 2 that is weaker than
the best known upper bound for the case of q = 1 as shown in [Top01, Theorem 1.2]:21

Lemma 4.15 (Tsallis binary entropy upper bound). For any p = (x, 1 − x), let Hq(x)
denote the Tsallis binary entropy with 1 ≤ q ≤ 2, we have:

Hq(x) ≤ Hq(1/2) · (4x(1− x))1/2.

Proof. The case of q = 1 follows directly from [Lin91, Theorem 8], it remains to address
the range 1 < q ≤ 2. We will establish the bound separately for x ∈ Iinner and x ∈ Iouter,
where Iinner ∪ Iouter = [0, 1]. Specifically, these intervals are defined as Iinner := [0, 1/8] ∪
[1/8, 1] and Iouter := [1/2− τ(q), 1/2 + τ(q)], where τ(q) will be specified latter.

The outer interval case. We start with the case of x ∈ Iouter. Since Hq(x) = Hq(1−x)
for any 0 ≤ x ≤ 1, it is sufficient to consider the case of 0 ≤ x ≤ 1/8. Noting that
q − 1 ≥ 0, it suffices to show that: For any 0 ≤ x ≤ 1/8 and 1 < q ≤ 2,

(q − 1)
(

Hq

(1
2

)√
4x(1− x)− Hq(x)

)
=
(
2− 22−q

)√
x(1− x)− (1− xq − (1− x)q)

≥ 0.

(4.22)

21Numerical evidence suggests that Lemma 4.15 can be improved to Hq(x) ≤ Hq

( 1
2
)
·(4x(1−x))

1
2Hq(1/2)

for any 0 ≤ x ≤ 1 and 1 ≤ q ≤ 2, which matches the bound H(q) ≤ H(1/2)(4x(1− x))
1

2Hq(1/2) in [Top01].
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Leveraging the Taylor expansion of 1− (1− x)q at x = 0, we obtain that:

1− (1− x)q =
∞∑
k=1

(−1)k+1

k!

k−1∏
r=0

(q − r)xk :=
∞∑
k=1

αkx
k ≤ qx. (4.23)

Here, notice that 1 < q ≤ 2, the last inequality owes to the fact that α1 = q > 0 and
αk ≤ 0 for all integer k ≥ 2. Plugging Equation (4.23) into Equation (4.22), it remains
to prove that:

F1(q;x) := −xq + qx√
x(1− x)

≤ 2− 22−q.

A direct calculation implies that F1(q; 1/8) = (q − 23−3q)/
√

7 satisfies 2 − 22−q −
F1(q; 1/8) > 0 for 1 < q ≤ 2.22 As a consequence, it is enough to show that F1(q, x) is
monotonically non-decreasing on x ∈ [0, 1/8] for any fixed q ∈ (1, 2], specifically:

∂

∂x
F1(q;x) = 1

2(x(1− x))−3/2 (qx+ (1 + 2q(x− 1)− 2x)xq) ≥ 0. (4.24)

Since 1
2(x(1− x))−3/2 ≥ 0, Equation (4.24) holds if and only if the following holds:

F2(q;x) := (2(1− q)x+ 2q − 1)xq−1 ≤ q.

A straightforward calculation implies that F2(q; 1/8) = 21−3q(7q − 3) satisfies that
q − F2(q; 1/8) > 0 for 1 < q ≤ 2. Consequently, it suffices to show that F2(q;x) is
monotonically non-decreasing on x ∈ [0, 1/8] for any fixed q ∈ (1, 2], particularly:

∂

∂x
F2(q;x) = xq−2(q − 1)(2q(1− x)− 1) ≥ 0. (4.25)

Since xq−2(q − 1) > 0 for any q ∈ (1, 2] and x ∈ [0, 1/8], Equation (4.25) holds if and
only if F3(q;x) := 2q(1 − x) − 1 ≥ 0. It is evident that F3(q;x) ≥ 0 is equivalent to
x ≤ 1− 1/2q < 1/2 for 1 < q ≤ 2. And consequently, we complete the proof of the outer
interval case.

The inner interval case. Next, we move to the case of x ∈ Iinner. Let x = (1 + t)/2,
then it suffices to consider the case of 0 ≤ t ≤ 1 since Hq(x) = Hq(1 − x) for any
0 ≤ x ≤ 1. Noting that 2q/(q − 1) > 0 for 1 < q ≤ 2, it is sufficient to show that: For
any 0 ≤ t ≤ 2τ(q) and 1 < q ≤ 2,

2q
q − 1

(
Hq

(1
2

)√
4x(1− x)− Hq(x)

)
= (1− t)q + (1 + t)q −

(
2q + (2− 2q)

√
1− t2

)
≥ 0.

(4.26)

Utilizing the Taylor expansion of (1− t)q + (1 + t)q at t = 0, we obtain that:

(1− t)q +(1+ t)q =
∞∑
k=0

2
(2k)!

2k−1∏
r=0

(q−r)t2k :=
∞∑
k=0

βkt
2k ≥ β0 +β2

1 = 2+q(q−1)t2. (4.27)

Here, the last inequality is because βk ≥ 0 for all integer k ≥ 0. Substituting Equa-
22It is noteworthy that 2− 22−q − F1(q; 1/2) = 2− 21−q − q < 0 for 1 < q ≤ 2, and consequently, the

outer interval case is not enough to establish our Tsallis binary entropy upper bound for any 0 ≤ x ≤ 1.
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tion (4.27) into Equation (4.26), it remains to show that:
2 + q(q − 1)t2 ≥ 2q + (2− 2q)

√
1− t2. (4.28)

A direct calculation implies that Equation (4.28) holds for the following range of t:

|t| ≤

√
(2q2 − 2q + 2− 2q)(2q − 2)

q(q − 1) = 2τ(q),

where τ(q) :=

√
(q2 − q + 1− 2q−1)(2q−1 − 1)

q(q − 1) .

It is easy to see that limq→1+ τ(q) =
√

ln 2(1− ln 2) ≈ 0.4612 and τ(2) = 1. As-
sume that τ(q) is monotonically non-decreasing for q ∈ (1, 2], we obtain that [1/2 −√

ln 2(1− ln 2), 1/2 +
√

ln 2(1− ln 2)] ⊆ Iinner, and consequently, Iinner ∪ Iouter = [0, 1].

It is left to show that τ(q) is monotonically non-decreasing for q ∈ (1, 2], specifically:
d
dq τ(q) = 2

q3(q−1)3

(
2q−q2+q−2

)
︸ ︷︷ ︸

g1(q)

(
2−2q−2qq2 ln 2 + q

(
21+q+2q ln 2−4

))
︸ ︷︷ ︸

g2(q)

≥ 0. (4.29)

Note that g1(q) = 0 corresponds to an intersection between a quadratic function and
an exponential function, indicating that g1(q) has at most three zeros. It is evident that
g1(1) = g1(2) = g1(3) = 0 and g(3/2) = 2

√
2 − 11/4 ≈ 0.078, and thus g1(q) ≥ 0 for

1 ≤ q ≤ 2. For g2(q), notice that g2(1) = 0. Assuming that g2(q) is monotonically
non-decreasing on 1 ≤ q ≤ 2, we obtain g2(q) ≥ g2(1) = 0 for 1 ≤ q ≤ 2. In particular, it
remains to prove that:

For any q ∈ [1, 2], g3(q) := d
dq g2(q) = 2q(−(ln 2)2q2 + (ln 2)2q + 2)− 4 ≥ 0. (4.30)

Since g3(q)+4 is the product of a quadratic function and an exponential function, g3(q)
has at most two zeros. Therefore, we establish Equation (4.30), and thus Equation (4.29),
by noticing that g3(1) = 0, g3(2) = 4− 8(ln 2)2 > 0, and g3(3) = 12− 48(ln 2)2 < 0.

4.3.4 Useful bounds on Tsallis entropy

In this subsection, we present a useful bound on Tsallis entropy. Lemma 4.16 estab-
lishes inequalities between the Tsallis entropy of a distribution p and the total variation
distance between p and the uniform distribution of the same dimension.

Lemma 4.16 (Tsallis entropy bounds by closeness to uniform distribution). Let p be a
probability distribution over [N ] with N ≥ 2, and let ν be the uniform distribution over
[N ]. Then, for any q > 1 and 0 ≤ TV(p, ν) ≤ 1− 1/N , it holds that:

(1− TV(p, ν)− 1/N) lnq(N) ≤ Hq(p).
Moreover, for any q > 1 and N satisfying 1/q ≤ TV(p, ν) ≤ 1− 1/N , it holds that:

Hq(p) ≤ lnq
(
N(1− TV(p, ν))

)
.

Proof. Let γ := TV(p, ν), and let ∆N be the set of probability distributions of dimension
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N . It is evident that 0 ≤ TV(p, ν) ≤ 1 − 1/N . To establish the lower bound, it suffices
to minimize the Tsallis entropy Hq(p) subject to the constraint TV(p, ν) = γ, which is
equivalent to solve the convex optimization problem in Equation (4.31).23

minimize Hq(p′)

subject to p′ ∈ ∆n,

TV(p′, ν) ≤ γ

(4.31)
pmin(i) =



1
N
, if i ∈ [kmin]

1
N

+ γ, if i = kmin + 1
ε
N
, if i = kmin + 2

0, otherwise

,

where kmin := ⌊N(1− γ)⌋ − 1,
ε := N(1−γ)− ⌊N(1−γ)⌋.

(4.32)

Note that Hq(p) is concave (Lemma 3.8) for any fixed q > 1, and the constraints in
Equation (4.31) form a closed convex set. Since the minimum of a concave function is
attained at some extreme point (e.g., [Roc70, Corollary 32.3.1]) and the Tsallis entropy is
permutation-invariant, we deduce an optimal solution pmin to Equation (4.31), as stated
in Equation (4.32).

Next, we can deduce the lower bound of the Tsallis entropy by evaluating Hq(pmin):

Hq(pmin) = 1
q − 1

(
1− kmin

( 1
N

)q
−
( 1
N

+ γ
)q
−
(
ε

N

)q)

≥ 1
q − 1

(
(⌊N(1− γ)⌋ − 1)

N
+ ε

N
− (⌊N(1− γ)⌋ − 1 + εq)

( 1
N

)q)

≥ 1
q − 1

(
1− γ − 1

N
−
(

1− γ − 1
N

)( 1
N

)q−1
)

=
(

1− γ − 1
N

)
lnq(N).

Here, the second line excludes terms corresponding to pmin(kmin + 1), and the third line
follows from the fact that εq ≤ ε for q ≥ 1 and 0 ≤ ε ≤ 1.

To demonstrate the upper bound, it remains to maximize the Tsallis entropy Hq(p)
subject to the constraint TV(p, ν) = γ, which is equivalent to solve a non-convex opti-
mization problem analogous to Equation (4.31). This task is challenging in general, but
we consider only the regime TV(p, ν) ≥ 1/q.24. Particularly, we focus on the following
optimization problem:

maximize Hq(p′)

subject to p′ ∈ ∆n,

TV(p′, ν) ≥ γ ≥ 1/q
(4.33)

It is not too hard to obtain an optimal solution pmax to Equation (4.33), where ε is
defined as in Equation (4.32), as stated in Proposition 4.16.1. The proof is deferred to
the end of this subsection.

23A similar formulation also appeared in the proof of [KLN19, Lemma 16].
24For the regime 0 ≤ TV(p, ν) ≤ 1/q, the optimal solution to Equation (4.33) depends on the choice

of q.
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Proposition 4.16.1. For the optimization problem presented in Equation (4.33), an
optimal solution is the distribution provided in Equation (4.34), where ε = N(1 − γ) −
⌊N(1− γ)⌋:

pmax(i) =


1
N

+ γ
kmax

, if i ∈ [kmax]
ε

N(N−kmax) , otherwise
,where kmax := ⌊N(1− γ)⌋. (4.34)

Then, we can derive the upper bound of the Tsallis entropy by evaluating Hq(pmax):

Hq(pmax) = 1
q − 1

(
1− kmax

( 1
N

+ γ

kmax

)q
− (N − kmax)

(
ε

N(N − kmax)

)q)

= 1
q − 1

(
1−

(
1− ε

N

)q( 1
(N(1− γ)− ε

)q−1
−
(
ε

N

)q( 1
Nγ + ε

)q−1
)

≤ 1
q − 1

(
1−

( 1
(N(1− γ)

)q−1
)

= lnq
(
N(1− γ)

)
.

Let F (q;N, ε, γ) :=
(
1− ε

N

)q
(N(1 − γ) − ε)1−q +

(
ε
N

)q
(Nγ + ε)1−q, then the third line

holds by assuming that F (q;N, ε, γ) is monotonically non-decreasing on 0 ≤ ε ≤ 1 for
any fixed γ, q, and N satisfying qγ ≥ 1 and N ≥ q/(q − 1).

It remains to prove ∂
∂ε
F (q;N, ε, γ) ≥ 0 the aforementioned range of x, γ, q, and N .

By a direct calculation, we complete the proof by noticing all terms in the following are
non-negative:

∂

∂ε
F (q;N, ε, γ) =

(
1− ϵ

N

)q (N(γq − 1) + ϵ)
(N − ϵ)(N(1− γ)− ϵ)q +

(
ϵ

N

)q (γNq + ϵ)
ϵ(γN + ϵ)q ≥ 0.

Proof of Proposition 4.16.1. We begin by noting that Hq(p) = 1
q−1

(
1−∑i∈[N ] p(i)q

)
is

concave (Lemma 3.8) for any fixed q > 1. Consequently, an optimal solution pmax to
the optimization problem specified in Equation (4.33) has a particular form. Specifi-
cally, pmax is one of probability distributions p(k) for integer k ∈ [⌊N(1− γ)⌋] defined in
Equation (4.35) with a maximum Tsallis entropy:25

Hq(pmax) = max
k∈[⌊N(1−γ)⌋]

Hq

(
p(k)

)
, where p(k)(i) :=


1
N

+ γ
k
, if i ∈ [k]

1
N
− γ

N−k , otherwise
. (4.35)

Plugging Equation (4.35) into Equation (4.33), it suffices to solve the following opti-
mization problem with q > 1:

minimize Fq(N, k, γ) :=
∑
i∈[N ]

p(i)q = k ·
( 1
N

+ γ

k

)q
+ (N−k) ·

( 1
N
− γ

N−k

)q
subject to 1/q ≤ γ ≤ 1− 1/N,

1 ≤ k ≤ ⌊N(1− γ)⌋,
k,N ∈ Z+

(4.36)

To establish that Equation (4.34) is an optimal solution to Equation (4.36), it remains
25It is easy to verify that 1

N −
γ

N−k ≥ 0 holds if and only if k ≤ N(1− γ) holds.
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to show that the objective function Fq(N, k, γ) is monotonically non-increasing in k for
N , γ, and q > 1 satisfying the constraints in Equation (4.36). Equivalently, it requires
to be shown that ∂

∂k
Fq(N, k, γ) ≤ 0 for 1/q ≤ γ ≤ 1 − 1/N and 1 ≤ k ≤ ⌊N(1− γ)⌋,

specifically:
∂

∂k
Fq(N, k, γ)

=
(k − γN(q − 1))

(
γ
k

+ 1
N

)q
k + γN

+

(
1
N
− γ

N−k

)q
(γN(q − 1) +N − k)

γN − (N − k)
≤ 0.

(4.37)

Since it is evident that γ
k

+ 1
N
≥ 0, k + γN ≥ 0, and k ≤ ⌊N(1− γ)⌋ ≤ N(1− γ), we

can deduce Equation (4.37) by combining the following inequalities:
k − γN(q − 1) ≤ N(1− γ)− γN(q − 1) = N(1− qγ) ≤ 0,

1
N
− γ

N − k
≥ 1
N
− γ

N −N(1− γ) = 0,

γN(q − 1) +N − k ≥ N(q − 1) +N −N(1− γ) = Nqγ ≥ N > 0,
γN − (N − k) ≤ N − (N −N(1− γ)) = 0.

Here, the first and the third line hold also due to γ ≥ 1/q. This completes the proof.

4.4 Hardness and lower bounds via QJTq-based reductions

In this section, we will establish reductions from the closeness testing of quantum
states via the trace distance to testing via the quantum q-Tsallis entropy difference.
Our proof crucially depends on the properties of the quantum Jensen-Tsallis divergence
(QJTq) demonstrated in Section 4.3. Using these reductions, we will prove computational
hardness results and query complexity lower bounds for several problems related to the
quantum q-Tsallis entropy difference under various circumstances.

We begin by defining the Quantum q-Tsallis Entropy Difference and the
Quantum q-Tsallis Entropy Approximation, denoted by TsallisQEDq[g(n)] and
TsallisQEAq[t(n), g(n)], respectively. These definitions generalize the counterpart def-
initions in [BASTS10] from the von Neumann entropy (i.e., QJTq with q = 1) to the
quantum q-Tsallis entropy for 1 ≤ q ≤ 2.

Definition 4.17 (Quantum q-Tsallis Entropy Difference, TsallisQEDq). Let Q0 and Q1
be quantum circuits acting on m qubits and having n specified output qubits, where m(n)
is a polynomial in n. Let ρi be the quantum state obtained by running Qi on |0⟩⊗m and
tracing out the non-output qubits. Let g(n) be a positive efficiently computable function.
Decide whether :

• Yes: A pair of quantum circuits (Q0, Q1) such that Sq(ρ0)− Sq(ρ1) ≥ g(n);

• No: A pair of quantum circuits (Q0, Q1) such that Sq(ρ1)− Sq(ρ0) ≥ g(n).

Definition 4.18 (Quantum q-Tsallis Entropy Approximation, TsallisQEAq). Let Q
be a quantum circuit acting on m qubits and having n specified output qubits, where m(n)
is a polynomial in n. Let ρ be the quantum state obtained by running Q on |0⟩⊗m and
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tracing out the non-output qubits. Let g(n) and t(n) be positive efficiently computable
functions. Decide whether :

• Yes: A quantum circuit Q such that Sq(ρ) ≥ t(n) + g(n);

• No: A quantum circuit Q such that Sq(ρ) ≤ t(n)− g(n).

Notably, the quantum q-Tsallis entropy of any pure state is zero. Hence, similar
to Section 3.3, it is reasonable to define constant-rank variants of TsallisQEDq and
TsallisQEAq:

(1) ConstRankTsallisQEDq: the ranks of ρ0 and ρ1 are at most O(1).

(2) ConstRankTsallisQEAq: the rank of ρ is at most O(1).

Next, we present the main theorem in this section:

Theorem 4.19 (Computational hardness of TsallisQEDq and TsallisQEAq). The
promise problems TsallisQEDq and TsallisQEAq capture the computational power
of their respective complexity classes in the corresponding regimes of q:

(1) For any q ∈ [1, 2] and n ≥ 3, the following holds: For any 1/poly(n) ≤ gq(n) ≤
2qHq(1/2)

(
1− 2− qn

2 +1
)
, ConstRankTsallisQEDq[gq(n)] is BQP-hard under Karp

reduction. Consequently, ConstRankTsallisQEAq with g(n) = Θ(1) is BQP-
hard under Turing reduction.

(2) For any q ∈
(
1, 1 + 1

n−1

]
and n ≥ 90, it holds that: For any 1/poly(n) ≤ g(n) ≤

1/400, TsallisQEDq[g(n)] is QSZK-hard under Karp reduction. Consequently,
TsallisQEAq with g(n) = Θ(1) is QSZK-hard under Turing reduction.

(3) For any n ≥ 5, it holds that: For 1/poly(n) ≤ g(n) ≤ 1/150, TsallisQEA1+ 1
n−1

with g(n) is NIQSZK-hard.

In particular, Theorem 4.19(1) is derived from the pure-state reduction (Lemma 4.20),
and the detailed statements are Theorem 4.23 and Theorem 4.24. Moreover, Theo-
rem 4.19(2) is obtained through a mixed-state reduction (Lemma 4.21), and the detailed
statements are Theorem 4.25 and Theorem 4.26. Furthermore, Theorem 4.19(3) follows
from a tailor-made mixed state reduction for QSCMM (Lemma 4.22), and the detailed
statement is Theorem 4.27.

Lastly, using the reductions in Lemma 4.21, we derive lower bounds on the quantum
query and sample complexity for estimating Sq(ρ) where 1 < q ≤ 1+ 1

n−1 , as presented
in Theorem 4.29 and Theorem 4.32. These theorems build on prior works in quantum
query complexity [CFMdW10] and sample complexity [OW21] lower bounds for the trace
distance. In addition, we provide quantum query and sample complexity lower bounds
for estimating Sq(ρ) when q ≥ 1+Ω(1), leveraging the hard instances from [Bel19], as
detailed in Theorem 4.28 and Theorem 4.31.
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4.4.1 Pure-state reduction: PureQSD ≤ ConstRankTsallisQEDq for
1 ≤ q ≤ 2

The reduction in Lemma 4.20 is from the trace distance between two n-qubit pure
states (PureQSD) to the quantum q-Tsallis entropy difference between two new constant-
rank (n+ 1)-qubit states (ConstRankTsallisQEDq), for 1 ≤ q ≤ 2.

Lemma 4.20 (PureQSD ≤ ConstRankTsallisQEDq). Let Q0 and Q1 be quantum
circuits acting on n qubits and having the same number of output qubits. Let |ψi⟩ be
the quantum state obtained by running Qi on |0⟩⊗n. For any b ∈ {0, 1}, there is a
new quantum circuit Q′

b acting on n + 3 qubits, using O(1) queries to controlled-Q0 and
controlled-Q1, as well as O(1) one- and two-qubit gates. The circuit Q′

b prepares a new
quantum state ρ′

b, which has constant rank and acts on n′ := n + 1 qubits, such that for
any efficiently computable functions α(n) and β(n), where β(n) +

√
1− α(n)2 < 1, and

any q ∈ [1, 2], the following holds:
T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥ α(n) ⇒ Sq(ρ′

0)− Sq(ρ′
1) ≥ gq(n′) = gq(n+ 1),

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤ β(n) ⇒ Sq(ρ′
1)− Sq(ρ′

0) ≥ gq(n′) = gq(n+ 1),

where gq(n+ 1) := 2−q · Hq(1/2) ·
(
1− β(n)q −

√
1− α(n)2

)
.

Proof. Our proof strategy is inspired by the proof of Corollary 7.21 and Lemma 7.22. We
begin by considering the following constant-rank quantum states ρ′

0 and ρ′
1, which can be

prepared by the quantum circuits Q′
0 and Q′

1, respectively:

ρ′
0 := (p0|0⟩⟨0|+ p1|1⟩⟨1|)⊗

1
2 (|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|)

ρ′
1 := 1

2 |0⟩⟨0| ⊗ |ψ0⟩⟨ψ0|+
1
2 |1⟩⟨1| ⊗ |ψ1⟩⟨ψ1|.

Here, (p0, p1) is some two-element probability distribution that will be specified later.
Furthermore, for any b ∈ {0, 1}, the quantum circuit Q′

b uses O(1) queries to controlled-
Q0 and controlled-Q1 as well as O(1) one- and two-qubit gates, as presented in Figures 7.1
and 7.2.

Using the pseudo-additivity of Sq (Lemma 3.28), we can obtain that:
Sq(ρ′

0)

= Hq(p0) + Sq
(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
− (q − 1) · Hq(p0) · Sq

(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)

= Hq(p0) + (1− (q − 1)Hq(p0)) · Sq
(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
.

(4.38)

By the joint q-Tsallis entropy theorem (Lemma 3.31), we have:
Sq(ρ′

1) = Hq(1/2) + 2−q(Sq(|ψ0⟩⟨ψ0|) + Sq(|ψ1⟩⟨ψ1|)) = Hq(1/2). (4.39)
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Combining Equation (4.38) and Equation (4.39), we conclude that:
Sq(ρ′

0)− Sq(ρ′
1)

= (1− (q − 1)Hq(p0)) · Sq
(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
+ Hq(p0)− Hq

(1
2

)
= (1− (q − 1)Hq(p0)) ·QJTq(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) + Hq(p0)− Hq

(1
2

)
.

(4.40)

Next, we choose p0 ∈ (0, 1/2) satisfying the following equality:

Hq

(1
2

)
− Hq(p0) = 1− (q − 1)Hq(p0)

2

(
Hq

(1
2

)
− Hq

(1− α
2

)
+ Hq

(1
2

)
· βq

)
. (4.41)

As a consequence, we can derive that:

• For the case where T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥ α, plugging the lower bound on QJTq in
terms of the trace distance (Lemma 4.12) into Equation (4.40) and Equation (4.41),
we obtain

Sq(ρ′
0)− Sq(ρ′

1) ≥ (1− (q − 1)Hq(p0)) ·
(

Hq

(1
2

)
− Hq

(1− α
2

))
+ Hq(p0)− Hq

(1
2

)
= 1− (q − 1)Hq(p0)

2

(
Hq

(1
2

)
· (1− βq)− Hq

(1− α
2

))
:= g̃q.

• For the case where T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤ β, plugging the upper bound on QJTq in
terms of the trace distance (Lemma 4.13) into Equation (4.40) and Equation (4.41),
we obtain

Sq(ρ′
0)− Sq(ρ′

1) ≤ (1− (q − 1)Hq(p0)) · βq · Hq

(1
2

)
+ Hq(p0)− Hq

(1
2

)
= −1− (q − 1)Hq(p0)

2

(
Hq

(1
2

)
· (1− βq)− Hq

(1− α
2

))
= −g̃q.

It is left to show a lower bound on g̃(n). By Hq(x) ≤ Hq(1/2) in Lemma 3.8, we have
1− (q − 1) · Hq(p0)

2 ≥ 1
2 −

q − 1
2 · Hq

(1
2

)
= 2−q. (4.42)

Plugging the Tsallis binary entropy upper bound (Lemma 4.15) and Equation (4.42)
into g̃(n), we complete the proof by concluding the following:

g̃q(n) ≥ 2−q · Hq(1/2) ·
(

1− β(n)q −
√

1− α2(n)
)

:= gq(n+ 1) = gq(n′).

4.4.2 Mixed-state reductions

In this subsection, we present two reductions for mixed states. The first reduction
is from the trace distance between two n-qubit states (QSD), to the quantum q-Tsallis
entropy difference between two new (n+ 1)-qubit states (TsallisQEDq), for 1 ≤ q ≤ 2,
under appropriate assumptions about Sq(ρ0) and Sq(ρ1), as stated in Lemma 4.21. The
second reduction is from the trace distance between an n-qubit quantum state (QSCMM)
and the n-qubit maximally mixed state to the quantum q-Tsallis entropy of the state
(TsallisQEAq) for q = 1 + 1

n−1 , as state in Lemma 4.22.
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QSD ≤ TsallisQEDq for 1 ≤ q ≤ 2

Lemma 4.21 (QSD ≤ TsallisQEDq). Let Q0 and Q1 be quantum circuits acting
on m qubit, defined in Definition 4.17, that prepares the purification of n-qubit mixed
states ρ0 and ρ1, respectively. For any b ∈ {0, 1}, there is a new quantum circuits Q′

b

acting on m+3 qubits, requiring O(1) queries to controlled-Q0 and controlled-Q1, as well
as O(1) one- and two- qubit gates, that prepares a new n′-qubit mixed state ρ′

b, where
n′ := n + 1, such that: For any ρ0 and ρ0 satisfying max{Sq(ρ0), Sq(ρ1)} ≤ γ(n) with
Sq(I/2) ≤ γ(n) ≤ Sq((I/2)⊗n), any ε(n) ∈ (0, 1/2), and any q ∈ [1, 2], there is a g(n) > 0
with appropriate ranges of γ, ε, and n such that

T(ρ0, ρ1) ≥ 1− ε(n) ⇒ Sq(ρ′
0)− Sq(ρ′

1) ≥ gq(n′) = gq(n+ 1),
T(ρ0, ρ1) ≤ ε(n) ⇒ Sq(ρ′

1)− Sq(ρ′
0) ≥ gq(n′) = gq(n+ 1),

where gq(n) := 1
2Hq

(
1
2

)
− γ(n)

(
1
2−

1
2q

)
−
(

1
2 + 1

2q

)(
ε(n)q

2q lnq
(
2n
)
+Hq

(
1
2

)√
ε(n)(2−ε(n))

)
.

Proof. Our proof strategy is somewhat inspired by [BASTS10, Section 5.4]. We start by
considering the following mixed states ρ′

0 and ρ′
1:

ρ′
0 := (ϑ|0⟩⟨0|+ (1− ϑ)|1⟩⟨1|)⊗ ρ+, where 2Hq(ϑ) = Hq

(1
2

)
and ρ+ := ρ0 + ρ1

2 ,

ρ′
1 := 1

2 |0⟩⟨0| ⊗ ρ0 + 1
2 |1⟩⟨1| ⊗ ρ1.

These states ρ′
0 and ρ′

1 can be prepared by the quantum circuits Q′
0 and Q′

1, respec-
tively. For instance, adapting the constructions in Figures 7.1 and 7.2, for any b ∈ {0, 1},
the quantum circuit Q′

b uses O(1) queries to controlled-Q0 and controlled-Q1, as well as
O(1) one- and two-qubit gates.

Utilizing the pseudo-additivity of Sq (Lemma 3.28), we have:
Sq(ρ′

0) = Hq(ϑ) + (1− (q − 1)Hq(ϑ))Sq(ρ+)

= 1
2Hq

(1
2

)
+
(

1− q − 1
2 · Hq

(1
2

))
Sq(ρ+).

(4.43)

Using the joint q-Tsallis entropy theorem (Lemma 3.31), we obtain:

Sq(ρ′
1) = Hq

(1
2

)
+ 1

2q (Sq(ρ0) + Sq(ρ1)). (4.44)

Combining Equation (4.44) and Equation (4.43), we obtain:

Sq(ρ′
0)− Sq(ρ′

1) =
(

1− q − 1
2 · Hq

(1
2

))
Sq(ρ+)− 1

2Hq

(1
2

)
− 1

2q (Sq(ρ0) + Sq(ρ1)) (4.45)

Next, we can consider the following two cases:

• For the case where T(ρ0, ρ1) ≥ 1− ε, using the lower bound on QJTq(Lemma 4.12), it
holds that:

Sq(ρ+)− 1
2(Sq(ρ0) + Sq(ρ1)) = QJTq(ρ0, ρ1) ≥ Hq

(1
2

)
− Hq

(
1− T(ρ0, ρ1)

2

)
. (4.46)

Substituting Equation (4.46) into Equation (4.45), we obtain:

Sq(ρ′
0)− Sq(ρ′

1)
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≥
(
1− q−1

2 ·Hq

(
1
2

))(
1
2(Sq(ρ0) + Sq(ρ1)) + Hq

(
1
2

)
−Hq

(
ε
2
))
− 1

2Hq

(
1
2

)
− 1

2q (Sq(ρ0) + Sq(ρ1))

≥
(

1
2 −

1
2q − q−1

4 Hq

(
1
2

))
(Sq(ρ0) + Sq(ρ1)) +

(
1− q−1

2 Hq

(
1
2

))
Hq

(
1
2

)(
1−

√
ε(2− ε)

)
− 1

2Hq

(
1
2

)
≥
(

1
2 + 1

2q

)
Hq

(
1
2

)(
1−

√
ε(2− ε)

)
− 1

2Hq

(
1
2

)
= 1

2q Hq

(
1
2

)
−
(

1
2 + 1

2q

)
Hq

(
1
2

)√
ε(2− ε) := g̃Y

q (ε).

Here, the third line uses the Tsallis binary entropy upper bound (Lemma 4.15) and
the fact that 1− q−1

2 Hq

(
1
2

)
> 0 for q ∈ [1, 2]. The last line relies on the following facts:

(a) Sq(ρ) ≥ 0 for any state ρ; (b) 2
(

1
2 −

1
2q − q−1

4 Hq

(
1
2

))
= 1

2 −
1
2q ≥ 0 for q ∈ [1, 2];

and (c) 1− q−1
2 Hq

(
1
2

)
= 1

2 + 1
2q ;

• For the case where T(ρ0, ρ1) ≤ ε, utilizing Fannes’ inequality for QJTq (Lemma 3.32),
it holds that:

Sq(ρ+) ≤ |Sq(ρ+)− Sq(ρ0)|
2 + |Sq(ρ+)− Sq(ρ1)|

2 + Sq(ρ0) + Sq(ρ1)
2

≤ T(ρ+, ρb)q · lnq(2n − 1) + Hq(T(ρ+, ρb)) + Sq(ρ0) + Sq(ρ1)
2

≤
(

T(ρ0, ρ1)
2

)q
lnq
(
2n
)

+ Hq

(
T(ρ0, ρ1)

2

)
+ Sq(ρ0) + Sq(ρ1)

2

(4.47)

Here, the first line is due to the triangle inequality, and the last line is because lnq(x)
is monotonically increasing on x > 0 for any fixed q > 1.
Plugging Equation (4.47) into Equation (4.45), we can derive that:

Sq(ρ′
0)− Sq(ρ′

1)

≤
(
1− q−1

2 Hq

(
1
2

))((
ε
2
)q lnq

(
2n
)

+ Hq
(
ε
2
)

+ 1
2(Sq(ρ0) + Sq(ρ1))

)
− 1

2Hq

(
1
2

)
− 1

2q (Sq(ρ0) + Sq(ρ1))

≤
(

1
2−

1
2q− q−1

4 Hq

(
1
2

))
(Sq(ρ0)+Sq(ρ1))+

(
1− q−1

2 Hq

(
1
2

))((
ε
2
)q lnq

(
2n
)
+Hq

(
1
2

)√
ε(2−ε)

)
− 1

2Hq

(
1
2

)
≤
(

1
2 −

1
2q

)
· γ +

(
1
2 + 1

2q

)((
ε
2
)q · lnq(2n)+ Hq

(
1
2

)√
ε(2− ε)

)
− 1

2Hq

(
1
2

)
:= −g̃N

q (ε, n, γ).

Here, the third line uses the Tsallis binary entropy upper bound (Lemma 4.15) and
the fact that 1− q−1

2 Hq

(
1
2

)
> 0 for q ∈ [1, 2]. The last line relies on the following facts:

(a) 1− q−1
2 Hq

(
1
2

)
= 1

2 + 1
2q ; (b) 2

(
1
2 −

1
2q − q−1

4 Hq

(
1
2

))
= 1

2 −
1
2q ≥ 0 for q ∈ [1, 2]; and

(c) Sq(ρ) ≤ γ ≤ Sq((I/2)⊗n) for any n-qubit state ρ.

It is evident that g̃N
q (ε, n, γ) is monotonically decreasing on γ ≥ 0 for any fixed q, ε,

and n. Consequently, it remains to show that g̃Y
q (ε) ≥ g̃N

q (ε, n,Hq(1/2)) ≥ g̃N
q (ε, n, γ) for

Hq(1/2) = Sq(I/2) ≤ γ ≤ Sq((I/2)⊗n). In particular, by noting that (ε/2)q · lnq
(
2n
)
≥ 0

for q ≥ 1 and ε ≥ 0, we obtain:

g̃Y
q (ε)− g̃N

q

(
ε, n,Hq

(1
2

))
= 1

2qHq

(1
2

)
+
(1

2 + 1
2q
)(

ε

2

)q
lnq
(
2n
)
− 1

2Hq

(1
2

)
+
(1

2 −
1
2q
)

Hq

(1
2

)
=
(1

2 + 1
2q
)(

ε

2

)q
lnq
(
2n
)
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≥ 0.

Therefore, we complete the proof by choosing gq(n) = g̃N
q (ε(n), n, γ(n)), specifically:

gq(n) := 1
2Hq

(1
2

)
−γ(n)

(1
2−

1
2q
)
−
(1

2 + 1
2q
)(

ε(n)q
2q lnq

(
2n
)
+Hq

(1
2

)√
ε(n)(2−ε(n))

)
.

QSCMM ≤ TsallisQEAq for q(n) = 1 + 1
n−1

Lemma 4.22 (QSCMM ≤ TsallisQEAq). Let Q be a quantum circuit acting on m
qubit, defined in Definition 4.18, that prepares the purification of n-qubit mixed states
ρ, respectively. For any ρ, any n ≥ 5, and any q(n) = 1 + 1/(n − 1), let t(n) :=
1
4

(
3n− n1+ 1

n − 1
)
, we have:

T
(
ρ, (I/2)⊗n

)
≤ 1/n ⇒ Sq(ρ) > t(n) + 1/150,

T
(
ρ, (I/2)⊗n

)
≥ 1− 1/n ⇒ Sq(ρ) < t(n)− 1/150.

Proof. Let ρ = ∑
i∈[2n] λi|vi⟩⟨vi| be the spectral decomposition of ρ, where {vi}i∈[2n] is

an orthonormal basis and p := (λ1, · · · , λ2n) is a probability distribution of dimension
2n. And let ν be the uniform distribution of dimension 2n. Noting that ρ and (I/2)⊗n

commute, we have T(ρ, (I/2)⊗n) = TV(p, ν) and Sq(ρ) = Hq(p).

Let t(n) := 1
4

(
3n− n1+ 1

n − 1
)
. Next, we can consider the following two cases:

• For the case where T(ρ, (I/2)⊗n) ≤ 1/n, by the lower bound on Hq(p) in Lemma 4.16,
it follows that

Sq(ρ) ≥ ln1+ 1
n−1

(
2n
)
·
(
1− T

(
ρ, (I/2)⊗n

)
− 2−n

)
≥ (n− 1)

(
1− 1

2 ·
(1

2

) 1
n−1
)(

1− 1
n
− 2−n

)
:= τY(n).

By a direct calculation, we obtain:

Sq(ρ)− t(n) ≥ τY(n)− t(n) = g1(n) + g2(n) + g3(n)− 7
4 ,

where g1(n) := 2−n + 1− 2
n

1−n

n
+ 2

n2
1−n (n− 1) + n

4
(
1− 2

1
1−n

)
,

g2(n) := 2
1

1−n − 2−nn, g3(n) := n

4
(
n

1
n − 2

1
1−n

)
.

(4.48)

Through a fairly tedious calculation, we know that g1(n), g2(n), and g3(n) defined in
Equation (4.48) satisfy the properties in Fact 4.22.1, and the proof is deferred to the
end of this subsection.

Fact 4.22.1. Let g1(n), g2(n), and g3(n) be functions defined in Equation (4.48). It
holds that:

(1) For n ≥ 3, g1(n) ≥ 0.

(2) For n ≥ 3, g2(n) and g3(n) are monotonically increasing.
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Combining Equation (4.48) and Fact 4.22.1, we obtain that:

∀n ≥ 5, Sq(ρ)− t(n) ≥ τY(n)− t(n) ≥ g2(n) + g3(n)− 7
4 >

1
150 . (4.49)

• For the case where T(ρ, (I/2)⊗n) ≥ 1−1/n, by noting T(ρ, (I/2)⊗n)q ≥
(
1− 1

n

)(
1 + 1

n−1

)
=

1 and using the upper bound on Hq(p) in Lemma 4.16, it holds that

Sq(ρ) ≤ ln1+ 1
n−1

(
2n
(
1− T

(
ρ, (I/2)⊗n

)))
≤ ln1+ 1

n

(
2n
(
1− T

(
ρ, (I/2)⊗n

)))
≤ n

(
1− 1

2 · n
1/n
)

:= τN(n).

Here, the second line is because lnq(x) < lnq′(x) for q > q′ > 0 and 1
n−1 >

1
n
.

Similarly, a direct calculation implies that:

t(n)− Sq(ρ) ≥ t(n)− τN(n) = g4(n)− 1
4 , where g4(n) := n

(
n

1
n − 1

)
. (4.50)

Next, we will prove that g4(n) is monotonically non-decreasing for n ≥ 2. We proceed
by expressing the first and second derivative of g4(n):

d
dng4(n) = n

1
n

n
(n− log(n) + 1)− 1, and d2

dn2 g4(n) = n
1
n

n3

(
(log(n)− 1)2 − n

)
.

As
√
n > log n, d2

dn2 g4(n) has one zero at n = 1. As d2

dn2 g4(n)
∣∣∣
n=e

= −e < 0, we have that
d

dng4(n) is monotonically decreasing for n ≥ 2, and thus, d
dng4(n) ≥ limn→∞

d
dng4(n) = 0

for n ≥ 2. Hence, we conclude that g4(n) is monotonically non-decreasing for n ≥ 2.
Hence, combining with Equation (4.50), we obtain:

∀n ≥ 3, t(n)− Sq(ρ) ≥ t(n)− τN(n) = g4(n)− 1
4 >

1
13 . (4.51)

Lastly, we finish the proof by comparing Equation (4.49) with Equation (4.51).

Proof of Fact 4.22.1. We begin by defining f1(n) := 2−n + 1−2
n

1−n

n
, f2(n) := 2

n2
1−n (n− 1),

and f3(n) := n
4

(
1− 2

1
1−n

)
such that g1(n) = f1(n) + f2(n) + f3(n). We then prove the

first item separately:

• For f1(n), since 2
n

1−n = 2−(1+ 1
n−1), we know that f1(n) is monotonically decreasing

for n ≥ 2, and thus, f1(n) ≥ limn→∞ f1(n) = 0 for n ≥ 2.

• For f2(n), noting that d
dnf2(n) = 2n2/(1−n)

n−1 (− log(2)n2 + (1 + log(2))n− 1), we obtain

that f2(n) is monotonically decreasing for n ≥ 3 >
1+2 log(2)+

√
1+4 log(2)2

2 log(2) ≈ 2.9544,
and consequently, f2(n) ≥ limn→∞ g2(n) = 0 for n ≥ 3.

• For f3(n), it suffices to show that 21/(1−n) ≤ 1 for n ≥ 3. Since 21/(1−n) is mono-
tonically increasing for n ≥ 3, we prove the first item by noting that 21/(1−n) ≤
limn→∞ 21/(1−n) = 1.

For g2(n), noting that d
dng3(n) = 2

1
1−n log(2)
(n−1)2 + 2−n(n log(2) − 1) and n log(2) ≥ 1 for

n ≥ 2, we obtain that g3(n) is monotonically increasing for n ≥ 2.

73



For g3(n), since 2−1/x is monotonically increasing for x ≥ 1, we have g3(n) ≥ 1
4n(n1/n−

2−1/n). It remains to show that g̃3(n) := 1
4n(n1/n − 2−1/n) are monotonically increasing

for n ≥ 3, namely:
d

dng̃3(n) = 1
4n

(
n1/n − 2−1/n log(2)

)
︸ ︷︷ ︸

f4(n)

+ 1
4n
(
n1/nn− n1/n log(n)− n2−1/n

)
︸ ︷︷ ︸

f5(n)

≥ 0. (4.52)

Noting that d
dnf4(n) = − 1

n2

(
n1/n(log(n)− 1) + 2−1/n log2(2)

)
< 0 for n > e, namely

f4(n) is monotonically decreasing for n ≥ 3, we obtain that f4(n)
4n ≥

1
4n limn→∞ f4(n) =

1
4n > 0. Let f6(n) :=

(
1

2n

)1/n
. Notice that

d
dnf6(n) = 2−1/n

( 1
n

) 1
n

+2 (
− log

( 1
n

)
− 1 + log(2)

)
≥ 0 for n ≥ e/2.

It holds that f6(n) =
(

1
2n

)1/n
≥ f6(2) = 1/2 for n ≥ 2. Consequently, we can derive that:

( 1
n

) 1
n df5(n)

dn =
(log(n)− 1) log(n)−

(
1

2n

) 1
nn log(2)

4n3

≤ 1
4n2

(
(log(n)− 1) log(n)

n
− log(2)

2

)
< 0.

Here, the last inequality follows by assuming f7(n) := log(n)(log(n)−1)
n

< log(2)
2 . A direct

calculation implies that d
dnf7(n) = − 1

n2 ((log(n)− 3) log(n) + 1) = 0 have two zeros at
n = exp(3±

√
5

2 ). Therefore, we establish Equation (4.52) by noticing

f7(n) ≤ max
{
f7

(
3−
√

5
2

)
, f7

(
3 +
√

5
2

)}
<

log(2)
2 .

4.4.3 Computational hardness results

In this subsection, we present the computational hardness results for various settings
of TsallisQEDq and TsallisQEAq by using our reductions established in Section 4.4.1
and Section 4.4.2.

BQP hardness results

Theorem 4.23 (ConstRankTsallisQEDq is BQP-hard for 1 ≤ q ≤ 2). For any
q ∈ [1, 2] and any n ≥ 3, the following holds:

∀gq(n) ∈
[ 1

poly(n) , 2
−qHq

(1
2

)(
1− 2− qn

2 +1
)]
, ConstRankTsallisQEDq [gq(n)] is BQP-hard.

Proof. Using Lemma 3.38, we have that PureQSD
[√

1− 2−2n̂, 2−(n̂+1)/2
]

is BQP-hard for
n̂ ≥ 2. LetQ0 andQ1 be the corresponding BQP-hard instance such that these circuits are
polynomial-size and prepare the pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|, respectively. Leveraging
the reduction from PureQSD to ConstRankTsallisQEDq (Lemma 4.20), there are
two polynomial-size quantum circuits Q′

0 and Q′
1, which prepares the purifications of
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constant-rank states ρ′
0 and ρ′

1, such that: For any 1 ≤ q ≤ 2 and any n = n̂+ 1 ≥ 3,

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥
√

1− 2−2n̂ ⇒ Sq(ρ′
0)− Sq(ρ′

1) ≥ gq(n) = gq(n̂+ 1),
T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤ 2−(n̂+1)/2 ⇒ Sq(ρ′

1)− Sq(ρ′
0) ≤ gq(n) = gq(n̂+ 1).

Hence, we complete the proof by a direct calculation:

gq(n) := 2−q · Hq(1/2) ·
(

1− 2− qn
2 −

√
1− (1− 2−2(n−1))

)
≥ 2−q · Hq(1/2) ·

(
1− 2− qn

2 +1
)
.

Theorem 4.24 (ConstRankTsallisQEAq is BQP-hard under Turing reduction for
1 ≤ q ≤ 2). For any q ∈ [1, 2] and any n ≥ 3, the following holds:

ConstRankTsallisQEAq with g(n) = Θ(1) is BQP-hard under Turing reduction.

Proof. For any 1 ≤ q ≤ 2 and n ≥ 3, since ConstRankTsallisQEDq[ĝq(n)] is BQP-
hard under Karp reduction (Theorem 4.23), where ĝq(n) := 2−qHq(1/2)

(
1− 2−n/2+1

)
,

it suffices to provide an algorithm for ConstRankTsallisQEDq[ĝq(n)] by leverag-
ing ConstRankTsallisQEAq[t(n), g(n)] as subroutines, with appropriately adaptive
choices of t(n) and g(n).

Let Q0 and Q1 be the corresponding BQP-hard instance such that these circuits
are polynomial-size and prepare the constant-rank states ρ0 and ρ1, respectively. Let
TsallisQEAq(Q, t(n), g(n)) be the subroutine for decide whether Sq(ρ) ≥ t(n) + g(n)
or Sq(ρ) ≤ t(n) − g(n). Next, we estimate Sq(ρb) to within additive error ĝq(n)/2 for
b ∈ {0, 1}. This procedure, inspired by [Amb14, Appendix A.2 Part 1], is denoted by
BiSearch, as presented in Algorithm 4.4.1.

Algorithm 4.4.1: Tsallis entropy estimation BiSearch(Q, τ, g) via queries to
TsallisQEAq.

Input : A quantum circuit Q that prepares the purification of ρ, an upper
bound τ on the q-Tsallis entropy Sq(ρ), and a precision parameter g.

Output: Return t such that |t− Sq(ρ)| ≤ g/2.
1. Let δ ← g/2, and set the interval [a, b]← [0, τ ].
2. b− a > ĝ/2 :

2.1 Query TsallisQEAq
(
Q, a+b

2 , δ4

)
to decide whether Sq(ρ) ≥ a+b

2 + δ
4 or

Sq(ρ) ≤ a+b
2 −

δ
4 .

2.2 If Sq(ρ) ≥ a+b
2 + δ

4 :
[a, b]←

[
a+b

2 −
ĝ
4 , b
]
.

Elseif Sq(ρ) ≤ a+b
2 −

δ
4 . :

[a, b]←
[
a, a+b

2 + ĝ
4

]
.

3. Return a+b
2 .

To solve ConstRankTsallisQEDq[ĝq(n)], noting that max{rank(ρ0), rank(ρ1)} ≤
r ≤ O(1), we choose τ(n) = Sq((I/2)⊗r). Then, let t0(n) = BiSearch(Q0, τ(n), ĝq(n))
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and t1(n) = BiSearch(Q1, τ(n), ĝq(n)), we obtain:

Sq(ρ0)−Sq(ρ1)≥ ĝq(n) ⇒ t0(n)−t1(n)≥ Sq(ρ0)−
ĝq(n)

2 −
(

Sq(ρ1)+ ĝq(n)
2

)
≥ 0,

Sq(ρ0)−Sq(ρ1)≤−ĝq(n) ⇒ t0(n)−t1(n)≤ Sq(ρ0)+ ĝq(n)
2 −

(
Sq(ρ1)−

ĝq(n)
2

)
≤ 0.

(4.53)

Note that ĝq(n) = 2−qHq(1/2)(1 − 2−n/2+1) ≥ 2−
√

2
2q+1 Hq(1/2) for n ≥ 3 and τ(n) ≤

S((I/2)r) ≤ O(1). Since each query to TsallisQEAq in BiSearch decreases the size
of the interval [a, b] by almost a half, we can conclude that the number of adaptive
queries to TsallisQEAq in BiSearch(Q0, τ(n), ĝq(n)) and BiSearch(Q1, τ(n), ĝq(n)) is
O(log(1/ĝq(n))) = O(1).

QSZK hardness results

Theorem 4.25 (TsallisQEDq is QSZK-hard for 1 < q ≤ 1+ 1
n−1). For any q ∈

(
1, 1 +

1
n−1

]
and any n ≥ 90, it holds that

∀g(n) ∈ [1/poly(n), 1/400], TsallisQEDq[g(n)] is QSZK-hard.

Proof. Following Lemma 3.37, we have that QSD
[
1− 2−n̂0.49

, 2−n̂0.49
]

is QSZK-hard for
n̂ ≥ 1. Let Q0 and Q1 be the corresponding QSZK-hard instance such that these circuits
are polynomial-size and prepare the purification of ρ0 and ρ1, respectively. Leveraging
the reduction from QSD to TsallisQEDq (Lemma 4.21), there are two polynomial-size
quantum circuits Q′

0 and Q′
1, which prepare the purifications of n-qubit ρ′

0 and ρ′
1 where

n := n̂+ 1, respectively, such that:
T(ρ0, ρ1) ≥ 1− 2−n̂0.49 ⇒ Sq(ρ′

0)− Sq(ρ′
1) ≥ gq(n) = gq(n̂+ 1),

T(ρ0, ρ1) ≤ 2−n̂0.49 ⇒ Sq(ρ′
1)− Sq(ρ′

0) ≤ gq(n) = gq(n̂+ 1).

Since
√

2−n̂0.49(2− 2−n̂0.49) ≤ 2 1−n̂0.49
2 and γ(n) ≤ Sq

(
(I/2)⊗n̂

)
= 1−2n̂(1−q)

q−1 , we have

gq(n̂) ≥ 1
2Hq

(1
2

)
− 1− 2n̂(1−q)

q − 1

(1
2−

1
2q
)

︸ ︷︷ ︸
G1(q;n̂)

−
(1

2 + 1
2q
)2−n̂0.49q

2q lnq
(
2n̂
)

︸ ︷︷ ︸
G2(q;n̂)

−
(1

2 + 1
2q
)

Hq

(1
2

)
2

1−n̂0.49
2︸ ︷︷ ︸

G3(q;n̂)

.

It remains to show that gq(n̂) ≥ G1(q; n̂)−G2(q; n̂)−G3(q; n̂) > 0 for 1 ≤ q ≤ 1+1
n̂

and
large enough n. By leveraging the Taylor expansion of G1(q; n̂), G2(q; n̂), and G3(q; n̂)
at q = 1, we obtain:

gq(n̂) ≥ G1(q; n̂)−G2(q; n̂)−G3(q; n̂)

≥
(

log(2)
2 − 1

4(2n̂+ 1) log2(2)(q − 1)
)
− log(2)

2 · n̂2−n̂0.49 − log(2) · 2
1−n̂0.49

2

:= G(q; n̂)

Noting that ∂
∂q
G(q; n̂) = −1

4(2n̂ + 1) log2(2) < 0 for n̂ ≥ 1, we know that G(q; n̂) is
monotonically decreasing on q > 1 for any fixed n̂ ≥ 1. As a consequence, as 1 ≤ q ≤ 1+ 1

n̂
,
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it is left to show that G
(
1 + 1

n̂
; n̂
)
> 0 for large enough n̂, specifically:

G
(

1+ 1
n̂

; n̂
)

= log(2)
4

(
2− 2 log(2)− 21−n̂0.49

n̂− 4 · 2
1−n̂0.49

2 − log(2)
n̂

)
> 0.

A direct calculation implies that
d

dn̂G
(

1+ 1
n̂

; n̂
)

= log(2)
200

(
49
√

21−n̂0.49n̂1.49 log(2) + 2−n̂0.49
n̂2
(
49n̂0.49 log(2)− 100

)
+ 50 log(2)

)
.

Since it is evident that 49n̂0.49 log(2)−100 > 0, we can deduce that d
dn̂G

(
1+ 1

n̂
; n̂
)
> 0.

As 49n̂0.49 log(2)−100 > 0 holds when n̂ ≥ 10, we obtain thatG
(
1+ 1

n̂
; n̂
)

is monotonically
increasing for n̂ ≥ 10. Therefore, we complete the proof by noticing n̂ = n − 1 and the
following: For any q ∈

(
1, 1 + 1

n̂

]
and n̂ ≥ 89,

gq(n̂) ≥ G(q; n̂) ≥ G
(

1+ 1
n̂

; n̂
)
≥ G

(
1+ 1

89; 89
)
>

1
400 .

Theorem 4.26 (TsallisQEAq is QSZK-hard under Turing reduction for 1 < q ≤ 1+ 1
n−1).

For any q ∈
(
1, 1 + 1

n−1

]
and any n ≥ 90, the following holds:

TsallisQEAq with g(n) = Θ(1) is QSZK-hard under Turing reduction.

Proof. This proof is very similar to the proof of Theorem 4.24. For any 1 < q ≤
1 + 1

n−1 and n ≥ 90, since TsallisQEDq[ĝq(n)] is QSZK-hard under Karp reduc-
tion (Theorem 4.25), where ĝq(n) = 1/400, it is sufficient to provide an algorithm for
TsallisQEDq[ĝq(n)] by using TsallisQEAq[t(n), g(n)] as subroutines, with appropri-
ately adaptive choices of t(n) and g(n).

Let Q0 and Q1 be the corresponding QSZK-hard instance such that these circuits are of
size poly(n) and prepare the states ρ0 and ρ1, respectively. Let TsallisQEAq(Q, t(n), g(n))
be the subroutine for decide whether Sq(ρ) ≥ t(n) + g(n) or Sq(ρ) ≤ t(n) − g(n). Next,
we estimate Sq(ρb) to within additive error ĝq(n)/2 for b ∈ {0, 1} via the procedure
BiSearch, as specified in Algorithm 4.4.1. To solve TsallisQEDq[ĝq(n)], noting that
max{rank(ρ0), rank(ρ1)} ≤ 2n, we choose τ(n) = Sq((I/2)⊗n). Subsequently, let t0(n) =
BiSearch(Q0, τ(n), ĝq(n)) and t1(n) = BiSearch(Q1, τ(n), ĝq(n)), we obtain the same
inequalities in Equation (4.53).

Note that ĝq(n) = 1/400 for n ≥ 90 and τ(n) ≤ S((I/2)n) < 1/(q − 1) ≤ O(1).
Since each query to TsallisQEAq in BiSearch decreases the size of the interval [a, b]
by almost a half, we complete the proof by concluding that the number of adaptive
queries to TsallisQEAq in BiSearch(Q0, τ(n), ĝq(n)) and BiSearch(Q1, τ(n), ĝq(n)) is
O(log(1/gq(n))) = O(1).

NIQSZK hardness result

Theorem 4.27 (TsallisQEAq is NIQSZK-hard for q = 1+ 1
n−1). For any n ≥ 5, the

following holds:
∀g(n) ∈ [1/poly(n), 1/150], TsallisQEA1+ 1

n−1
with g(n) is NIQSZK-hard.
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Proof. Utilizing Lemma 3.39, we know that QSCMM[1/n, 1 − 1/n] is NIQSZK-hard
for n ≥ 3. Following the reduction from QSCMM to TsallisQEA1+ 1

n−1
for n ≥ 5

(Lemma 4.22), and the specific choice of t(n) in the reduction, we can conclude that
g(n) ≥ 1/150.

4.4.4 Quantum query complexity lower bounds

In this subsection, we present two quantum query complexity lower bounds for es-
timating the quantum Tsallis entropy Sq(ρ): When q is constantly larger than 1, the
lower bound is independent of the rank of ρ (Theorem 4.28). However, when q > 1 is
inverse-polynomially close to 1 or even closer, the lower bound depends polynomially on
the rank of ρ (Theorem 4.29).
Theorem 4.28 (Query complexity lower bound for estimating quantum Tsallis entropy
with q constantly above 1). For any q ≥ 1+Ω(1) and sufficiently small ϵ > 0, the quantum
query complexity for estimating the q-Tsallis entropy of a quantum state to within additive
error ϵ, in the purified quantum query access model, is Ω(1/

√
ϵ).

Proof. Consider the task of distinguishing two quantun unitary operators Uϵ and U0
corresponding to two probability distributions pϵ and p0, where px := (1 − x, x), Ux is a
unitary operator satisfying

Ux|0⟩ =
√

1− x|0⟩|φ0⟩+
√
x|1⟩|φ1⟩,

with |φ0⟩ and |φ1⟩ being any orthogonal unit vectors. By the quantum query complexity of
distinguishing probability distributions given in Lemma 3.41, we know that distinguishing
Uϵ and U0 requires quantum query complexity Ω(1/H(pϵ, p0)), where H(·, ·) is the Hellinger
distance between two probability distributions. Direct calculation shows that if ϵ ∈ (0, 1),

H(pϵ, p0) = 1√
2

√(√
1− ϵ− 1

)2
+
(√

ϵ− 0
)2
≤
√
ϵ.

Thus the query complexity of distinguishing U0 and Uϵ is Ω(1/
√
ϵ).

On the other hand, Ux prepares a purification of ρx := (1 − x)|0⟩⟨0| + x|1⟩⟨1|. Then,
for sufficiently small ϵ > 0, we have

|Sq(ρϵ)− Sq(ρ0)| =
1− (1− ϵ)q − ϵq

q − 1 = Ω(ϵ).

Therefore, any quantum query algorithm that can compute the q-Tsallis entropy of a
quantum state to within additive error Θ(ϵ) can be used to distinguish Uϵ and U0, thus
requiring query complexity Ω(1/

√
ϵ).

Theorem 4.29 (Query complexity lower bound for estimating quantum Tsallis entropy
with q > 1 near 1). For any q ∈

(
1, 1+ 1

n−1

]
, there exists a mixed quantum state ρ of

sufficiently large rank r such that the quantum query complexity for estimating Sq(ρ), in
the purified quantum query access model, is Ω(r0.17−c) for any constant c > 0.
Remark 4.30 (τ -dependence in the lower bounds). The lower bounds on query and sample
complexities in Theorems 4.29 and 4.32 are Ω

(
r

1−τ
3 −c

)
and Ω(r1−τ−c′), respectively, where

τ = 0.49 is chosen to establish the QSZK hardness (Theorem 4.25) and c′ = 3c. Notably,
these bounds can be further improved by selecting a smaller τ that still satisfies all
requirements in the reduction (Lemma 4.21), which is left for future work.
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Proof of Theorem 4.29. By Lemma 3.40 with ϵ = 1/2, there exists an n̂-qubit state ρ̂ of
rank r̂ ≥ 2 and the corresponding “uniform” state ρ̂U of rank r on the same support as
ρ̂ such that the quantum sample complexity to decide whether T

(
ρ̂, ρ̂U

)
is at least 1/2

or exactly 0 is Ω(r̂1/3). We apply the polarization lemma for the trace distance to the
states ρ̂ and ρ̂U, particularly using only the direct product lemma [Wat02, Lemma 8]. Let
ρ := ρ̂⊗r̂k and ρU := ρ̂⊗r̂k

U be the resulting states, where k is a parameter to be determined
later. Then, for any constant k > τ

1−τ with τ = 0.49 and for sufficiently large r̂, the
following holds:

T(ρ̂, ρ̂U) ≥ 1/2 ⇒ T(ρ, ρU) ≥ 1− exp(−r̂k/8) ≥ 1− 2−rτ

,

T(ρ̂, ρ̂U) = 0 ⇒ T(ρ, ρU) ≤ r̂k · 0 = 0 ≤ 2−rτ

.

Hence, the sample complexity of deciding whether T(ρ, ρU) is at least 1 − 2−rτ or at
most 2−rτ is Ω

(
r

1
3(1+k)

)
, where r := r̂ · r̂k = r̂1+k. For any q ∈

(
1, 1 + 1

n−1

]
⊆
(
1, 1 + 1

r−1

]
,

using the reduction from QSD to TsallisQEDq (Lemma 4.21) with parameters from
Theorem 4.25, there are two corresponding states ρ′

0 and ρ′
1 of rank at most 2r such that

the quantum query complexity for deciding whether Sq(ρ′
0) − Sq(ρ′

1) is at least 1/400 or
at most −1/400 is Ω

(
r

1
3(1+k)

)
= Ω

(
r

1−τ
3 −c

)
= Ω(r0.17−c) for any constant c > 0. Thus,

estimating Sq(ρ′
b) for b ∈ {0, 1} to within additive error 1/800 requires at least the same

number of quantum queries.

4.4.5 Quantum sample complexity lower bounds

In this subsection, we present two quantum sample complexity lower bounds for es-
timating the quantum Tsallis entropy Sq(ρ): When q is constantly larger than 1, the
lower bound is independent of the rank of ρ (Theorem 4.31). However, when q > 1 is
inverse-polynomially close to 1, the lower bound depends polynomially on the rank of ρ
(Theorem 4.32).
Theorem 4.31 (Sample complexity lower bound for estimating quantum Tsallis entropy
with q constantly above 1). For any q ≥ 1 + Ω(1) and sufficiently small ϵ > 0, the
quantum sample complexity for estimating the quantum q-Tsallis entropy of a quantum
state to within additive error ϵ is Ω(1/ϵ).

Proof. Consider the hypothesis testing problem where the given quantum state ρ is
promised to be either ρ0 or ρϵ, each with equal probability. Specifically, the states are
defined as

∀x ∈ [0, 1], ρx := (1− x)|0⟩⟨0|+ x|1⟩⟨1|.
For sufficiently small ϵ > 0, we know that |Sq(ρϵ) − Sq(ρ0)| = Ω(ϵ), as shown in the
proof of Theorem 4.28. Now, assume that there is a quantum estimator for Sq(ρ) to
within additive error Θ(ϵ) with sample complexity S. This estimator can then be used to
distinguish these two states ρ0 and ρϵ with success probability psucc ≥ 2/3. On the other
hand, by Theorem 3.12, we have

psucc ≤
1
2 + 1

2T
(
ρ⊗S

0 , ρ⊗S
ϵ

)
.

By applying the Fuchs–van de Graaf inequalities [FvdG99, Theorem 1], we have

T
(
ρ⊗S

0 , ρ⊗S
ϵ

)
≤
√

1− F
(
ρ⊗S

0 , ρ⊗S
ϵ

)2
,
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where F(ρ, σ) = Tr(
√√

σρ
√
σ) is the fidelity of quantum states. A direct calculation

shows that F(ρ0, ρϵ) =
√

1− ϵ, which gives that

psucc ≤
1
2 + 1

2
√

1− (1− ϵ)S.

By combining this with the condition psucc ≥ 2/3, we conclude that S = Ω(1/ϵ).

Theorem 4.32 (Sample complexity lower bound for estimating quantum Tsallis entropy
with q > 1 near 1). For any q ∈

(
1, 1+ 1

n−1

]
, there exists a mixed quantum state ρ of

sufficiently large rank r such that the quantum sample complexity for estimating Sq(ρ) is
Ω(r0.51−c) for any constant c > 0.

Notably, Remark 4.30 on the τ -dependence in the lower bound also applies to Theo-
rem 4.32. Moreover, the proof strategy of Theorem 4.32 is similar to that of Theorem 4.29,
as both rely on the direct product lemma for the trace distance [Wat02, Lemma 8].26

Proof of Theorem 4.32. By Lemma 3.42 with ϵ = 1/2, there exists an n̂-qubit state ρ̂ of
rank r̂ ≥ 2 and the corresponding “uniform” state ρ̂U of rank r on the same support as ρ̂
such that the quantum sample complexity to decide whether T

(
ρ̂, ρ̂U

)
is at least 1/2 or

exactly 0 is Ω(r̂). We apply the direct product lemma [Wat02, Lemma 8] to the states ρ̂
and ρ̂U. Let ρ := ρ̂⊗r̂k and ρU := ρ̂⊗r̂k

U be the resulting states, where k is a parameter to
be determined later. Then, for any constant k > τ

1−τ with τ = 0.49 and for sufficiently
large r̂, the following holds:

T(ρ̂, ρ̂U) ≥ 1/2 ⇒ T(ρ, ρU) ≥ 1− exp(−r̂k/8) ≥ 1− 2−rτ

,

T(ρ̂, ρ̂U) = 0 ⇒ T(ρ, ρU) ≤ r̂k · 0 = 0 ≤ 2−rτ

.

As a consequence, the sample complexity of deciding whether T(ρ, ρU) is at least
1− 2−rτ or at most 2−rτ is Ω(r

1
1+k ), where r := r̂ · r̂k = r̂1+k. For any q ∈

(
1, 1 + 1

n−1

]
⊆(

1, 1 + 1
r−1

]
, utilizing the reduction from QSD to TsallisQEDq (Lemma 4.21) with

parameters from Theorem 4.25, there are two corresponding states ρ′
0 and ρ′

1 of rank at
most 2r such that the quantum sample complexity for deciding whether Sq(ρ′

0)− Sq(ρ′
1)

is at least 1/400 or at most −1/400 is Ω(r
1

1+k ) = Ω(r1−τ−c) = Ω(r0.51−c) for any constant
c > 0. Therefore, estimating Sq(ρ′

b) for b ∈ {0, 1} to within additive error 1/800 requires
at least the same number of copies of ρ.

26This inequalities can also be derived using the polarization lemma for the measured quantum trian-
gular discrimination, specifically combining Theorem 3.3 and Lemma 4.11 in [Liu23].
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Chapter 5

Space-efficient quantum singular
value transformation

In this chapter, we establish a space-efficient variant of the quantum singular value
transformation (QSVT) [GSLW19], distinguishing itself from prior works primarily fo-
cused on time-efficient QSVT. As time-efficient QSVT provides a unified framework for
designing time-efficient quantum algorithms [GSLW19, MRTC21], we believe our work
indicates a unified approach to designing space-bounded quantum algorithms, poten-
tially facilitating the discovery of new complete problems for BQL and its one-sided error
variants (see Section 2.1 for a brief survey on space-bounded quantum computation).

5.1 Introduction

The quantum singular value transformation (QSVT) [GSLW19] is a powerful and
efficient framework for manipulating the singular values {σi}i of a linear operator A, using
a corresponding projected unitary encoding U of A = Π̃UΠ for projections Π̃ and Π.1 The
singular value decomposition is A = ∑

i σi|ψ̃i⟩⟨ψi| where |ψ̃i⟩ and |ψi⟩ are left and right
singular vectors, respectively. QSVT has numerous applications in quantum algorithm
design, and is even considered a grand unification of quantum algorithms [MRTC21].

To implement the transformation f (SV)(A) = f (SV)(Π̃UΠ), we require a degree-d poly-
nomial Pd that satisfies two conditions. Firstly, Pd well-approximates f on the interval
of interest I, with maxx∈I\Iδ

|Pd(x) − f(x)| ≤ ϵ, where Iδ ⊆ I ⊆ [−1, 1] and typically
Iδ := (−δ, δ). Secondly, Pd is bounded with maxx∈[−1,1] |Pd(x)| ≤ 1. The degree of Pd
depends on the precision parameters δ and ϵ, with d = O(δ−1 log ϵ−1), and all coefficients
of Pd can be computed efficiently.

According to [GSLW19], we can utilize alternating phase modulation to implement
P

(SV)
d (Π̃UΠ),2 which requires a sequence of rotation angles Φ ∈ Rd. For instance, con-

sider Pd(x) = Td(x) where Td(x) is the d-th Chebyshev polynomial (of the first kind),
then we know that ϕ1 = (1 − d)π/2 and ϕj = π/2 for all j ∈ {2, 3, · · · , d}. QSVT
techniques, including the pre-processing and quantum circuit implementation, are gener-

1Regardless of QSVT, it is noteworthy that the concept of block-encoding, specifically a unitary dila-
tion U of a contraction A (see Footnote 1), is already used in quantum logspace for powering contraction
matrices [GRZ21].

2This procedure is a generalization of quantum signal processing, see [MRTC21, Section II.A].
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ally time-efficient. Additionally, the quantum circuit implementation of QSVT is already
space-efficient because implementing QSVT with a degree-d bounded polynomial for any
s(n)-qubit projected unitary encoding requires O(s(n)) qubits, where s(n) ≥ Ω(log n).
However, the pre-processing in the QSVT techniques is typically not space-efficient. In-
deed, prior works on the pre-processing for QSVT, specifically angle-finding algorithms
in [Haa19, CDG+20, DMWL21], which have time complexity polynomially dependent on
the degree d, do not consider the space-efficiency. Therefore, the use of previous angle-
finding algorithms may lead to an exponential increase in space complexity. This raises
a fundamental question on making the pre-processing space-efficient as well:

Problem 5.1 (Space-efficient QSVT). Can we implement a degree-d QSVT for any s(n)-
qubit projected unitary encoding with d ≤ 2O(s(n)), using only O(s(n)) space in both the
pre-processing and quantum circuit implementation?

QSVT via averaged Chebyshev truncation. A space-efficient QSVT associated
with Chebyshev polynomials is implicitly shown in [GSLW19], as the angles for any
Chebyshev polynomial Tk(x) are explicitly known. This insight sheds light on Problem 5.1
and suggests an alternative pre-processing approach for QSVT: Instead of finding rotation
angles, it seems sufficient to find projection coefficients of Chebyshev polynomials.

Recently, Metger and Yuen [MY23] realized this approach and constructed bounded
polynomial approximations of the sign and shifted square root functions with exponential
precision in polynomial space by utilizing Chebyshev truncation, which offers a partial
solution to Problem 5.1.3 The key ingredient behind their approach is the degree-d Cheby-
shev truncation P̃d(x) = c0

2 +∑d
k=1 ckTk where Tk is the k-th Chebyshev polynomial (of the

first kind) and ck := 2
π

∫ 1
−1

f(x)Tk(x)√
1−x2 dx. This provides a nearly best uniform approximation

compared to the best degree-d polynomial approximation with error εd(f) for the function
f : [−1, 1]→ R. In particular, P̃d satisfies maxx∈[−1,1] |P̃d(x)− f(x)| ≤ O(log d)εd(f).

Our construction achieves an error bound independent of d via a carefully chosen
average of the Chebyshev truncation, known as the de La Vallée Poussin partial sum,
P̂d′(x) = 1

d

∑d′

l=d P̃d(x) = ĉ0
2 +∑d′

k=1 ĉkTk(x), with a slightly larger degree d′ = 2d− 1. The
degree-d averaged Chebyshev truncation P̂d′ satisfies maxx∈[−1,1] |P̂d′(x)−f(x)| ≤ 4εd(f).

Once we have a space-efficient polynomial approximation for the function f (pre-
processing), we can establish a space-efficient QSVT associated with f for bitstring in-
dexed encodings that additionally require projections Π̃ and Π spanning the corresponding
subset of {|0⟩, |1⟩}⊗s,4 as stated in Theorem 5.2: With the space-efficient QSVT associ-
ated with Chebyshev polynomials Tk(x), it suffices to implement the averaged Chebyshev
truncation polynomial by LCU techniques [BCC+15] and to renormalize the bitstring in-
dexed encoding by robust oblivious amplitude amplification (if necessary and applicable).

A refined analysis indicates that applying an averaged Chebyshev truncation to a
bitstring indexed encoding for any d′ ≤ 2O(s(n)) and ϵ ≥ 2−O(s(n)) requires O(s(n)) qubits

3To clarify, we can see from [MY23] that directly adapting their construction shows that implementing
QSVT for any s(n)-qubit block-encoding with O(s(n))-bit precision requires poly(s(n)) classical and
quantum space for any s(n) ≥ Ω(logn). However, Problem 5.1 (space-efficient QSVT) seeks to reduce
the dependence of s(n) in the space complexity from polynomial to linear.

4To ensure that Π̃UΠ admits a matrix representation, we require the basis of projections Π̃ and Π to
have a well-defined order, leading us to focus exclusively on bitstring indexed encoding. Additionally, for
simplicity, we assume no ancillary qubits are used here, and refer to Definition 5.3 for a formal definition.
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and deterministic O(s(n)) space, provided that an evaluation oracle EvalPd
estimates

coefficients {ĉk}d
′
k=0 of the averaged Chebyshev truncation with O(log(ϵ2/d)) precision.

Nevertheless, our approach causes a quadratic dependence of the degree d in the query
complexity to U .

Theorem 5.2 (Space-efficient QSVT, informal of Theorem 5.4). Let f : R → R be a
continuous function bounded on I ⊆ [−1, 1]. If there exists a degree-d polynomial P ∗

d

that approximates h : [−1, 1]→ R, where h approximates f only on I with additive error
at most ϵ, such that maxx∈[−1,1] |h(x) − P ∗

d (x)| ≤ ϵ, then the degree-d averaged Cheby-
shev truncation yields another degree-d′ polynomial Pd′, with d′ = 2d − 1, satisfying the
following conditions:

maxx∈I |f(x)− Pd′(x)| ≤ O(ϵ) and maxx∈[−1,1] |Pd′(x)| ≤ 1.
Furthermore, we have an algorithm Af that computes any coefficient {ĉk}d

′
k=0 of the av-

eraged Chebyshev truncation polynomial Pd′ space-efficiently. The algorithm is deter-
ministic for continuously bounded f , and bounded-error randomized for piecewise-smooth
f . Additionally, for any s(n)-qubit bitstring indexed encoding U of A = Π̃UΠ with
d′ ≤ 2O(s(n)), we can implement the quantum singular value transformation P

(SV)
d′ (A) us-

ing O(d2∥ĉ∥1) queries5 to U with O(s(n)) qubits. It is noteworthy that ∥ĉ∥1 is bounded
by O(log d) in general, and we can further improve to a constant norm bound for twice
continuously differentiable functions.

Our techniques in Theorem 5.2 offer three advantages over the techniques proposed
by [MY23]. Firstly, our techniques can handle any piecewise-smooth function, such as
the (normalized) logarithmic function ln(1/x), the multiplicative inverse function 1/x,
and the square-root function

√
x;6 whereas the techniques from [MY23] are restricted to

continuously bounded functions whose second derivative of the integrand in {ĉk}d
′
k=1 is

at most poly(d) on the interval I = [−1, 1], such as the sign function and the shifted
square-root function

√
(x+ 1)/2.7 Secondly, our techniques are constant overhead in

terms of the space complexity of the bitstring indexed encoding U , while the techniques
from [MY23] are only poly-logarithmic overhead. Thirdly, our techniques have an error
bound independent of d, unlike the log d factor in [MY23], simplifying parameter trade-
offs for applying the space-efficient QSVT to concrete problems.

In addition, it is noteworthy that applying the space-efficient QSVT with the sign
function will imply a unified approach to error reduction for the classes BQUL, coRQUL,
and RQUL.

Computing the coefficients. We will implement the evaluation oracle EvalPd
to prove

Theorem 5.2. To estimate the coefficients {ĉk}d
′
k=0 in the averaged Chebyshev truncation

for any function f that is bounded on the interval I = [−1, 1], we can use standard
numerical integral techniques,8 given that the integrand’s second derivative in {ĉk}d

′
k=0 is

5The dependence of ∥ĉ∥1 arises from renormalizing the bitstring indexed encoding via amplitude
amplification.

6Our technique can imply a better norm bound ∥ĉ∥ ≤ O(1). See Remark 5.7 for the details.
7The second derivative |f ′′(x)| of the shifted square-root function f(x) :=

√
(x+ 1)/2 is unbounded

at x = −1. However, we can circumvent this point by instead considering gδ(x) =
√

(1− δ)(x+ 1)/2 + δ
with the second derivative |g′′

δ (−1)| = O(δ−3/2), as shown in [MY23, Lemma 2.11].
8We remark that using a more efficient numerical integral technique, such as the exponentially con-

vergent trapezoidal rule, may improve the required space complexity for computing coefficients by a
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bounded by poly(d).
However, implementing the evaluation oracle for piecewise-smooth functions f on

an interval I ⊊ [−1, 1] is relatively complicated. We cannot simply apply averaged
Chebyshev truncation to f . Instead, we consider a low-degree Fourier approximation g
resulting from implementing smooth functions to Hamiltonians [vAGGdW20, Appendix
B]. We then make the error vanish outside I by multiplying with a Gaussian error func-
tion, resulting in h which approximates f only on I. Therefore, we can apply averaged
Chebyshev truncation and our algorithm for bounded functions to h through a somewhat
complicated calculation.

Finally, we need to compute the coefficients of the low-degree Fourier approximation
g. Interestingly, this step involves the stochastic matrix powering problem, which lies at
the heart of space-bounded derandomization, e.g.,[SZ99, CDSTS23, PP23]. We utilize
space-efficient random walks on a directed graph to estimate the power of a stochastic
matrix. Consequently, we can only develop a bounded-error randomized algorithm Af
for piecewise-smooth functions.9

5.2 Space-efficient quantum singular value transformations

We begin by defining the projected unitary encoding and its special forms, viz. the
bitstring indexed encoding and the block-encoding.

Definition 5.3 (Projected unitary encoding and its special forms, adapted from [GSLW19]).
Let U be an (α, a, ϵ)-projected unitary encoding of a linear operator A if ∥A−αΠ̃UΠ∥ ≤ ϵ,
where U and orthogonal projections Π̃ and Π act on s + a qubits, and both rank(Π̃) and
rank(Π) are at least 2a (a is viewed as the number of ancillary qubits). Furthermore, we
are interested in two special forms of the projected unitary encoding:

• Bitstring indexed encoding. We say that a projected unitary encoding is a
bitstring indexed encoding if both orthogonal projections Π̃ and Π span on S̃, S ⊆
{|0⟩, |1⟩}⊗(a+s), respectively.10 In particular, for any |s̃i⟩ ∈ S̃ and |sj⟩ ∈ S, we have
a matrix representation AS̃,S(i, j) := ⟨s̃i|U |sj⟩ of A.

• Block encoding. We say that a projected unitary encoding is a block-encoding if
both orthogonal projections are of the form Π = Π̃ = |0⟩⟨0|⊗a ⊗ Is. We use the
shorthand A = (⟨0̄| ⊗ Is)U(|0̄⟩ ⊗ Is) for convenience.

See Section 2.2 for definitions of singular value decomposition and transformation.
With these definitions in place, we present the main (informal) theorem in this section:

Theorem 5.4 (Space-efficient QSVT). Let f : R→ R be a continuous function bounded
on the closed interval of interest I ⊆ [−1, 1]. If there exists a degree-d polynomial P ∗

d that
approximates h : [−1, 1] → R, where h approximates f only on I with additive error at

constant factor.
9The (classical) pre-processing in space-efficient QSVT is not part of the deterministic Turing machine

producing the quantum circuit description in the BQL model (Definition 2.2). Instead, we treat it as a
component of quantum computation, allowing the use of randomized algorithms since BPL ⊆ BQL [FR21].

10Typically, to ensure these orthogonal projections coincide with space-bounded quantum computation,
we additionally require the corresponding subsets S̃ and S admit space-efficient set membership, namely
deciding the membership of these subsets is in deterministic O(s+ a) space.
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most ϵ, such that maxx∈[−1,1] |h(x)− P ∗
d (x)| ≤ ϵ, then degree-d averaged Chebyshev trun-

cation yields another degree-d′ polynomial Pd′, with d′ = 2d − 1, satisfying the following
conditions:

maxx∈I |f(x)− Pd′(x)| ≤ O(ϵ) and maxx∈[−1,1] |Pd′(x)| ≤ 1.
Moreover, there is a space-efficient classical algorithm for computing any entry in the
coefficient vector ĉ of the averaged Chebyshev truncation polynomial Pd′ :

• If f is a continuously bounded function with maxx∈[−1,1] |f ′′(x)| ≤ poly(d),11 then
any entry in the coefficient vector ĉ can be computed in deterministic O(log d) space;

• If f is a piecewise-smooth function, then any entry in the coefficient vector ĉ can
be computed in bounded-error randomized O(log d) space.

Furthermore, for any (1, a, 0)-bitstring indexed encoding U of A = Π̃UΠ, acting on s+ a
qubits where a(n) ≤ s(n), and any Pd′ with d′ ≤ 2O(s(n)), we can implement an (α, a +
log d+O(1), ϵα)-bitstring indexed encoding of the quantum singular value transformation
P

(SV)
d′ (A) that acts on O(s(n)) qubits using O(d2ηα) queries to U , where ϵα is specified

in Theorem 5.12. Here, α = ∥ĉ∥1 with ηα = 1 in general, and particularly α = 1
with ηα = ∥ĉ∥1 if P (SV)

d′ (A) is a partial isometry. It is noteworthy that ∥ĉ∥1 is bounded
by O(log d) in general, and can be improved to a constant bound for twice continuously
differentiable functions.

We remark that we can apply Theorem 5.4 to general forms of the projected unitary
encoding U with orthogonal projections Π and Π̃, as long as such an encoding meets the
conditions: (1) The basis of Π and Π̃ admits a well-defined order; (2) Both controlled-Π
and controlled-Π̃ admit computationally efficient implementation. We note that bitstring
indexed encoding defined in Definition 5.3 trivially meets the first condition, and a suffi-
cient condition for the second condition is that the corresponding subsets S and S̃ have
space-efficient set membership.

Next, we highlight the main technical contributions leading to our space-efficient
quantum singular value transformations (Theorem 5.4). To approximately implement
a space-efficient QSVT f (SV)(A), we require the pre-processing to find a space-efficient
polynomial approximation P (f)

d′ ≈ f on I. These polynomial approximations are detailed
in Section 5.2.1:

• We provide deterministic space-efficient polynomial approximations for continu-
ously bounded functions (Lemma 5.5) using averaged Chebyshev truncation (see
Section 2.3.1), including the sign function (Corollary 5.8).

• We present bounded-error randomized space-efficient polynomial approximations
for piecewise-smooth functions (Theorem 5.9), such as the normalized logarithmic
function (Corollary 5.11). To achieve this, we adapt the time-efficient technique
in [vAGGdW20, Lemma 37] to the space-efficient scenario by leveraging space-
efficient random walks (Lemma 5.10).

11This conclusion also applies to a linear combination of bounded functions, provided that the coeffi-
cients are bounded and can be computed deterministically and space-efficiently.
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With an appropriate polynomial approximation P
(f)
d′ , we can implement the space-

efficient QSVT P
(SV)
f,d′ (A), as established in Section 5.2.2 (specifically Theorem 5.12). Note

that a space-efficient QSVT for Chebyshev polynomials is implicitly shown in [GSLW19]
(Lemma 5.14). We establish Theorem 5.12 by combining this result with the LCU tech-
nique (Lemma 5.15) and the renormalization procedure (Lemma 5.16, if necessary and
applicable).

In addition to these general techniques, we provide explicit space-efficient QSVT ex-
amples in Section 5.3, including those for the sign function (Corollary 5.17) and the
normalized logarithmic function (Corollary 5.18). Notably, the former leads to a simple
proof of space-efficient error reduction for unitary quantum computations (Section 5.4).

5.2.1 Space-efficient bounded polynomial approximations

We provide a systematic approach for constructing space-efficient polynomial approx-
imations of real-valued piecewise-smooth functions, which is a space-efficient counterpart
of Corollary 23 in [GSLW19]. Notably, our algorithm (Lemma 5.5) is deterministic for
continuous functions that are bounded on the interval [−1, 1]. However, for general
piecewise-smooth functions, we only introduce a randomized algorithm (Theorem 5.9).
In addition, please refer to Section 2.3.1 as a brief introduction to Chebyshev polynomial
and (averaged) Chebyshev truncation.

Continuously bounded functions

We propose a space-efficient algorithm for computing the coefficients of a polynomial
approximation with high accuracy for continuously bounded functions. Our approach
leverages the averaged Chebyshev truncation, specifically the de La Vallée Poussin partial
sum, in conjunction with numerical integration, namely the composite trapezium rule.

Lemma 5.5 (Space-efficient polynomial approximations for bounded functions). For
any continuous function f that f is bounded with maxx∈[−1,1] |f(x)| ≤ B for some known
constant B > 0. Let P ∗

f,d be a degree-d polynomial with the same parity as f satisfying
maxx∈[−1,1]|f(x)−P ∗

f,d(x)| ≤ ϵ. By employing the degree-d averaged Chebyshev truncation,
we can obtain a degree-d′ polynomial P (f)

d′ that has the same parity as P ∗
f,d and satisfies

maxx∈[−1,1] |f(x)−P (f)
d′ (x)| ≤ 4ϵ.12 This polynomial P (f)

d′ is defined as a linear combination
of Chebyshev polynomials Tk(cos θ) = cos(kθ) with d′ = 2d−1 and the integrand Fk(θ) :=
cos(kθ)f(cos θ):

P
(f)
d′ = ĉ0

2 +
d′∑
k=1

ĉkTk where ck = 2
π

∫ 0

−π
Fk(θ)dθ and ĉk =

ck, 0 ≤ k ≤ d′

2d−k
d
ck, k > d

. (5.1)

If the integrand Fk(θ) satisfies maxξ∈[−π,0] |F ′′
k (θ)| ≤ O(dγ) for some constant γ, then

any entry of the coefficient vector ĉ = (ĉ0, · · · , ĉd′), up to additive error ϵ for ∥ĉ∥1, can
be computed in deterministic time O(d(γ+1)/2ϵ−1/2t(ℓ)) and space O(log(d(γ+3)/2ϵ−3/2B)),
where ℓ = O(log(d(γ+3)/2ϵ−3/2)) and evaluating F (θ) in ℓ-bit precision is in deterministic
time t(ℓ) and space O(ℓ). Moreover, the coefficient vector ĉ has the following norm bound:

12It is noteworthy that for any even function f , the degree of P (f)
d′ is 2d − 2 rather than 2d − 1.

Nevertheless, for the sake of convenience, we continue to choose d′ = 2d− 1.
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• For any function f satisfying our conditions, it holds that
∥c∥1 ≤ O(B log d);

• If the function f is additionally (at least) twice continuously differentiable,
∥c∥1 ≤ O(B).

Proof. We begin with the polynomial approximation P
(f)
d′ obtained from the degree-d

averaged Chebyshev truncation expressed in Equation (5.1). The degree d′ is 2d− 1 if f
is odd, and 2d−2 if f is even. To bound the truncation error of P (f)

d′ , we require a degree-d
polynomial P ∗

f,d such that maxx∈[−1,1] |f(x) − P ∗
f,d(x)| ≤ ϵ. By utilizing Lemma 2.11, we

obtain the desired error bound maxx∈[−1,1] |f(x)− P (f)
d′ (x)| ≤ 4ϵ.

Computing the coefficients. To compute the coefficients ĉk for 0 ≤ k ≤ d′, it suffices
to compute the Chebyshev coefficients ck for 0 ≤ k ≤ 2d−1. Note that ck = 2

π

∫ 0
−π Fk(θ)dθ

where Fk(θ) := cos(kθ)f(cos θ), we can estimate the numerical integration using the
composite trapezium rule, e.g., [SM03, Section 7.5]. The application of this method
yields the following: ∫ 0

−π
Fk(θ)dθ ≈

π

m

(
Fk(θ0)

2 +
m∑
l=1

Fk(θl) + Fk(θm)
2

)
,

where θl := πl

m
− π for l = 0, 1, · · · ,m.

(5.2)

The upper bound on the numerical errors for computing the coefficient ck is given by:

ε
(f)
d′,k :=

m∑
l=1

∣∣∣∣ ∫ xi

xi−1
Fk(θ)dθ −

π

2m · (Fk(θi−1) + Fk(θi))
∣∣∣∣ ≤ π3

12m2 max
ξ∈[−π,π]

|F ′′
k (ξ)| . (5.3)

To obtain an upper bound on the number of intervals m, we need to ensure that the error
of the numerical integration is within

ε
(f)
d′ =

d∑
k=0

ε
(f)
d′,k +

d′∑
k=d+1

2d− k
d

ε
(f)
d′,k ≤

d′∑
k=0

ε
(f)
d′,k ≤ ϵ.

Plugging the assumption |F ′′
k (x)| ≤ O(dγ) into Equation (5.3), by choosing an ap-

propriate value of m = Θ(ϵ−1/2d(γ+1)/2), we establish that ε
(f)
d′ ≤ O(dγ+1)/m2 ≤ ϵ.

Moreover, to guarantee that the accumulated error is O(ϵ/d) in Equation (5.2), we
need to evaluate the integrand F (θ) with ℓ-bit precision, where ℓ = O(log (dm/ϵ)) =
O(log(ϵ−3/2d(γ+3)/2)). Lastly, the desired ℓ1 norm bound of the coefficient vector ĉ di-
rectly follows from Lemma 2.12.

Analyzing time and space complexity. The presented numerical integration algo-
rithm is deterministic, and therefore, the time complexity for computing the integral is
O(mt(ℓ)), where t(ℓ) is the time complexity for evaluating the integrand Fk(θ) within 2−ℓ

accuracy (i.e., ℓ-bit precision) in O(ℓ) space. The space complexity required for comput-
ing the numerical integration is the number of bits required to index the integral intervals
and represent the resulting coefficients. To be specific, the space complexity is

max
{
O(logm), O(ℓ), log ∥ĉ∥∞

}
≤ O

(
max

{
log

(
ϵ− 3

2d
γ+3

2
)
, logB

})
≤ O

(
log

(
ϵ− 3

2d
γ+3

2 B
))
.
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Here, ∥ĉ∥∞ = max
0≤k≤d′

2
π
|
∫ 0

−π cos(kθ)f(cos θ)dθ| ≤ max
−π≤θ≤0

O(|f(cos θ)|) ≤ O(B), and the
last inequality is due to the fact that

∀A,B > 0, Θ(max{logA, logB}) = Θ(log(AB)).

It is worth noting that evaluating a large family of functions, called holonomic func-
tions, with ℓ-bit precision requires only deterministic O(ℓ) space:
Remark 5.6 (Space-efficient evaluation of holonomic functions). Holonomic functions en-
compass several commonly used functions,13 such as polynomials, rational functions, sine
and cosine functions (but not other trigonometric functions such as tangent or secant),
exponential functions, logarithms (to any base), the Gaussian error function, and the
normalized binomial coefficients. In [CGKZ05, Mez12], these works have demonstrated
that evaluating a holonomic function with ℓ-bit precision is achievable in deterministic
time Õ(ℓ) and space O(ℓ). Prior works achieved the same time complexity, but with a
space complexity of O(ℓ log ℓ).

In addition, we provide an example in Remark 5.7 that achieves only a logarithmically
weaker bound on ∥ĉ∥1 using Lemma 5.5, whereas a constant norm bound can be achieved
by leveraging Theorem 5.9 for piecewise-smooth functions.
Remark 5.7 (On the norm bound of the square-root function’s polynomial approxima-
tion). We consider a function Sqrtδ(x) that coincides with

√
x on the interval [δ, 1].14

Specifically, Sqrtδ(x) is defined as
√
x for x ≥ δ, −

√
−x for x ≤ −δ, and 1/

√
δ for

x ∈ (−δ, δ). Sqrtδ(x) is continuously bounded on [−1, 1] and satisfies |Sqrt′′
δ(x)| ≤ δ−3/2/4

with the maximum at x = ±δ. As Sqrt′′
δ(x) is not continuous, its polynomial approxima-

tion via Lemma 5.5 achieves only ∥c∥1 ≤ O(log d).

We now present an example of bounded functions, specifically the sign function.

Corollary 5.8 (Space-efficient approximation to the sign function). For any δ > 0 and
ϵ > 0, there is an explicit odd polynomial P sgn

d′ (x) = ĉ0/2 + ∑d′

k=1 ĉkTk(x) ∈ R[x] of
degree d′ ≤ C̃sgnδ

−1 log ϵ−1, where d′ = 2d − 1 and C̃sgn is a universal constant. Any
entry of the coefficient vector ĉ := (ĉ0, · · · , ĉd′) can be computed in deterministic time
Õ
(
ϵ−1/2d2

)
and space O(log(ϵ−3/2d3)). Furthermore, the polynomial P sgn

d′ satisfies the
following conditions:

∀x ∈ [−1, 1] \ [−δ, δ], |sgn(x)− P sgn
d′ (x)| ≤ Csgnϵ, where Csgn = 5;

∀x ∈ [−1, 1], |P sgn
d′ (x)| ≤ 1.

Additionally, the coefficient vector ĉ has a norm bounded by ∥ĉ∥1 ≤ Ĉsgn, where Ĉsgn is
another universal constant. Without loss of generality, we assume that Ĉsgn and C̃sgn are
at least 1.

Proof. We start from a degree-d polynomial P̃ sgn
d that well-approximates sgn(x):

Proposition 5.8.1 (Polynomial approximation of the sign function, adapted from Lemma
10 and Corollary 4 in [LC17]). For any δ > 0, x ∈ R, ϵ ∈ (0,

√
2eπ). Let κ =

13For a more detailed introduction, please refer to [BZ10, Section 4.9.2].
14Since the second derivative of the square-root function

√
x is unbounded at x = 0, we cannot directly

apply Lemma 5.5 to
√
x.
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2
δ

log1/2
( √

2√
πϵ

)
, Then

gδ,ϵ(x) := erf(κx) satisfies that |gδ,ϵ(x)| ≤ 1 and max
|x|≥δ/2

|gδ,ϵ(x)− sgn(x)| ≤ ϵ.

Moreover, there is an odd polynomial P̃ sgn
d ∈ R[x] of degree d = O(

√
(κ2 + log ϵ−1) log ϵ−1)

such that maxx∈[−1,1]

∣∣∣P̃ sgn
d (x)− erf(κx)

∣∣∣ ≤ ϵ

By applying Proposition 5.8.1, we obtain a degree-d polynomial P̃ sgn
d that well ap-

proximates the function erf(κx) where κ = O(δ−1√log ϵ−1).
To utilize Lemma 5.5, it suffices to upper bound the second derivative maxξ∈[−π,0] |F ′′

k (ξ)|
for any 0 ≤ k ≤ d′, as specified in Fact 5.8.1.
Fact 5.8.1. Let Fk(θ) = erf(κ cos θ) cos(kθ), it holds that:

max
0≤k≤d′

max
ξ∈[−π,0]

|F ′′
k (ξ)| ≤ 2√

π
κ+k2+ 4√

π
κ3+ 4√

π
kκ.

Proof. Through a straightforward calculation, we have derived that

|F ′′
k (θ)| = 2√

π

∣∣∣κ exp(−κ2 cos2 θ) cos θ cos(κθ)
∣∣∣+ ∣∣∣k2 cos(kθ) erf(κ cos(θ))

∣∣∣
+ 4√

π

∣∣∣κ3 exp(−κ2 cos2 θ) cos θ cos(kθ) sin2 θ
∣∣∣

+ 4√
π

∣∣∣kκ exp(−κ2 cos2 θ) sin θ sin(kθ)
∣∣∣

≤ 2√
π
κ+ k2 + 4√

π
κ3 + 4√

π
kκ.

(5.4)

The last line owes to the facts that | erf(x)| ≤ 1, exp(−x2) ≤ 1, | sin x| ≤ 1, and | cosx| ≤ 1
for any x. We finish the proof by noting that Equation (5.4) holds for any 0 ≤ k ≤ d′.

Note that both κ and k are at most O(d). By Fact 5.8.1, we have maxξ∈[−π,0] |F ′′
k (ξ)| ≤

O(d3) for any 0 ≤ k ≤ d′. Utilizing Lemma 5.5, we obtain a polynomial approximation
P sgn
d′ (x) = ĉ0/2 +∑d′

k=1 ĉkTk(x) with a degree of d′ = 2d− 1 ≤ C̃sgnδ
−1 log ϵ−1, where C̃sgn

is a universal constant. This polynomial satisfies maxx∈[−1,1] | erf(κx) − P sgn
d′ (x)| ≤ 4ϵ.

Then we can derive:
max
x∈[−1,1]

|sgn(x)− P sgn
d′ (x)| ≤ ϵ+ max

x∈[−1,1]
| erf(κx)− P sgn

d′ (x)| ≤ Csgnϵ, where Csgn = 5.

Moreover, to bound the norm ∥ĉ∥1, it suffices to consider the function erf(κx) due to
Proposition 5.8.1. We observe that the first and second derivatives of erf(κx), namely
2κe−κ2x2

/
√
π and −4κ3xe−κ2x2

/
√
π, respectively, are continuous, making erf(κx) is twice

continuously differentiable. Hence, according to Lemma 5.5, ∥ĉ∥1 ≤ Ĉsgn for some uni-
versal constant Ĉsgn.15

For the complexity of computing coefficients {ĉk}d
′
k=1, note that the evaluation of the

integrand F (θ) requires ℓ-bit precision, where ℓ = O(log(ϵ−3/2d3)). Following t(ℓ) =
15Let c′

k := ⟨Tk, sgn⟩ be the coefficients corresponding to the sign function. A direct calculation, as
shown in [MY23, Lemma 2.10], yields ∥c′∥1 = O(log d). Our improved norm bound arises from utilizing
smoother functions like erf(κx), instead of relying on the sign function which is discontinuous at x = 0.
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Õ(ℓ) specified in Remark 5.6, any entry of the coefficient vector ĉ can be computed in
deterministic time O(ϵ−1/2d2t(ℓ)) = Õ(ϵ−1/2d2) and space O(log(ϵ−3/2d3)).

Finally, we note that maxx∈[−1,1] |P sgn
d′ (x)| ≤ 1+ϵ due to numerical errors in computing

the coefficients {ĉk}d
′
k=1. We finish the proof by normalizing P̂ sgn

d′ . Particularly, we consider
P sgn
d′ (x) := (1 + ϵ)−1P̂ sgn

d′ and adjust the coefficient vector ĉ of P sgn
d′ accordingly.

Piecewise-smooth functions

We present a randomized algorithm for constructing bounded polynomial approxi-
mations of piecewise-smooth functions, offering a space-efficient alternative to Corollary
23 in [GSLW19], as described in Theorem 5.9. Our algorithm leverages Lemma 5.5 and
Lemma 5.10. Since this subsection mostly focuses on polynomial approximations, we in-
troduce some notation for convenience. For a function f : I → R and an interval I ′ ⊆ I,
we define ∥f∥I′ := sup{|f(x)| : x ∈ I ′} to denote the supremum of the function f on the
interval I ′.

Theorem 5.9 (Taylor series based space-efficient bounded polynomial approximations).
Consider a real-valued function f : [−x0 − r − δ, x0 + r + δ] → R such that f(x0 + x) =∑∞
l=0 alx

l for all x ∈ [−r − δ, r + δ], where x0 ∈ [−1, 1], r ∈ (0, 2], δ ∈ (0, r]. Assume
that ∑∞

l=0(r + δ)l|al| ≤ B where B > 0. Let ϵ ∈ (0, 1
2B ] such that B > ϵ, then there is a

polynomial Pd′ ∈ R[x] of degree d′ = 2d − 1 ≤ O(δ−1 log(ϵ−1B)), corresponding to some
degree-d averaged Chebyshev truncation, such that any entry of the coefficient vector ĉ can
be computed in bounded-error randomized time Õ(max{(δ′)−5ϵ−2B2, d2ϵ−1/2}) and space
O(log(d3(δ′)−4ϵ−3/2B)) where δ′ := δ

2(r+δ) , such that

∥f(x)− P (x)∥[x0−r,x0+r] ≤ O(ϵ),
∥P (x)∥[−1,1] ≤ O(ϵ) + ∥f(x)∥[x0−r−δ/2,x0+r+δ/2] ≤ O(ϵ) +B,

∥P (x)∥[−1,1]\[x0−r−δ/2,x0+r+δ/2] ≤ O(ϵ).
Furthermore, the coefficient vector ĉ of Pd′ has a norm bounded by ∥ĉ∥1 ≤ O(B).

The main ingredient, and the primary challenge, for demonstrating Theorem 5.9 is
to construct a low-weight approximation using Fourier series, as shown in Lemma 37
of [vAGGdW20], which requires computing the powers of sub-stochastic matrices in
bounded space (Lemma 2.14).

Lemma 5.10 (Space-efficient low-weight approximation by Fourier series). Let 0 < δ, ϵ <
1 and f : R → R be a real-valued function such that |f(x) − ∑K

k=0 akx
k| ≤ ϵ/4 for all

x ∈ Iδ, the interval Iδ := [−1 + δ, 1− δ] and ∥a∥1 ≤ O(max{ϵ−1, δ−1}). Then there is a
coefficient vector c ∈ C2M+1 such that

• For even functions,
∣∣∣f(x)−∑M

m=−M c(even)
m cos(πxm)

∣∣∣ ≤ ϵ for any x ∈ Iδ;

• For odd functions,
∣∣∣f(x)−∑M

m=−M c(odd)
m sin

(
πx
(
m+ 1

2

))∣∣∣ ≤ ϵ for any x ∈ Iδ;

• Otherwise,
∣∣∣∣f(x)−∑M

m=−M

(
c(even)
m cos(πxm) + c(odd)

m sin
(
πx
(
m+ 1

2

)) )∣∣∣∣ ≤ ϵ for any
x ∈ Iδ.

Here M := max (2⌈δ−1 ln(4∥a∥1ϵ
−1)⌉, 0) and ∥c∥1 ≤ ∥a∥1.
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Furthermore, the coefficient vector c can be computed in bounded-error randomized time
Õ(δ−5ϵ−2) and space O(log(δ−4ϵ−1)).

Proof. We begin by noticing that the truncation error of ∑K
k=0 akx

k, as shown in [SM03,
Theorem A.4], is (1 − δ)k+1 ≤ e−δ(k+1) ≤ ϵ, implying that K ≥ Ω(δ−1 ln ϵ−1). Without
loss of generality, we can assume that ∥a∥1 ≥ ϵ/2.16

Construction of polynomial approximations. Our construction involves three ap-
proximations, as described in Lemma 37 of [vAGGdW20]. The first approximation com-
bines the assumed ∑K

k=0 akx
k with arcsin(x)’s Taylor series.

Proposition 5.10.1 (First approximation). Let f̂1(x) :=∑K
k=0 akx

k such that ∥f−f̂1∥Iδ
≤

ϵ/4. Then we know that f̂1(x) = ∑K
k=0 ak

∑∞
l=0 b

(k)
l sinl

(
xπ
2

)
where the coefficients b(k)

l

satisfy that

b
(k+1)
l =

l∑
l′=0

b
(k)
l′ b

(1)
l−l′ where b(1)

l =

0 if l is even,(
l−1
l−1

2

)
2−l+1

l
· 2
π

if l is odd. (5.5)

Furthermore, the coefficients {b(k)
l } satisfies the following: (1) ∥b(k)∥1 = 1 for all k ≥ 1;

(2) b(k) is entry-wise non-negative for all k ≥ 1; (3) b(k)
l = 0 if l and k have different

parities.

Proof. We construct a Fourier series by a linear combination of the power of sines. We first
note that x = 2

π
· arcsin

(
sin

(
xπ
2

))
for all x ∈ [−1, 1], and plug it into f̂1(x) := ∑K

k=0 akx
k,

which deduces that ∥f − f̂1∥Iδ
≤ ϵ/4 by the assumption. Let b(k) be the coefficients

of
(

arcsin y
π/2

)k
= ∑∞

l=0 b
(k)
l yl for all y ∈ [−1, 1], then we result in our first approximation.

Moreover, we observe that π
2 ·b

(1) is exactly the Taylor series of arcsin, whereas we know
that

(
arcsin y
π/2

)k+1
=
(

arcsin y
π/2

)k
·
(∑∞

l=0 b
(1)
l yl

)
for k > 1, which derives Equation (5.5) by

comparing the coefficients. In addition, notice that ∥b(k)∥1 = ∑∞
l=0 b

(k)
l 1l =

(
arcsin 1
π/2

)k
=

1, together with straightforward reasoning follows from Equation (5.5), we deduce the
desired property for {b(k)

l }.

The second approximation truncates the series at l = L, and bounds the truncation
error.
Proposition 5.10.2 (Second approximation). Let f̂2(x) := ∑K

k=0 ak
∑L
l=0 b

(k)
l sinl

(
xπ
2

)
where L := ⌈δ−2 ln(4∥a∥1ϵ

−1)⌉, then we have that ∥f̂1 − f̂2∥Iδ
≤ ϵ/4.

Proof. We truncate the summation over l in f1(x) at l = L, and it suffices to bound the
truncation error. For all k ∈ N and x ∈ [−1 + δ, 1− δ], we obtain the error bound:∣∣∣∣∣∣

∞∑
l=⌊L⌋

b
(k)
l sinl

(
xπ
2

) ∣∣∣∣∣∣≤
∞∑

l=⌊L⌋
b

(k)
l

∣∣∣∣ sinl(xπ2 )
∣∣∣∣≤ ∞∑

l=⌊L⌋
b

(k)
l |1−δ2|l ≤ (1−δ2)L

∞∑
l=⌊L⌋

b
(k)
l ≤ (1−δ2)L.

16This is because if ∥a∥1 < ϵ/2, then ∥f∥Iδ
≤ ∥f(x)−

∑K
k=0 akx

k∥Iδ
+∥
∑K

k=0 akx
k∥Iδ

≤ ϵ/4+∥a∥1 < ϵ,
implying that M = 0 and c = 0.
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Here, the second inequality owing to ∀δ ∈ [0, 1], sin
(
(1− δ)π2

)
≤ 1 − δ2, and the last

inequality is due to∥b(k)∥1 = 1 in Proposition 5.10.1. By appropriately choosing L :=
δ−2 ln(4∥a∥1ϵ

−1), we obtain that

∥f̂1 − f̂2∥Iδ
≤

K∑
k=0

ak(1− δ2)L ≤ ∥a∥1 · exp(−δ2L) ≤ ϵ

4 .

The third approximation approximates the functions sinl(x) in f̂2(x) using a tail bound
of the binomial distribution. Notably, this construction not only quadratically improves
the dependence on δ, but also ensures that the integrand’s second derivative is bounded
when combined with Lemma 5.5.
Proposition 5.10.3 (Third approximation). Let f̂3(x) be polynomial approximations of
f that depends on the parity of f such that ∥f̂2−f̂3∥Iδ

≤ϵ/2 and M=⌊δ−1 ln(4∥a∥1ϵ
−1)⌋,

then we have

f̂
(even)
3 (x) :=

K∑
k=0

ak
L/2∑̂
l=0

(−1)l̂2−2l̂b
(k)
2l̂

l̂+M∑
m′=l̂−M

(−1)m′
(

2l̂
m′

)
cos(πx(m′ − l̂)),

f̂
(odd)
3 (x) :=

K∑
k=0

ak
(L−1)/2∑̂
l=0

(−1)l̂+12−2l̂−1b
(k)
2l̂+1

l̂+1+M∑
m′=l̂+1−M

(−1)m′
(

2l̂+1
m′

)
sin
(
πx
(
m′ − l̂ − 1

2

))
.

Therefore, we have that f̂3(x) := f̂
(even)
3 (x) if f is even, whereas f̂3(x) := f̂

(odd)
3 (x) if f is

odd. In addition, if f is neither even or odd, then f̂3(x) := f̂
(even)
3 (x) + f̂

(odd)
3 (x).

Proof. We upper-bound sinl(x) in f̂2(x) defined in Proposition 5.10.2 using a tail bound
of binomial coefficients. We obtain that sinl(z) =

(
e−iz−eiz

−2i

)l
=
(

i
2

)l∑l
m=0 exp(iz(2m− l))

by a direct calculation, which implies the counterpart for real-valued functions:

sinl(z) =

2−l(−1)(l+1)/2∑l
m′=0(−1)m′

(
l
m′

)
sin(z(2m′ − l)), if l is odd;

2−l(−1)l/2∑l
m′=0(−1)m′

(
l
m′

)
cos(z(2m′ − l)), if l is even.

(5.6)

Recall that the Chernoff bound (e.g., Corollary A.1.7 [AS16]) which corresponds a tail
bound of binomial coefficients, and assume that l ≤ L, we have derived that:

⌊l/2⌋−M∑
m′=0

2−l
(
l

m′

)
=

l∑
m′=⌈l/2⌉+M

2−l
(
l

m′

)
≤ e− 2M2

l ≤ e− 2M2
L ≤

(
ϵ

4∥a∥1

)2
≤ ϵ

4∥a∥1
. (5.7)

Here, we choose M = ⌈δ−1 ln(4∥a∥1ϵ
−1)⌉, and the last inequality is because of the as-

sumption ϵ ≤ 2∥a∥1. As stated in Proposition 5.10.1, b(k)
l = 0 if k and l have different

parities. Consequently, we only need to consider all odd (resp., even) l ≤ L for odd (resp.,
even) functions. If the function f is neither even nor odd, we must consider all l ≤ L.
Plugging Equation 5.7 into Equation 5.6, we can derive that:

If l is odd,
∥∥∥∥ sinl(z)−2−l(−1)(l+1)/2

(l+1)/2+M∑
m′=(l+1)/2−M

(−1)m′( l
m′

)
sin(z(2m′−l))

∥∥∥∥
Iδ

≤ ϵ

2∥a∥1
;

If l is even,
∥∥∥∥ sinl(z)−2−l(−1)l/2

l/2+M∑
m′=l/2−M

(−1)m′( l
m′

)
cos(z(2m′−l))

∥∥∥∥
Iδ

≤ ϵ

2∥a∥1
;

(5.8)

Plugging Equation (5.8) into f̂2(x), and substituting z = xπ/2, this equation leads
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to f̂3(x) as desired. In addition, combining ∑K
k=0 |ak|

∑⌊L⌋
l=0 |b

(k)
l | ≤

∑K
k=0 |ak| = ∥a∥1 with

Equation (5.8), we achieve that ∥f̂2 − f̂3∥Iδ
≤ ϵ/2.

We adopt the third approximation as our construction by rearranging the summations
and introducing a new parameter m. The value of m is defined as m := m′− l̂ if f is even
and m := m′ − l̂ − 1 if f is odd. Moreover, the definition of m depends on the parity of
l = 2l̂ + 1 if f is neither even nor odd.17 By applying this approach, we obtain:

f̂
(even)
3 (x)=

M∑
m=−M

c(even)
m cos(πxm),

where c(even)
m :=(−1)m

K∑
k=0

ak

L/2∑
l̂=0

b
(k)
2l̂

(
2l̂
m+l̂

)
2−2l̂;

f̂
(odd)
3 (x)=

M∑
m=−M

c(odd)
m sin

(
πx
(
m+ 1

2

))
,

where c(odd)
m :=(−1)m

K∑
k=0

ak

(L−1)/2∑
l̂=0

b
(k)
2l̂+1

(
2l̂+1
m+l̂+1

)
2−2l̂−1.

(5.9)

We then notice that the rearrangement of terms in Equation (5.9) can be directly
applied to the definition of f̂3(x) in Proposition 5.10.3. As a consequence, we obtain the
following bound on the accumulative error:

∥f − f̂3∥Iδ
≤ ∥f − f̂1∥Iδ

+ ∥f̂1 − f̂2∥Iδ
+ ∥f̂2 − f̂3∥Iδ

≤ ϵ.

Additionally, we remark that ∥c∥1 ≤ ∥a∥1, since ∥b(k)∥1 = 1 (see Proposition 5.10.1)
and ∑l

m=0

(
l
m

)
= 2l.

Analyzing time and space complexity. To evaluate the bounded polynomial ap-
proximation f̂3(x) with ϵ accuracy, it is necessary to approximate the summand with
ℓ-bit precision, where ℓ = O(log(KLMϵ−1)) = O(log(δ−4ϵ−1)). Since the summand is a
product of a constant number of holonomic functions, approximating b(k)

l with ℓ-bit pre-
cision is sufficient. Other quantities in the summand can be evaluated with the desired
accuracy in deterministic time Õ(ℓ) and space O(ℓ) as stated in Remark 5.6.

We now present a bounded-error randomized algorithm for estimating b(k)
l . As b(1) is

entry-wise non-negative and ∑l
i=1 b

(1)
i < ∥b(1)∥1 = 1 following Proposition 5.10.1, we can

express the recursive formula in Equation (5.5) as the matrix powering of a sub-stochastic
matrix B1:

Bk
1 :=



b
(1)
1 b

(1)
2 · · · b

(1)
l−1 b

(1)
l

0 b
(1)
1 · · · b

(1)
l−2 b

(1)
l−1

... ... . . . ... ...
0 0 · · · b

(1)
1 b

(1)
2

0 0 · · · 0 b
(1)
1



k

=



b
(k)
1 b

(k)
2 · · · b

(k)
l−1 b

(k)
l

0 b
(k)
1 · · · b

(k)
l−2 b

(k)
l−1

... ... . . . ... ...
0 0 · · · b

(k)
1 b

(k)
2

0 0 · · · 0 b
(k)
1


:= Bk.

In addition, we approximate the sub-stochastic matrix B1 by dyadic rationals with
ℓ-bit precision, denoted as B̂1. Utilizing Lemma 2.14, we can compute any entry B̂k

1 [s, t]
17The summand in f̂3(x) is c(even)

m cos(πxm) + c
(odd)
m sin

(
πx
(
m+ 1

2
))

if f is neither even nor odd.
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with a randomized algorithm that runs in O(ℓk) time and log(l + 1) space with accep-
tance probability B̂k

1 [s, t]. To evaluate B̂k
1 [s, t] with an additive error of ϵ, we use the

sequential repetitions outlined in Lemma 2.13. Specifically, we repeat the algorithm
m = 2ϵ−2 ln(KLM) = O(ϵ−2 log(δ−4)) times, and each turn succeeds with probability at
least 1− 1/(3KLM). Note that the number of the evaluation of b(k)

l for computing f̂3(x)
is O(KLM), and by the union bound, we can conclude that the success probability of
evaluating all coefficients in c is at least 2/3.

Finally, we complete the proof by analyzing the overall computational complexity. It is
evident that our algorithm utilizes O(ℓ+logm) = O(log(δ−4ϵ−3)) space because indexing
m repetitions requires additional O(logm) bits. Moreover, since there are O(KLM)
summands in f̂3(x), and evaluating b(k)

l takes m repetitions with time complexity O(ℓK)
for a single turn, the overall time complexity is

O(KLM · ℓK · ϵ−2 log(KLM)) = Õ(δ−5ϵ−2).

Now we present the proof of Theorem 5.9, a space-efficient and randomized algorithm
for constructing bounded polynomial approximations for piecewise-smooth functions.

Proof of Theorem 5.9. Our approach is based on Theorem 40 in [vAGGdW20] and Corol-
lary 23 in [GSLW19]. Firstly, we obtain a Fourier approximation f̂(x) of the given function
f(x) by truncating it using Lemma 5.10. Next, we ensure that f̂(x) is negligible outside
the interval [−x0− r, x0 + r] by multiplying it with a suitable rectangle function, denoted
as h(x). Finally, we derive a space-efficient polynomial approximation ĥ(x) of h(x) by
applying Lemma 5.5.

Construction of a bounded function. Let us begin by defining a linear transforma-
tion L(x) := x−x0

r+δ that maps [x0− r− δ, x0 + r+ δ] to [−1, 1]. For convenience, we denote
g(y) := f(L−1(y)) and bl := al(r + δ)l, then it is evident that g(y) := ∑∞

l=0 bly
l for any

y ∈ [−1, 1].
To construct a Fourier approximation by Lemma 5.10, we need to bound the trunca-

tion error ε(g)
J . We define δ′ := δ

2(r+δ) and J := ⌈(δ′)−1 log(12Bϵ−1)⌉. This ensures that
the truncation error ε(g)

J :=
∣∣∣g(y) −∑J−1

j=0 bjy
j
∣∣∣ for any y ∈ [−1 + δ′, 1 − δ′] satisfies the

following:

ε
(g)
J =

∣∣∣∣ ∞∑
j=J

bjy
j

∣∣∣∣ ≤ ∞∑
j=J

∣∣∣bj(1− δ′)j
∣∣∣ ≤ (1− δ′)J

∞∑
j=J
|bj| ≤ (1− δ′)JB ≤ e−δ′JB ≤ ϵ

12
:= ϵ′

4 .

Afterward, let b̂ := (b0, b1, · · · , bJ−1), then we know that ∥b̂∥1 ≤ ∥b∥1 ≤ B by the
assumption. Now we utilize Lemma 5.10 and obtain the Fourier approximation ĝ(y):

ĝ(y) :=


∑M
m=−M c(even)

m cos(πym), if f is even∑M
m=−M c(odd)

m sin
(
πy
(
m+ 1

2

))
, if f is odd∑M

m=−M

(
c(even)
m cos(πym) + c(odd)

m sin
(
πy
(
m+ 1

2

)))
, otherwise

. (5.10)

By appropriately choosing M = O
(
(δ′)−1log

(
∥b̂∥1/ϵ

′
))

= O
(
rδ−1log

(
B/ϵ

))
, we obtain

that the vectors of coefficients c(even) and c(odd) satisfy ∥c(even)∥1 ≤ ∥b̂∥1 ≤ ∥b∥1 ≤ B
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and similarly ∥c(odd)∥1 ≤ B. Plugging f(x) = g(L(x)) into Equation (5.10), we conclude
that f̂(x) = ĝ(L(x)) is a Fourier approximation of f with an additive error of ϵ/3 on the
interval [x0 − r − δ/2, x0 + r + δ/2]:

f̂(x) = ĝ
(x−x0
r+δ

)
=



M∑
m=−M

c
(even)
m cos

(
πm

(x−x0
r+δ

))
, if f is even

M∑
m=−M

c
(odd)
m sin

(
π
(
m+ 1

2
)(x−x0

r+δ
))
, if f is odd

M∑
m=−M

c
(even)
m cos

(
πm

(x−x0
r+δ

))
+ c

(odd)
m sin

(
π
(
m+ 1

2
)(x−x0

r+δ
))
, otherwise

.

Making the error negligible outside the interval. Subsequently, we define the
function h(x) = f̂(x)·R(x) such that it becomes negligible outside the interval of interest,
i.e., [x0− r− δ/2, x0 + r+ δ/2]. Here, the approximate rectangle function R(x) is ϵ̃-close
to 1 on the interval [x0 − r, x0 + r], and is ϵ̃-close to 0 on the interval [−1, 1] \ [x0 − r −
2δ̃, x0 +r+2δ̃], where ϵ̃ := ϵ/(3B) and δ̃ := δ/4. Moreover, |R(x)| ≤ 1 for any x ∈ [−1, 1].
Similar to Lemma 29 in [GSLW19], R(x) can be expressed as a linear combination of
Gaussian error functions:

R(x) := 1
2

[
erf

(
κ(x− x0 + r + δ′)

)
− erf

(
κ(x− x0 − r − δ′)

)]
,

where κ := 2
δ′ log

1
2

√
2√
πϵ′

= 8
δ

log
1
2

√
18B√
πϵ
.

Bounded polynomial approximation via averaged Chebyshev truncation. We
here present an algorithmic, space-efficient, randomized polynomial approximation method
using averaged Chebyshev truncation to approximate the function h(x) := f̂(x) · R(x).
As suggested in Proposition 5.9.1, we use an explicit polynomial approximation P ∗

d (x) of
the bounded function h(x) of degree d = O(δ−1 log(Bϵ−1)) that satisfies the conditions
specified in Equation (5.11).
Proposition 5.9.1 (Bounded polynomial approximations based on a local Taylor series,
adapted from [GSLW19, Corollary 23]). Let x0 ∈ [−1, 1], r ∈ (0, 2], δ ∈ (0, r] and let
f : [−x0−r−δ, x0+r+δ]→ R and be such that f(x0+x) :=∑∞

l=0 alx
l for all x ∈ [−r−δ, r+δ].

Suppose B > 0 is such that ∑∞
l=0(r + δ)l|al| ≤ B. Let ϵ ∈

(
0, 1

2B

]
, there is a ϵ/3-precise

Fourier approximation f̃(x) of f(x) on the interval [x0− r+ δ/2, x0 + r+ δ/2], where
f̂(x) :=∑M

m=−MRe
[
c̃me

− iπm
2(r+δ)x0e

iπm
2(r+δ)x

]
and ∥c̃∥1 ≤ B. We have an explicit polynomial

P ∗
d ∈ R[x] of degree d = O(δ−1 log(Bϵ−1)) s.t.

∥f̂(x)R(x)− P ∗
d (x)∥[x0−r,x0+r] ≤ ϵ,

∥P ∗
d (x)∥[−1,1] ≤ ϵ+ ∥f̂(x)R(x)∥[x0−r−δ/2,x0+r+δ/2] ≤ ϵ+B,

∥P ∗
d (x)∥[−1,1]\[x0−r−δ/2,x0+r+δ/2] ≤ ϵ.

(5.11)

To utilize Lemma 5.5, we need to bound the second derivative maxξ∈[−π,0] |F ′′
k (ξ)|,

where the integrand Fk(cos θ) := cos(kθ)h(cos θ) for any 0 ≤ k ≤ d′ with d′ = 2d− 1. We
will calculate this upper bound directly in Fact 5.9.1, and the proof is deferred to the
end of this subsection.
Fact 5.9.1. Consider the integrand Fk(θ)=∑M

m=−M
cm

2

(
H

(+)
k,m−H

(−)
k,m

)
for any function f

which is either even or odd. If f is even, we have that cm = c(even)
m defined in Lemma 5.10,
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with the following holds:

H
(±)
k,m(θ) := cos

(
πm

(cos θ − x0

r + δ

))
· cos(kθ) · erf

(
κ
(

cos θ − x0 ± r ±
δ

4

))
. (5.12)

Likewise, if f is odd, we know that cm = c(odd)
m defined in Lemma 5.10, and

H
(±)
k,m(θ) := sin

(
π
(
m+ 1

2

)(cos θ − x0

r + δ

))
· cos(kθ) · erf

(
κ
(

cos θ − x0 ± r ±
δ

4

))
. (5.13)

Moreover, the integrand is Fk(θ) =∑M
m=−M

(
c

(even)
m

2

(
Ĥ

(+)
k,m−Ĥ

(−)
k,m

)
+ c

(odd)
m

2

(
H̃

(+)
k,m−H̃

(−)
k,m

))
when f is neither even nor odd, where Ĥ(±)

k,m and H̃
(±)
k,m follow from Equation (5.12) and

Equation (5.13), respectively. Regardless of the parity of f , we have that the second
derivative F ′′

k (θ) ≤ O(Bd3).

Together with Fact 5.9.1, we are ready to apply Lemma 5.5 to h(x) = f̂(x)R(x),
resulting in a degree-d′ polynomial Pd′ = ĉ0/2 + ∑d′

k=1 ĉkTk where d′ = 2d − 1 and ĉk is
defined as in Equation (5.1). Since Pd′ is the degree-d averaged Chebyshev truncation of
the function h and satisfies Equation (5.11), we define intervals Iint := [x0− r, x0 + r] and
Iext := [−1, 1] \ [x0 − r − δ/2, x0 + r + δ/2] to obtain:
∥f(x)− Pd′(x)∥Iint ≤ ∥f(x)− h(x)∥Iint + ∥h(x)− Pd′(x)∥Iint ≤ ϵ+ 4ϵ = O(ϵ),
∥Pd′(x)− 0∥Iext ≤ ∥Pd′(x)− h(x)∥Iext + ∥h(x)− 0∥Iext ≤ 4ϵ+ ϵ/3B ≤ O(ϵ).

(5.14)

We can achieve the desired error bound by observing Equation (5.14) implies:
∥Pd′(x)∥[−1,1] ≤ ∥Pd′(x)∥Iext + ∥Pd′(x)∥[−1,1]\Iext ≤ O(ϵ) +B.

Moreover, it is not too hard to see that the first and the second derivatives of the function
h(cos θ) are continuous, implying that h(cos θ) is twice continuously differentiable. By
using Lemma 5.5, we deduce that the norm of the coefficient vector ĉ of the polynomial
Pd′ is bounded by ∥ĉ∥1 ≤ O(B) · (1 +O(ϵ)) = O(B).

Analyzing time and space complexity. The construction of f̂(x) can be imple-
mented in bounded-error randomized time Õ((δ′)−5ϵ−2B2) and space O(log((δ′)−4ϵ−1B)),
given that this construction uses Lemma 5.10 with δ′ = δ

2(r+δ) ∈ (0, 1
2 ] and ϵ′ = ϵ

3B .
Having f̂(x), we can construct a bounded polynomial approximation ĥ(x) determinis-
tically using Lemma 5.5. This construction can be implemented in deterministic time
O(d(γ+1)/2ϵ−1/2t(ℓ)) ≤ Õ(d2ϵ−1/2) and space O(log(d(γ+3)/2ϵ−3/2B)) ≤ O(log(d3ϵ−3/2B))
since the integrand Fk(θ) is a product of a constant number of (compositions of) holonomic
functions (Remark 5.6). Therefore, our construction can be implemented in bounded-
error randomized time Õ(max

{
(δ′)−5ϵ−2B2, d2ϵ−1/2

}
) and space

O(max{log((δ′)−4ϵ−1B), log(d3ϵ−3/2B)}) ≤ O(log(d3(δ′)−4ϵ−3/2B)).

With the aid of Theorem 5.9, we can provide a space-efficient polynomial approxima-
tion to the normalized logarithmic function utilized in Lemma 11 of [GL20].

Corollary 5.11 (Space-efficient polynomial approximation to the normalized logarithmic
function). Let β ∈ (0, 1] and ϵ ∈ (0, 1/2), there is an even polynomial P ln

d′ of degree
d′ = 2d− 1 ≤ C̃lnβ

−1 log ϵ−1, where P ln
d′ corresponds to some degree-d averaged Chebyshev
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truncation and C̃ln is a universal constant, such that
∀x ∈ [β, 1],

∣∣∣P ln
d′ (x)− ln(1/x)

2 ln(2/β)

∣∣∣ ≤ Clnϵ, where Cln is a universal constant,
∀x ∈ [−1, 1],|P ln

d′ (x)| ≤ 1.

Moreover, the coefficient vector cln of P ln
d′ has a norm bounded by ∥cln∥1 ≤ Ĉln, where

Ĉln is another universal constant. In addition, any entry of the coefficient vector cln

can be computed in bounded-error randomized time Õ(max{β−5ϵ−2, d2ϵ−1/2}) and space
O(log(d3β−4ϵ−3/2)). Without loss of generality, we assume that all constants Cln, Ĉln,
and C̃ln are at least 1.

Proof. Consider the function f(x) := ln(1/x)
2 ln(2/β) . We apply Theorem 5.9 to f by choosing

the same parameters as in Lemma 11 of [GL20], specifically ϵ′ = ϵ/2, x0 = 1, r = 1− β,
δ = β/2, and B = 1/2.18 This results in a space-efficient randomized polynomial approx-
imation P̃d′ ∈ R[x] of degree d′ = 2d− 1 = O(δ−1 log(ϵ−1B)) ≤ C̃lnβ

−1 log ϵ−1, where P̃d′

corresponds to some degree-d averaged Chebyshev truncation and C̃ln is a universal con-
stant. By appropriately choosing η ≤ 1/2 such that C ′

lnϵ = η/4 for a universal constant
C ′

ln, this polynomial approximation P̃d′ satisfies the following inequalities:
∥f(x)− P̃d′(x)∥[β,2−β] ≤ C ′

lnϵ = η
4

∥P̃d′(x)∥[−1,1] ≤ B + C ′
lnϵ ≤ 1

2 + C ′
lnϵ = 1

2 + η
4

∥P̃d′(x)∥[−1,β/2] ≤ C ′
lnϵ = η

4 .

(5.15)

Additionally, the coefficient vector c(P̃ ) of P̃d′ satisfies that ∥c(P̃ )∥1 ≤ O(B) ≤ Ĉln where
Ĉln is a universal constant. Notice that δ′ = δ

2(r+δ) = β/2
2(1−β+β/2) = β

4(1−β/2) = Θ(β), our
utilization of Theorem 5.9 yields a bounded-error randomized algorithm that requires
O(log(d3(δ′)−4ϵ−3/2B)) = O(log(d3β−4ϵ−3/2)) space and Õ(max{(δ′)−5ϵ−2B2, d2ϵ−1/2}) =
Õ(max{β−5ϵ−2, d2ϵ−1/2}) time.

Furthermore, note that the real-valued function f(x) only defines when x > 0,
then P̃ (x) is not an even polynomial in general. Instead, we consider P ln

d′ (x) := (1 +
η)−1(P̃d′(x) + P̃d′(−x)) for all x ∈ [−1, 1]. Together with Equation (5.15), we have de-
rived the following:

∥f(x)− P ln
d′ (x)∥[β,1]

≤
∥∥∥f(x)− 1

1+η P̃d′(x)
∥∥∥

[β,1]
+
∥∥∥ 1

1+η P̃d′(−x)
∥∥∥

[β,1]

≤
∥∥∥f(x)− P̃d′(x)

∥∥∥
[β,1]

+
∥∥∥P̃d′(x)− 1

1+η P̃d′(x)
∥∥∥

[β,1]
+
∥∥∥ 1

1+η P̃d′(−x)
∥∥∥

[β,1]

≤ η
4 + η

1+η ·
(

1
2 + η

4

)
+ 1

1+η ·
η
4

= η
4 + η

1+η ·
1+η

4 + 1
1+η ·

η
2

≤ η.

(5.16)

Here, the last line owes to the fact that η > 0. Consequently, Equation (5.16) implies
that ∥f(x) − P ln

d′ (x)∥[β,1] ≤ 4C ′
lnϵ := Clnϵ for another universal constant Cln. Notice P ln

d′

18As indicated in Lemma 11 of [GL20], since the Taylor series of f(x) at x = 1 is 1
2 ln(2/β)

∑∞
l=1

(−1)lxl

l ,

we obtain the equalities B = f
(

β
2 − 1

)
= 1

2 ln(2/β)
∑∞

l=1
(1−β/2)l

l = − 1
2 ln(2/β)

∑∞
l=1

(−1)l−1

l (β/2 − 1)l =
− 1

2 ln(2/β) ln β
2 = 1

2 .
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is an even polynomial with deg(P ln
d′ ) ≤ C̃lnβ

−1 log ϵ−1, Equation (5.15) yields that:
∥P ln

d′ (x)∥[−1,1] = ∥P ln
d′ (x)∥[0,1] ≤ ∥ 1

1+η P̃d′(x)∥[0,1] + ∥ 1
1+η P̃d′(x)∥[−1,0] ≤ 1

1+η ·
1+η

2 + 1
1+η ·

η
2 ≤ 1.

Here, the last inequality is due to η ≤ 1/2.
Following the coefficient vector of P̃d′ obtained by applying Theorem 5.9 to f , we

complete the proof by noting the coefficient vector cln of P ln
d′ satisfies all the desired

properties.

Lastly, we present the proof of Fact 5.9.1.

Proof of Fact 5.9.1. We begin by deriving an upper bound of the second derivative of
the integrand Fk(θ):

|F ′′
k (θ)|≤

M∑
m=−M

cm

2

∣∣∣∣ d2

dθ2H
(+)
k,m(θ)− d2

dθ2H
(−)
k,m(θ)

∣∣∣∣≤ ∥c∥
2 max

−π≤θ≤0

(∣∣∣∣ d2

dθ2H
(+)
k,m(θ)

∣∣∣∣+∣∣∣∣ d2

dθ2H
(−)
k,m(θ)

∣∣∣∣). (5.17)

By a straightforward calculation, we have the second derivatives of H±
k,m(θ) if f is even:

d2

dθ2H
(±)
k,m(θ)=− k2 cos(kθ) cos

(
πm(cos θ−x0)

δ+r

)
erf

(
κ
(

cos θ − x0 ∓ r ∓ δ
4

))
− π2m2

(δ+r)2 sin2(θ) cos(kθ) cos
(
πm(cos θ−x0)

δ+r

)
erf

(
κ
(

cos θ − x0 ∓ r ∓ δ
4

))
+ πm

δ+r cos θ cos(kθ) sin
(
πm(cos θ−x0)

δ+r

)
erf

(
κ
(

cos θ − x0 ∓ r ∓ δ
4

))
− 2πkm

δ+r sin(θ) sin(kθ) sin
(
πm(cos θ−x0)

δ+r

)
erf

(
κ
(

cos θ − x0 ∓ r ∓ δ
4

))
− 2κ√

π
cos θ cos(kθ) cos

(
πm(cos θ−x0)

δ+r

)
e

−κ2
(

cos θ−x0∓r∓ δ
4

)2

− 4
√
πκm
δ+r sin2(θ) cos(kθ) sin

(
πm(cos θ−x0)

δ+r

)
e

−κ2
(

cos θ−x0∓r∓ δ
4

)2

+ 4κk√
π

sin(θ) sin(kθ) cos
(
πm(cos θ−x0)

δ+r

)
e

−κ2
(

cos θ−x0∓r∓ δ
4

)2

− 4κ3
√
π

sin2(θ) cos(kθ) cos
(
πm(cos θ−x0)

δ+r

)(
cos θ − x0 ∓ r ∓

δ

4
)
e

−κ2
(

cos θ−x0∓r∓ δ
4

)2

.

Note that all functions appear in d2

dθ2H
(±)
k,m(θ), viz. sin x, cosx, exp(−x2), and erf(x),

are at most 1, as well as |x0 ± r ± δ/4| ≤ 7/2, then we obtain that∣∣∣ d2

dθ2H
(±)
k,m(θ)

∣∣∣
≤ k2 + 2κ√

π
+ 4κk√

π
+ 18κ3

√
π

+m ·
(

π
δ+r + 2πk

δ+r + 4
√
πκ

δ+r

)
+m2 · π2

(δ+r)2

≤ (d′)2 +O(d) +O(d2) +O(d3) + M
δ+r · (O(1)+O(d)+O(d)) +M2 · O(1)

(δ+r)2

= O(d3).

(5.18)

Here, the second line according to k ≤ d′ = 2d − 1 and κ ≤ O(d), also the last line
is due to facts that M ≤ O(rd) and 1/2 ≤ r/(δ + r) ≤ 1 if 0 < δ ≤ r and 0 < r ≤ 2.
Additionally, a similar argument shows that the upper bound in Equation (5.18) applies
to odd functions and functions that are neither even nor odd as well. This is because a
direct computation yields the second derivatives of H(±)

k,m(θ) when f is odd:

d2

dθ2H
(±)
k,m(θ)=− k2 cos(kx) sin

(π(m+ 1
2
)

(cos(x)−x0)
δ+r

)
erf
(
κ
(

cos(x)− x0 ∓ r ∓ δ
4
))
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− π
(
m+ 1

2
)

δ+r cos(x) cos(kx) cos
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
erf
(
κ
(

cos(x)− x0 ∓ r ∓ δ
4
))

− π2
(
m+ 1

2
)2

(δ+r)2 sin2(x) cos(kx) sin
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
erf
(
κ
(

cos(x)− x0 ∓ r ∓ δ
4
))

+ 2πk
(
m+ 1

2
)

δ+r sin(x) sin(kx) cos
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
erf
(
κ
(

cos(x)− x0 ∓ r ∓ δ
4
))

+ 4
√
πκ
(
m+ 1

2
)

δ+r sin2(x) cos(kx) cos
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4
)2

− 2κ√
π

cos(x) cos(kx) sin
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4
)2

+ 4κk√
π

sin(x) sin(kx) sin
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4
)2

− 4κ3
√
π

sin2(x) cos(kx)
(
cos(x)−x0∓r∓ δ

4
)

sin
(π(m+ 1

2
)

(cos(x)−x0)
δ+r

)
e−κ2

(
cos(x)−x0∓r∓ δ

4
)2

.

Substituting Equation (5.18) into Equation (5.17), and noticing that the coefficient
vector ∥c(even) + c(odd)∥1 ≤ B regardless of the parity of f , we conclude that

|F ′′
k (θ)| ≤ O(Bd3).

5.2.2 Applying averaged Chebyshev truncation to bitstring indexed en-
codings

With space-efficient bounded polynomial approximations of piecewise-smooth func-
tions, it suffices to implement averaged Chebyshev truncation on bitstring indexed en-
codings, as specified in Theorem 5.12. The proof combines Lemma 5.14, Lemma 5.15,
and Lemma 5.16.

Theorem 5.12 (Averaged Chebyshev truncation applied to bitstring indexed encodings).
Let A be an Hermitian matrix acting on s qubits, and let U be a (1, a, ϵ1)-bitstring indexed
encoding of A that acts on s+ a qubits. For any degree-d averaged Chebyshev truncation
Pd′(x) = ĉ0/2 + ∑d′

k=1 ĉkTk(x) where d′ = 2d − 1 ≤ 2O(s(n)) and Tk is the k-th Chebyshev
polynomial (of the first kind), equipped with an evaluation oracle Eval that returns c̃k
with precision ε := O(ϵ2

2/d
′), we have the following bitstring indexed encoding of Pd′(A)

depending on whether Pd′(A) is a partial isometry (up to a normalization factor):19

• Partial isometry Pd′(A): We obtain a (1, a′, 144d′√ϵ1∥ĉ∥2
1 + 36ϵ2∥ĉ∥1)-bitstring

indexed encoding Vnormed of Pd′(A) that acts on s+a′ qubits where a′ := a+⌈log d′⌉+3.

• General Pd′(A): We obtain a (∥ĉ∥1, â, 4d′√ϵ1∥ĉ∥2
1 + ϵ2∥ĉ∥1)-bitstring indexed en-

coding Vunnorm of Pd′(A) that acts on s+ a′ qubits where â := a+ ⌈log d′⌉+ 1.

Let V be the bitstring indexed encoding of Pd′(A). The implementation of V requires
O(d2ηV ) uses of U , U †, CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates.20

The description of the resulting quantum circuit of V can be computed in deterministic
time Õ(d2ηV log(d/ϵ2)), space O(max{s(n), log(d/ϵ2

2)}), and O(d2ηV ) oracle calls to Eval
with precision ε. Here, ηV = ∥ĉ∥1 if V = Vnormed whereas ηV = 1 if V = Vunnorm.

19This condition differs from the one that A is a partial isometry. Specifically, Pd′(A) is a partial
isometry (up to a normalization factor) if A is a partial isometry, whereas sgn(SV)(A) is a partial
isometry for any A.

20As indicated in Figure 3(c) of [GSLW19] (see also Lemma 19 in [GSLW18]), we replace the single-
qubit gates used in Lemma 5.14 with multi-controlled (or “multiply controlled”) single-qubit gates.
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Furthermore, our construction straightforwardly extends to any linear (possibly non-
Hermitian) operator A by simply replacing Pd′(A) with P (SV)

d′ (A) defined in Definition 2.6.
Remark 5.13 (QSVT implementations of averaged Chebyshev truncation preserve the
parity). As shown in Proposition 5.14.1, we can implement the quantum singular value
transformation T (SV)

k (A) exactly for any linear operator A that admits a bitstring indexed
encoding, because the rotation angles corresponding to the k-th Chebyshev polynomials
are either π/2 or (1−k)π/2, indicating that Tk(0) = 0 for any odd k. We then implement
the QSVT corresponding to the averaged Chebyshev truncation polynomial Pd′(x) =∑(d′−1)/2
l=0 ĉ2l+1T2l+1(x), as described in Corollary 5.17, although the actual implementation

results in a slightly different polynomial, P̃d′(x) = ∑(d′−1)/2
l=0 c̃2l+1T2l+1(x). However, we

still have P̃d′(0) = 0 = Pd′(0), indicating that the implementations in Theorem 5.12
preserve the parity.

We first demonstrate an approach, based on Lemma 3.12 in [MY23], that constructs
Chebyshev polynomials of bitstring indexed encodings in a space-efficient manner.
Lemma 5.14 (Chebyshev polynomials applied to bitstring indexed encodings). Let A be
a linear operator acting on s qubits, and let U be a (1, a, ϵ)-bitstring indexed encoding of
A that acts on s + a qubits. Then, for the k-th Chebyshev polynomial (of the first kind)
Tk(x) of degree k ≤ 2O(s), there exists a new (1, a+ 1, 4k

√
ϵ)-bitstring indexed encoding V

of T (SV)
k (A) that acts on s+ a+ 1 qubits. This implementation requires k uses of U , U †,

CΠNOT, CΠ̃NOT, and k single-qubit gates. Moreover, we can compute the description
of the resulting quantum circuit in deterministic time k and space O(s).
Furthermore, consider A′ := Π̃UΠ, where Π̃ and Π are the corresponding orthogonal
projections of the bitstring indexed encoding U . If A and A′ satisfy the conditions ∥A−
A′∥ +

∥∥∥A+A′

2

∥∥∥2
≤ 1 and

∥∥∥A+A′

2

∥∥∥2
≤ ζ, then V is a

(
1, a + 1,

√
2√

1−ζ
kϵ
)
-bitstring indexed

encoding of T (SV)
k (A).

Proof. As specified in Proposition 5.14.1, we can derive the sequence of rotation angles
corresponding to Chebyshev polynomials Tk(x) by directly factorizing them:
Proposition 5.14.1 (Chebyshev polynomials in quantum signal processing, adapted
from Lemma 6 in [GSLW19]). Let Tk ∈ R[x] be the k-th Chebyshev polynomial (of the
first kind). Consider the corresponding sequence of rotation angles Φ ∈ Rk such that
ϕ1 := (1− k)π/2, and ϕj := π/2 for all j ∈ [k] \ {1}, then we know that

k∏
j=1

[( exp(iϕj) 0
0 exp(−iϕj)

)(
x

√
1−x2

√
1−x2 −x

)]
= ( Tk ·

· · ).

Then we implement the quantum singular value transformation T (SV)
k (A), utilizing an

alternating phase modulation (Proposition 5.14.2) with the aforementioned sequence of
rotation angles, denoted by V .
Proposition 5.14.2 (QSVT by alternating phase modulation, adapted from Theorem
10 and Figure 3 in [GSLW19]). Suppose P ∈ C[x] is a polynomial, and let Φ ∈ Rn be the
corresponding sequence of rotation angles. We can construct

P (SV)(Π̃UΠ) =

Π̃UΦΠ, if n is odd
ΠUΦΠ, if n is even
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with a single ancillary qubit. Moreover, this implementation in [GSLW19, Figure 3]
makes k uses of U , U †, CΠNOT, CΠ̃NOT, and single-qubit gates.

Owing to the robustness of QSVT (Lemma 22 in [GSLW18], full version of [GSLW19]),
we have that

∥∥∥T (SV)
k (U) − T

(SV)
k (U ′)

∥∥∥ ≤ 4k
√
∥A− A′∥ = 4k

√
ϵ, where U ′ is a (1, a, 0)-

bitstring indexed encoding of A. Moreover, with a tighter bound for A and A′, namely
∥A− A′∥+

∥∥∥A+A′

2

∥∥∥2
≤ 1, we can deduce that

∥T (SV)
k (U)− T (SV)

k (U ′)∥ ≤ k

√
2√

1− ∥(A+ A′)/2∥2
∥A− A′∥ ≤

√
2√

1− ζ kϵ

following [GSLW18, Lemma 23], indicating an improved dependence of ϵ. Finally, we can
compute the description of the resulting quantum circuits in O(log k) = O(s(n)) space
and O(k) times because of the implementation specified in Proposition 5.14.2.

We then proceed by presenting a linear combination of bitstring indexed encodings,
which adapts the LCU technique proposed by Berry, Childs, Cleve, Kothari, and Somma
in [BCC+15], and incorporates a space-efficient state preparation operator. We say that
Py is an ϵ-state preparation operator for y if Py|0̄⟩ := ∑m

i=1
√
ŷi|i⟩ for some ŷ such that

∥y/∥y∥1 − ŷ∥1 ≤ ϵ.

Lemma 5.15 (Linear combinations of bitstring indexed encodings, adapted from Lemma
29 in [GSLW19]). Given a matrix A = ∑m−1

i=0 yiAi such that each linear operator Ai (1 ≤
i ≤ m) acts on s qubits with the corresponding (∥y∥1, a, ϵ1)-bitstring indexed encoding Ui
acting on s+a qubits associated with projections Π̃i and Πi. Also each yi (1 ≤ i ≤ m) can
be expressed in O(s(n)) bits with an evaluation oracle Eval that returns ŷi with precision
ε := O(ϵ2

2/m). Then utilizing an ϵ2-state preparation operator Py for y acting on O(logm)
qubits, and a (s+ a+ ⌈logm⌉)-qubit unitary

W =
m−1∑
i=0
|i⟩⟨i| ⊗ Ui +

(
I −

m−1∑
i=0
|i⟩⟨i|

)
⊗ I,

we can implement a (∥y∥1, a + ⌈logm⌉, ϵ1∥y∥2
1 + ϵ2∥y∥1)-bitstring indexed encoding of

A acting on s + a + ⌈logm⌉ qubits with a single use of W , Py, P †
y. In addition, the

(classical) pre-processing can be implemented in deterministic time Õ(m2 log(m/ϵ2)) and
space O(log(m/ϵ2

2)), as well as m2 oracle calls to Eval with precision ε.

Proof. For the ϵ2-state preparation operator Py such that Py|0̄⟩ = ∑m
i=1
√
ŷi|i⟩, we uti-

lize a scheme introduced by Zalka [Zal98] (also independently rediscovered in [GR02]
and [KM01]). We make an additional analysis of the required classical computational
complexity.
Proposition 5.15.1 (Space-efficient state preparation, adapted from [Zal98, KM01,
GR02]). Given an l-qubit quantum state |ψ⟩ := ∑m

i=1
√
ŷi|i⟩, where l = ⌈logm⌉ and ŷi

are real amplitudes associated with an evaluation oracle Eval(i, ε) that returns ŷi up to
accuracy ε we can prepare |ψ⟩ up to accuracy ϵ in deterministic time Õ(m2 log(m/ϵ)) and
space O(log(m/ϵ2)), together with m2 evaluation oracle calls with precision ε := O(ϵ2/m).

Proof. We follow the analysis presented in [MP16, Section III.A], with a particular focus
on the classical computational complexity required for this state preparation procedure.
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The algorithm for preparing the state |ψ⟩ expresses the weight Wx as a telescoping prod-
uct, given by: For any x ∈ {0, 1}l,

Wx = Wx1 ·
Wx1x2
Wx1

· Wx1x2x3
Wx1x2

· · · Wx

Wx1···xn−1
, where Wx := ∑

y∈{0,1}l−|x| |⟨xy|ψ⟩|2. (5.19)

To estimate |ψ⟩ up to accuracy ϵ in the ℓ2 norm, it suffices to approximate each weight
Wx up to additive error ε := O(ϵ2/m), as indicated in [MP16, Section III.A]. To compute
Wx′ , we need 2l−|x′| oracle calls to Eval(·, ε). Evaluating all terms in Equation (5.19)
requires computing Wx1 ,Wx1x2 , · · · ,Wx for any x ∈ {0, 1}l, which can be achieved by
2l−1 +2l−2 + · · ·+1 = 2l oracle calls to Eval(·, ε). As we need to compute Equation (5.19)
for all x ∈ {0, 1}l, the overall number of oracle calls to Eval(·, ε) is 22l = m2.

The remaining computation can be achieved in deterministic time Õ(m2 log(m/ϵ))
and space O(log(m/ϵ)) where the time complexity is because of the iterated integer
multiplication.

Now consider the bitstring indexed encoding
(
P †

y ⊗ Is
)
W
(
Py ⊗ Is

)
of A acting on

s+ a+ ⌈logm⌉ qubits. Let y′
i := yi/∥y∥1, then we obtain the implementation error:∥∥∥A− ∥y∥1

(
|0̄⟩⟨0̄| ⊗ Π̃

)(
P †
y ⊗ Is

)
W
(
Py ⊗ Is

) (
|0̄⟩⟨0̄| ⊗ Π

) ∥∥∥
=
∥∥∥A− ∥y∥1

∑m−1
i=0 ŷiΠ̃iUiΠi

∥∥∥
≤
∥∥∥A− ∥y∥1

∑m−1
i=0 y′

iΠ̃iUiΠi

∥∥∥+ ∥y∥1
∑m−1
i=0 (y′

i − ŷi)∥Π̃iUiΠi∥

≤∥y∥1
∑m−1
i=0 y′

i∥Ai − Π̃iUiΠi∥+ ϵ2∥y∥1

≤ϵ1∥y∥2
1 + ϵ2∥y∥1.

Here, the third line is due to the triangle inequality, the fourth line owes to Proposi-
tion 5.15.1, and the fifth line is because Ui is a (1, a, ϵ1)-bitstring indexed encoding of Ai
for 0 ≤ i < m.

To make the resulting bitstring indexed encoding from Lemma 5.15 with α = 1, we
need to perform a renormalization procedure to construct a new encoding with the desired
α. We achieve this by extending the proof strategy outlined by Gilyen [Gil19, Page 52]
for block-encodings to bitstring indexed encodings. This approach works specifically for
partial isometries (up to a normalization factor α) – since the singular values of a partial
isometry is either 0 or 1, it suffices to consider a space-efficient QSVT associated with some
Chebyshev polynomial Tk, with an appropriately chosen odd k, such that Tk(1/α) = 1
and Tk(0/α) = 0.21

The renormalization procedure is provided in Lemma 5.16. Additionally, a similar
result has been established in [MY23, Lemma 7.10].

Lemma 5.16 (Renormalizing bitstring indexed encoding). Let U be an (α, a, ϵ)-bitstring
indexed encoding of A, where α > 1 and 0 < ϵ < 1, and A is a partial isometry acting
on s(n) qubits. We can implement a quantum circuit V , serving as a normalization of

21Renormalizing bitstring indexed encodings of non-partial isometries for space-efficient QSVT seems
achievable by mimicking [GSLW19, Theorem 17]. This approach cleverly uses space-efficient QSVT with
the sign function (Corollary 5.17), where the corresponding encoding can be re-normalized by carefully
using Lemma 5.16. Nevertheless, since this renormalization procedure is not required in this paper, we
leave it for future work.
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U , such that V is a (1, a + 2, 36ϵ)-bitstring indexed encoding of A. This implementation
requires O(α) uses of U , U †, CΠNOT, CΠ̃NOT, and O(α) single-qubit gates. Moreover,
the description of the resulting quantum circuit can be computed in deterministic time
O(α) and space O(s).

Proof. Following Definition 5.3, we have ∥A− αΠ̃UΠ∥ ≤ ϵ, where Π̃ and Π are the cor-
responding orthogonal projections. Because U is a (1, a, ϵ/α)-bitstring indexed encoding
A/α, we obtain that ∥A/α∥ ≤ ∥U∥+ ϵ/α = 1 + ϵ/α, equivalently ∥A∥ ≤ α + ϵ.

Adjusting the encoding through a single-qubit rotation. Consider an odd integer
k := 2⌈π(α + 1)/2⌉ + 1 ≤ 9α = O(α) and γ := (α + ϵ) sin(π/2k) ≤ 1. We define new
orthogonal projections Π̃′ := Π̃ ⊗ |0⟩⟨0| and Π′ := Π ⊗ |0⟩⟨0|, and combine them with
U ′ = U ⊗ Rγ, where Rγ =

(
γ −

√
1−γ2√

1−γ2 γ

)
. By noting that Π̃′U ′Π′ = γΠ̃UΠ ⊗ |0⟩⟨0|,

we deduce that U ′ is a (1, a+1, γϵ/α)-bitstring indexed encoding of γA/α⊗|0⟩⟨0|, which
is consequently a (1, a+ 1, 2γϵ/α)-bitstring indexed encoding of sin(2π/k) · (A⊗ |0⟩⟨0|).
An error bound follows:∥∥∥∥γαA− sin

(
π

2k

)
A
∥∥∥∥ =

∥∥∥∥ ϵα sin
(
π

2k

)
A
∥∥∥∥ ≤ ϵ

α
sin

(
π

2k

)
(α + ϵ) = γϵ

α
.

Renormalizing the encoding via robust oblivious amplitude amplification. We
follow the construction in [GSLW18, Theorem 28], the full version of [GSLW19], and
perform a meticulous analysis of the complexity. We observe that it suffices to consider
k ≥ 3, as for U ′ is already a (1, a + 1, 2γϵ/α)-bitstring indexed encoding of A ⊗ |0⟩⟨0|
when k = 1. Let ε := 2γϵ/α, and for simplicity, we first start by considering the case
with ε = 0. By Definition 5.3, we have Π̃′U ′Π′ = α sin

(
π
2k

)
Π̃UΠ⊗ |0⟩⟨0|. Let Tk ∈ R[x]

be the degree-k Chebyshev polynomial (of the first kind). By employing Lemma 5.14, we
can apply the QSVT associated with Tk to the bitstring indexed encoding U ′, yielding:

Π̃′T
(SV)
k (U ′)Π′ = αTk

(
sin

(
π

2k

))
Π̃UΠ⊗ |0⟩⟨0| = cos

(
k − 1

2 π
)
A⊗ |0⟩⟨0| = A⊗ |0⟩⟨0|.

Here, the second equality is due to Tk
(

sin
(
π
2k

))
= Tk

(
cos

(
π
2 −

π
2k

))
= cos

(
k−1

2 π
)
, and

the last equality holds because k is odd.
Next, we move on the case with ε > 0 and restrict it to ε ≤ 1/3.22 Let A′ := Π̃′U ′Π′

and Â := γA⊗|0⟩⟨0|, then we have ∥A′− Â∥ ≤ ε, indicating that
∥∥∥A′+Â

2

∥∥∥2
≤ 4

9 := ζ23 and

∥A′ − Â∥ +
∥∥∥A′+Â

2

∥∥∥2
≤ 1

3 + 4
9 < 1. By employing Lemma 5.14, as well as the facts that

√
2√

1−ζ
< 2 and 2kε = 4kγϵ/α ≤ 36ϵ, we can construct a (1, a + 2, 36ϵ)-bitstring indexed

encoding of A, denoted by V .

Finally, we provide the computational resources required for implementing V . As
shown in Lemma 5.14, the implementation of V requires O(α) uses of U , U †, CΠNOT,
CΠ̃NOT, and O(α) single-qubit gates. Furthermore, the description of the resulting
quantum circuit can be computed in deterministic time O(α) and space O(s).

22If ε > 1/3, then ∥Π̃′U ′Π′−A⊗ |0⟩⟨0|∥ ≤ 2 = 2 · 3 · 1
3 always holds, implying that we can directly use

U ′ as V.
23This is because ∥A′ + Â∥ ≤ ∥A′∥+ ∥A′∥+ ∥A′ − Â∥ ≤ 2 sin(π/2k) + ε ≤ 2 sin(π/6) + 1/3 = 4/3.
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Finally, we combine Lemma 5.14, Lemma 5.15, and Lemma 5.16 to proceed with the
proof of Theorem 5.12.

Proof of Theorem 5.12. By using Lemma 5.14, we obtain (1, a + 1, 4k√ϵ1)-bitstring in-
dexed encodings Vk corresponding to Tk(A), where 1 ≤ k ≤ d′ = 2d−1. The descriptions
of quantum circuits {Vk}d

′
k=0 can be computed in O(s(n)) space and ∑d′

k=0 k = O(d2) time.
Employing Lemma 5.15, we obtain a (∥ĉ∥1, â, 4k

√
ϵ1∥ĉ∥2

1 + ϵ2∥ĉ∥1)-bitstring indexed en-
coding Vunnorm for Pd′(A) = ĉ0/2+∑d′

k=1 ĉkTk(A), where â := a+⌈log d⌉+1. The remaining
analysis depends on whether Pd′(A) is a partial isometry (up to a normalization factor):

• Partial isometry Pd′(A): We can renormalize Vunnorm by utilizing Lemma 5.16 and
obtain a (1, a′, 144k√ϵ1∥ĉ∥2

1+36ϵ2∥ĉ∥1)-bitstring indexed encoding Vnormed that acts
on s + a′ qubits, where a′ := â + 2 = a + ⌈log d′⌉ + 3. A direct calculation shows
that the implementation of Vnormed makes ∑d′

k=1 k ·O(∥ĉ∥1) = O(d2∥ĉ∥1) uses of U ,
U †, CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates. The description of
the quantum circuit Vnormed thus can be computed in deterministic time

max{Õ
(
(d′)2∥ĉ∥1 log(d′/ϵ2)

)
, O((d′)2∥ĉ∥1)} = Õ(d2∥ĉ∥1 log(d/ϵ2))

and space O(max{s(n), d′/ϵ2
2}) = O(max{s(n), d/ϵ2

2}), as well as O
(
(d′)2∥ĉ∥1

)
=

O(d2∥ĉ∥1) oracle calls to Eval with precision ε.

• General Pd′(A): We simply use the bitstring indexed encoding Vunnorm without
renormalizing it. Similarly, the implementation of Vunnorm makes O(d2) uses of U ,
U †, CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates. Therefore, the
description of the quantum circuit Vunnorm can be computed in deterministic time
Õ(d2 log(d/ϵ2)) and space O(max{s(n), d/ϵ2

2}), as well as O(d2) oracle calls to Eval
with precision ε.

Finally, we can extend our construction to any linear operator A by replacing Pd′(A)
with P (SV)

d′ as defined in Definition 2.6, taking into account that the Chebyshev polynomial
(of the first kind) Tk is either an even or an odd function.

5.3 Examples: The sign function and the normalized logarith-
mic function

We now provide explicit examples that illustrate the usage of the space-efficient quan-
tum singular value transformation (QSVT) technique. We define two functions:

sgn(x) :=


1, x > 0
−1, x < 0
0, x = 0

and lnβ(x) := ln(1/x)
2 ln(2/β) .

In particular, the sign function is a bounded function, and we derive the corresponding
bitstring indexed encoding with deterministic space-efficient (classical) pre-processing in
Corollary 5.8. On the other hand, the logarithmic function is a piecewise-smooth function
that is bounded by 1, and we deduce the corresponding bitstring indexed encoding with
randomized space-efficient (classical) pre-processing in Corollary 5.11.

Corollary 5.17 (Sign polynomial with space-efficient coefficients applied to bitstring
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indexed encodings). Let A be an Hermitian matrix that acts on s qubits, where s(n) ≥
Ω(log(n)). Let U be a (1, a, ϵ1)-bitstring indexed encoding of A that acts on s+ a qubits.
Then, for any d′ ≤ 2O(s(n)) and ϵ2 ≥ 2−O(s(n)), we have an

(
1, a+⌈log d′⌉+3, 144Ĉ2

sgndϵ
1/2
1 +

(36Ĉsgn + 37)ϵ2)
)
-bitstring indexed encoding V of P sgn

d′ (A), where P sgn
d′ is a space-efficient

bounded polynomial approximation of the sign function (corresponding to some degree-d
averaged Chebyshev truncation) specified in Corollary 5.8, and Ĉsgn is a universal con-
stant. This implementation requires O(d2) uses of U , U †, CΠNOT, CΠ̃NOT, and O(d2)
multi-controlled single-qubit gates. The description of V can be computed in deterministic
time Õ(ϵ−1

2 d9/2) and space O(s(n)).
Furthermore, our construction directly extends to any non-Hermitian (but linear) matrix
A by simply replacing P sgn

d (A) with P (SV)
sgn,d(A) defined in the same way as Definition 2.6.

Proof. Following Corollary 5.8, we have P sgn
d′ (x) = ĉ0/2+∑d′

k=1 ĉkTk(x), where d′ = 2d−1
and d′ = O(δ−1 log ϵ−1). The approximation error is given by:

∀x ∈ [−1, 1] \ [−δ, δ], |sgn(x)− P sgn
d′ (x)| ≤ Csgnϵ := ϵ2. (5.20)

To implement Eval with precision ε = O(ϵ2
2/d

′), we can compute the corresponding entry
ĉk of the coefficient vector, which requires deterministic time Õ

(
ε−1/2(d′)2

)
= Õ(ϵ−1

2 d5/2)
and space O

(
log(ε−3/2(d′)3)

)
= O(log(ϵ−3

2 d9/2)).

Note that P sgn
d′ (A) is not a partial isometry (up to a normalization factor) and ∥ĉ∥1 ≤

Ĉsgn. Using Theorem 5.12, we have a (Ĉsgn, aun, 4d′Ĉ2
sgnϵ

1/2
1 + Ĉsgnϵ2)-bitstring indexed

encoding Vun, with projections Π̃ and Π, that acts on s + aun qubits and aun := a +
⌈log d′⌉+ 1.

Renormalizing the encoding of P sgn
d′ (A). Notably, the renormalization procedure

(Lemma 5.16) is still applicable when P sgn
d′ (A) is restricted to appropriately chosen sub-

spaces ΓL and ΓR. Let A = ∑rank(A)
i=1 σiuiv†

i be the singular value decomposition of
A. We define A>δ := ∑

i:σi>δ σiuiv
†
i , as well as subspaces ΓL := span{ui|σi > δ} and

ΓR := span{v†
i |σi > δ}. Consequently, we obtain the following for the bitstring indexed

encoding Vun with projections Π̃ and Π:
∥sgn(SV)(A>δ)− ĈsgnΠ̃|ΓL

VnuΠ|ΓR
∥

≤∥sgn(SV)(A>δ)− P sgn
d′ (A>δ)∥+ ∥P sgn

d′ (A>δ)− ĈsgnΠ̃|ΓL
VnuΠ|ΓR

∥
≤ϵ2 + ∥P sgn

d′ (A>δ)− ĈsgnΠ̃VnuΠ∥
≤ϵ2 + 4d′C2

sgnϵ
1/2
1 + Ĉsgnϵ2.

(5.21)

Here, the second line owes to the triangle inequality, the third line is due to Equa-
tion (5.20), and the last line is because Vnu is a (Ĉsgn, aun, 4d′C2

sgnϵ
1/2
1 + Ĉsgnϵ2)-bitstring

indexed encoding of P sgn
d′ (A>δ). Note that sgn(SV)(A>δ) is a partial isometry, and Equa-

tion (5.21) implies that Vnu is a projected unitary encoding of sgn(SV)(A>δ). By ap-
plying Lemma 5.16 to Vnu with projections Π̃|ΓL

and Π|ΓR
, we can obtain a (1, aun +

2, 144d′C2
sgnϵ

1/2
1 + 36(Ĉsgn + 1)ϵ2)-projected unitary encoding of sgn(SV)(A>δ), denoted as
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V . Consequently, we can derive that:
∥P sgn

d′ (A>δ)− Π̃|ΓL
VnuΠ|ΓR

∥
≤∥P sgn

d′ (A>δ)− sgn(SV)(A>δ)∥+ ∥sgn(SV)(A>δ)− Π̃|ΓL
VnuΠ|ΓR

∥
≤ϵ2 + 144d′C2

sgnϵ
1/2
1 + 36(Ĉsgn + 1)ϵ2.

(5.22)

Here, the second line follows from the triangle inequality, and the third line additionally
owes to Equation (5.20). Note that Lemma 5.16 essentially applies a Chebyshev poly-
nomial to Vnu and preserves the projections Π̃|ΓL

and Π|ΓR
, then we have ∥Π̃VΠ∥ ≤ 1.

Therefore, following Equation (5.22), we conclude that P sgn
d′ (A) has a

(
1, a′, 144d′C2

sgnϵ
1/2
1 +

(36Ĉsgn + 37)ϵ2
)
-bitstring indexed encoding V that acts on s + a′ qubits, where a′ :=

a+ ⌈log d⌉+ 3.24

Lastly, we can complete the remained analysis similar to Theorem 5.12 with a partial
isometry Pd′(A). Since ∥ĉ∥1 ≤ Ĉsgn ≤ O(1), the quantum circuit of V makes O(d2) uses
of U , U †, CΠNOT, and CΠ̃NOT as well as O(d2) multi-controlled single-qubit gates.
We note that d ≤ 2O(s(n)) and ϵ2 ≥ 2−O(s(n)). Moreover, we can compute the description
of V in O(s(n)) space since each oracle call to Eval with precision ε can be computed in
O(log(ϵ−3

2 d9/2)) space. Additionally, the time complexity for computing the description
of V is

max{Õ(d2 log(d/ϵ2)), O(d2) · Õ(ϵ−1
2 d5/2)} = Õ(ϵ−1

2 d9/2).

Corollary 5.18 (Log polynomial with space-efficient coefficients applied to bitstring in-
dexed encodings). Let A be an Hermitian matrix that acts on s qubits, where s(n) ≥
Ω(log(n)). Let U be a (1, a, ϵ1)-bitstring indexed encoding of A that acts on s+ a qubits.
Then, for any d′ = 2d − 1 ≤ 2O(s(n)), ϵ2 ≥ 2−O(s(n)), and β ≥ 2−O(s(n)), we have a
(Ĉln, a + ⌈log d⌉ + 1, 4dĈ2

lnϵ
1/2
1 + Ĉlnϵ2)-bitstring indexed encoding V of P ln

d′ (A), where
P ln
d′ is a space-efficient bounded polynomial approximation of the normalized log func-

tion (corresponding to some degree-d averaged Chebyshev truncation) specified in Corol-
lary 5.11, and Ĉln is a universal constant. This implementation requires O(d2) uses of U ,
U †, CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates. Moreover, we can com-
pute the description of the resulting quantum circuit in bounded-error randomized time
Õ(max{β−5ϵ−4

2 d4, ϵ−1
2 d9/2}) and space O(s(n)).

Proof. Following Corollary 5.11, we have P ln
d′ (x) = cln

0 /2+∑d′

k=1 c
ln
k Tk(x), where P ln

d′ corre-
sponds to some degree-d averaged Chebyshev truncation and d′ = 2d−1 ≤ O(δ−1 log ϵ−1).
For any lnβ(x), we have | lnβ(x)−P ln

d′ (x)| ≤ Clnϵ := ϵ2 for all x ∈ [β, 1]. To implement Eval
with precision ε = O(ϵ2

2/d), we can compute the corresponding entry cln
k of the coefficient

vector by a bounded-error randomized algorithm. This requires O(log(β−4ε−3/2d3)) =
O(log(β−4ϵ−3

2 d9/2)) space and Õ(max{β−5ε−2, ε−1/2d2}) = Õ(max{β−5ϵ−4
2 d2, ϵ−1

2 d5/2})
time. Applying Theorem 5.12 with ∥cln∥1 ≤ Ĉln, we obtain that P ln

d′ has a (Ĉln, â, 4dĈ2
lnϵ

1/2
1 +

Ĉlnϵ2)-bitstring indexed encoding V that acts on s+ â qubits, where â := a+ ⌈log d′⌉+ 1.
Furthermore, the quantum circuit of V makes O((d′)2) = O(d2) uses of U , U †,

CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates. We note that d′ = 2d− 1 ≤
2O(s(n)), ϵ2 ≥ 2−O(s(n)), and β ≥ 2−O(s(n)). Additionally, we can compute the description

24We are somewhat abusing notations – strictly speaking, V corresponds P̃ sgn
d′ (A), where P̃ sgn

d′ is
another polynomial satisfying all requirements in Corollary 5.8 but does not necessarily exactly coincide
with P sgn

d′ .
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of V in O(s(n)) space since each oracle call to Eval with precision ε can be computed
in O(log(β−4ϵ−3

2 d9/2)) space. The time complexity for computing the description of V is
given by:

max{Õ(d2 log(d/ϵ2)), O(d2)Õ(max{β−5ϵ−4
2 d2, ϵ−1

2 d5/2})
= Õ(max{β−5ϵ−4

2 d4, ϵ−1
2 d9/2}).

(5.23)

Finally, to guarantee that the probability that all O((d′)2) = O(d2) oracle calls to Eval
succeed is at least 2/3, we use a (4 ln d′)-time sequential repetition of Eval for each oracle
call. Together with the Chernoff-Hoeffding bound and the union bound, the resulting
randomized algorithm succeeds with probability at least 1− (d′)2 · 2 exp(−4 ln d′) ≥ 2/3.
We further note that the time complexity specified in Equation (5.23) only increases by
a 4 ln d′ factor.

5.4 Application: Space-efficient error reduction for unitary quan-
tum computations

We provide a unified space-efficient error reduction for unitary quantum computa-
tions. More specifically, one-sided error scenarios (e.g., RQUL and coRQUL) have been
proven in [Wat01], and the two-sided error scenario (e.g., BQUL) has been demonstrated
in [FKL+16].

Theorem 5.19 (Space-efficient error reduction for unitary quantum computations).
Let s(n) be a space-constructible function, and let a(n), b(n), and l(n) be determinis-
tic O(s(n)) space computable functions such that a(n) − b(n) ≥ 2−O(s(n)), we know that
for any l(n) ≤ O(s(n)), there is d := l(n)/max{

√
a−
√
b,
√

1− b−
√

1− a} such that

BQUSPACE[s(n), a(n), b(n)] ⊆ BQUSPACE
[
s(n) + ⌈log d⌉+ 1, 1− 2−l(n), 2−l(n)

]
.

Furthermore, for one-sided error scenarios, we have that for any l(n) ≤ 2O(s(n)):

RQUSPACE[s(n), a(n)] ⊆ RQUSPACE
[
s(n)+⌈log d0⌉+1, 1−2−l(n)] where d0 := l(n)

max{
√
a,1−

√
1−a} ,

coRQUSPACE[s(n), b(n)] ⊆ coRQUSPACE
[
s(n)+⌈log d1⌉+1, 2−l(n)] where d1 := l(n)

max{1−
√
b,

√
1−b} .

By choosing s(n) = Θ(log(n)), we derive error reduction for logarithmic-space quan-
tum computation in a unified approach:

Corollary 5.20 (Error reduction for BQUL, RQUL, and coRQUL). For deterministic
logspace computable functions a(n), b(n), and l(n) satisfying a(n) − b(n) ≥ 1/poly(n)
and l(n) ≤ O(log n), we have the following inclusions:

BQUL[a(n), b(n)] ⊆ BQUL[1− 2−l(n), 2−l(n)],
RQUL[a(n)] ⊆ RQUL[1− 2−l(n)],

coRQUL[b(n)] ⊆ coRQUL[2−l(n)].

The construction specified in Theorem 5.19 crucially relies on Lemma 5.21. And the
proof of Lemma 5.21 directly follows from Theorem 20 in [GSLW19].

Lemma 5.21 (Space-efficient singular value discrimination). Let 0 ≤ α < β ≤ 1 and U
be a (1, 0, 0)-bitstring indexed encoding of A := Π̃UΠ, where U acts on s qubits and s(n) ≥
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Ω(log n). Consider an unknown quantum state |ψ⟩, with the promise that it is a right
singular vector of A with a singular value either above α or below β. There is a degree-d′

polynomial P , where d′ = O(δ−1 log ε−1) and δ := max{β − α,
√

1− α2 −
√

1− β2}/2,
such that there is a singular value discriminator UP that distinguishes the two cases with
error probability at most ε. Moreover, the discriminator UP achieves one-sided error
when α = 0 or β = 1.
Moreover, the quantum circuit implementation of UP requires O(d2) uses of U , U †,
CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates. In addition, the descrip-
tion of the implementation can be computed in deterministic time Õ(ε−1δ−9/2) and space
O(s(n)).

Proof. Let the singular value decomposition of A be A = WΣV † = ∑
i σi|ψ̃i⟩⟨ψi|. Note

that U is a (1, 0, 0)-bitstring indexed encoding, with projections Π̃ and Π, of A. Let
singular value threshold projectors Π≥δ and Π′

≥δ be defined as Π≥δ := ΠV Σ≥δV
†Π and

Π′
≥δ := Π′Wσ≥δW

†Π′, respectively, with similar definitions for Π≤δ and Π′
≤δ.

To discriminate whether the singular value corresponding to a given right singular
vector of A exceeds a certain threshold, we need an ε-singular value discriminator UP .
Specifically, it suffices to construct a (1, a, ϵ̃)-bitstring indexed encoding UP of A, as-
sociated with an appropriate odd polynomial P , that satisfies Equation (5.24). The
parameters a and ϵ̃ will be specified later.∥∥∥∥(⟨0|⊗a ⊗ Π′

≥t+δ
)
UP
(
|0⟩⊗a ⊗ Π≥t+δ

)
−∑i∈Λ|ψ̃i⟩⟨ψi|

∥∥∥∥ ≤ ε,∥∥∥∥(⟨0|⊗aΠ′
≤t−δ

)
UP
(
|0⟩⊗a ⊗ Π≤t−δ

)
− 0

∥∥∥∥ ≤ ε.
(5.24)

Here, the index set Λ := {i : σi ≥ t + δ}. Additionally, following the proof in [GSLW19,
Theorem 20], Π′ is defined as Π̃ if β−α ≥

√
1− α2−

√
1− β2, and as I − Π̃ otherwise.25

With the construction of this bitstring indexed encoding UP , we can apply an ε-
singular value discriminator with Π′ = Π̃ by choosing t := (α+ β)/2 and δ := (β − α)/2.
Next, we measure |0⟩⟨0|⊗a ⊗ Π′: If the final state is in Img

(
|0⟩⟨0|⊗a ⊗ Π′

)
, there exists

a singular value σi above α (resp.,
√

1− β2); otherwise, all singular value σi must be
below β (resp.,

√
1− α2). Furthermore, we can make the error one-sided when α =

0 or β = 1, since a space-efficient QSVT associated with an odd polynomial always
preserves 0 singular values (see Remark 5.13). It remains to implement an ε-singular
value discriminator UP for some odd polynomial P .

Implementing ε-singular value discriminator. We begin by considering the follow-
ing odd function Q(x) such that Q(A) ≈ UP and Q(A) satisfies Equation (5.24):

Q(x) := 1
2

[(
1− ε

2

)
· sgn(x+ t) +

(
1− ε

2

)
· sgn(x− t) + ε · sgn(x)

]
.

Let ϵ := ε
2(Csgn+36Ĉsgn+37) . Using the space-efficient polynomial approximation P sgn

d′

of the sign function (Corollary 5.8 with ϵ1 := 0 and ϵ2 := ϵ), we obtain the following
25By applying [GSLW18, Definition 12] (the full version of [GSLW19]) to Π′ := I − Π̃, we know that
|ψ⟩ is a right singular vector of Π′UΠ with a singular value of at least

√
1− a2 in the first case, or with a

singular value of at most
√

1− b2 in the second case. Additionally, in one-sided error scenarios, if a = 0,
then b − a = b ≥ 1 −

√
1− b2 =

√
1− a2 −

√
1− b2; while if b = 1, then b − a = 1 − a ≤

√
1− a2 =√

1− a2 −
√

1− b2.
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degree-d′ polynomial P associated with some degree-d averaged Chebyshev truncation:
P (x) = 1

2

[(
1− ε

2

)
· P sgn

d′ (x+ t) +
(
1− ε

2

)
· P sgn

d′ (x− t) + ε · P sgn
d′ (x)

]
.

Note that P (x) is a convex combination of P sgn
d′ (x + t), P sgn

d′ (x − t), and P sgn
d′ (x),

the constants C̃sgn and Ĉsgn specified in Corollary 5.8 remain the same. Hence, P is a
polynomial of degree d′ = 2d − 1 ≤ C̃sgn

1
δ

log 1
ϵ
, and the coefficient vector ĉ(P ) satisfies

∥ĉ(P )∥1 ≤ Ĉsgn.
Recall the notation ∥f∥I defined in Section 5.2.1, namely ∥f∥I := sup{|f(x)| : x ∈ I}.

Let D(x) := sgn(x) − P sgn
d′ , I0 := (0, t − δ], and I1 := [t + δ, 1]. Following Corollary 5.8,

we obtain:
∥P (x)−Q(x)∥[δ−t,0) = ∥P (x)−Q(x)∥I0

≤ 2−ε
4 ∥D(x+ t)∥I0 + 2−ε

4 ∥D(x− t)∥I0 + ε
2∥D(x)∥I0 ≤

(
1− ε

2

)
Csgnϵ+ ε

2 ,

∥P (x)−Q(x)∥[−1,−t−δ] = ∥P (x)−Q(x)∥I1

≤ 2−ε
4 ∥D(x+ t)∥I1 + 2−ε

4 ∥D(x− t)∥I1 + ε
2∥D(x)∥I1 ≤

(
1− ε

2 + ε
2

)
Csgnϵ.

(5.25)

Here, the equalities hold because both P and Q are odd functions.
Using Corollary 5.17 with P , we obtain a (1, a, ϵ̃)-bitstring indexed encoding UP of A,

with a := ⌈log d′⌉+ 3 and ϵ̃ := (36Ĉsgn + 37)ϵ. Together with Equation (5.25), we obtain:∥∥∥∥(⟨0|⊗a ⊗ Π′
≥t+δ

)
UP
(
|0⟩⊗a ⊗ Π≥t+δ

)
−
∑
i∈Λ
|ψ̃i⟩⟨ψi|

∥∥∥∥
≤
(
1− ε

2 + ε
2

)
Csgnϵ+ (36Ĉsgn+37)ϵ ≤ ε,∥∥∥∥(⟨0|⊗aΠ′

≤t−δ
)
UP
(
|0⟩⊗a ⊗ Π≤t−δ

)
− 0

∥∥∥∥
≤ Csgnϵ+ ε

2 + (36Ĉsgn+37)ϵ ≤ ε.

Hence, we conclude that our construction of UP indeed satisfies Equation (5.24).
Finally, we analyze the complexity of this ε-singular value discriminator UP . Fol-

lowing Corollary 5.17, the quantum circuit implementation of UP requires O(d2) uses of
U , U †, CΠNOT, CΠ̃NOT, and multi-controlled single-qubit gates. Moreover, we can
compute the description of the circuit implementation in deterministic time Õ(ϵ−1d9/2) =
Õ(ε−1δ−9/2) and space O(s(n)), where δ = max{β − α,

√
1− α2 −

√
1− β2}/2.

Finally, we provide the proof of Theorem 5.19, which closely relates to Theorem 38
in [GSLW18] (the full version of [GSLW19]).

Proof of Theorem 5.19. It suffices to do error reduction by QSVT. Note that the probabil-
ity that a BQUSPACE[s(n)] circuit Cx accepts is Pr[Cx accepts] = ∥|1⟩⟨1|outCx|0k+m⟩∥2

2 ≥
a for yes instances, whereas Pr[Cx accepts ] = ∥|1⟩⟨1|outCx|0k+m⟩∥2

2 ≤ b for no in-
stances. Then consider a (1, 0, 0)-bitstring indexed encoding Mx := ΠoutCxΠin such that
∥Mx∥ ≥

√
a for yes instances while ∥Mx∥ ≤

√
b for no instances, where Πin := |0⟩⟨0|⊗k+m

and Πout := |1⟩⟨1|out ⊗ Im+k−1. Since ∥Mx∥ = σmax(Mx) where σmax(Mx) is the largest
singular value of Mx, it suffices to distinguish the largest singular value of Mx is either
above

√
a or below

√
b. By setting α :=

√
a, β :=

√
b and ε := 2−l(n), this task is a direct

corollary of Lemma 5.21.
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Chapter 6

Space-bounded quantum state
testing and its applications

6.1 Introduction

Previous studies on complete characterizations of space-bounded quantum compu-
tation [Wat99, Wat03, vMW12] have primarily focused on well-conditioned versions of
standard linear algebraic problems [TS13, FL18, FR21] and have been limited to the two-
sided error scenario. In contrast, we propose a novel family of complete problems that
not only characterize the one-sided error scenario (and extend to the two-sided scenario)
but also arise from a quantum property testing perspective. Our new complete problems
are arguably more natural and simpler, driven by recent intriguing challenges of verifying
the intended functionality of quantum devices.

In this chapter, we investigate quantum state testing problems where quantum states
ρ0 and ρ1 are preparable by computationally constrained resources, specifically state-
preparation circuits (viewed as the “source code” of devices) that are (log)space-bounded.
Our main result conveys a conceptual message that testing quantum states prepared in
bounded space is (computationally) as easy as preparing these states in a space-bounded
manner. Consequently, we can introduce the first family of natural coRQUL-complete
promise problems since Watrous [Wat01] introduced unitary RQL and coRQL (known as
RQUL and coRQUL, respectively) in 2001, as well as a new family of natural BQL-complete
promise problems.

6.1.1 Main results

We will commence by providing definitions for time- and space-bounded quantum
circuits. We say that a quantum circuit Q is (poly)time-bounded if Q is polynomial-size
and acts on poly(n) qubits. Likewise, we say that a quantum circuit Q is (log)space-
bounded if Q is polynomial-size and acts on O(log n) qubits. It is worthwhile to note
that primary complexity classes, e.g., BQL, coRQUL, and BPL, mentioned in this paper
correspond to promise problems.

Complete characterizations of quantum logspace from state testing. While
prior works [TS13, FL18, FR21] on BQL-complete problems have mainly focused on well-
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conditioned versions of standard linear algebraic problems (in DET∗), our work takes a
different perspective by exploring quantum property testing. Specifically, we investigate
the problem of space-bounded quantum state testing, which aims to test the closeness
between two quantum states that are preparable by (log)space-bounded quantum circuits
(devices), with access to the corresponding “source code” of these devices.

We begin by considering a computational problem that serves as a “white-box” space-
bounded counterpart of quantum state certification [BOW19], equivalent to quantum state
testing with one-sided error. Our first main theorem (Theorem 6.1) demonstrates the first
family of natural coRQUL-complete problems in the context of space-bounded quantum
state certification with respect to the trace distance (T) and the squared Hilbert-Schmidt
distance (HS2).

Theorem 6.1 (Informal of Theorem 6.11). The following space-bounded quantum state
certification problems are coRQUL-complete: for any α(n) ≥ 1/poly(n), decide whether

(1) CertQSDlog: ρ0 = ρ1 or T(ρ0, ρ1) ≥ α(n);

(2) CertQHSlog: ρ0 = ρ1 or HS2(ρ0, ρ1) ≥ α(n).

By extending the error requirement from one-sided to two-sided, we broaden the scope
of space-bounded quantum state testing to include two more distance-like measures: the
quantum entropy difference, denoted by S(ρ0)−S(ρ1), and the quantum Jensen-Shannon
divergence (QJSbit). As a result, we establish our second main theorem, introducing a
new family of natural BQL-complete problems:1

Theorem 6.2 (Informal of Theorem 6.12). The following space-bounded quantum state
testing problems are BQL-complete: for any α(n) and β(n) such that α(n) − β(n) ≥
1/poly(n), or for any g(n) ≥ 1/poly(n), decide whether

(1) GapQSDlog: T(ρ0, ρ1) ≥ α(n) or T(ρ0, ρ1) ≤ β(n);

(2) GapQEDlog: S(ρ0)− S(ρ1) ≥ g(n) or S(ρ1)− S(ρ0) ≥ g(n);

(3) GapQJSlog: QJSbit(ρ0, ρ1) ≥ α(n) or QJSbit(ρ0, ρ1) ≤ β(n);

(4) GapQHSlog: HS2(ρ0, ρ1) ≥ α(n) or HS2(ρ0, ρ1) ≤ β(n).

Algorithmic Holevo-Helstrom measurement and its implication. The celebrated
Holevo-Helstrom bound [Hol73b, Hel69] states that the maximum success probability to
discriminate quantum states ρ0 and ρ1 is given by 1

2 + 1
2T(ρ0, ρ1). There is then an optimal

two-outcome measurement {Π0,Π1}, referred to as the Holevo-Helstrom measurement,
such that T(ρ0, ρ1) = Tr(Π0ρ0)−Tr(Π0ρ1). Interestingly, by leveraging the BQL contain-
ment in Theorem 6.2(1), we can obtain an (approximately) explicit implementation of
the Holevo-Helstrom measurement, called algorithmic Holevo-Helstrom measurement:

Theorem 6.3 (Informal of Theorem 6.26). For quantum states ρ0 and ρ1 specified in
GapQSD such that their purification can be prepared by n-qubit polynomial-size quantum

1It is noteworthy that our algorithm for GapQSDlog in Theorem 6.2(1) exhibits a polynomial advan-
tage in space over the best known classical algorithms [Wat02]. Watrous implicitly showed in [Wat02,
Proposition 21] that GapQSDlog is contained in the class NC, which corresponds to (classical) poly-
logarithmic space.
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circuits Q0 and Q1, we can approximately implement the Holevo-Helstrom measurement
{Π0,Π1} in quantum single-exponential time and linear space with additive error 2−n.

As an implication, we provide a slightly improved upper bound for the class QSZK by
inspecting the “distance test” in [Wat02] since GapQSD is QSZK-hard:

Theorem 6.4 (Informal of Theorem 6.27). GapQSD is in QIP(2) with a quantum single-
exponential-time and linear-space honest prover.

The best known upper bound for the class QSZK is QIP(2) [Wat02, Wat09b, JUW09],
where the computational power of the honest prover is unbounded. It is noteworthy that
Theorem 6.4 also applies to GapQSD instances that are not known to be in QSZK.2

Space-bounded unitary quantum statistical zero-knowledge. We also introduce
(honest-verifier) space-bounded unitary quantum statistical zero-knowledge, denoted as
QSZKULHV. This term refers to a specific form of space-bounded quantum proofs, as in-
troduced in [LLNW24], that possess statistical zero-knowledge against an honest verifier.
Specifically, a space-bounded unitary quantum interactive proof system possesses this
zero-knowledge property if there exists a quantum logspace simulator that approximates
the snapshot states (“the verifier’s view”) on the registers M and W after each turn of this
proof system, where each state approximation must be very close (“indistinguishable”)
to the corresponding snapshot state with respect to the trace distance.

Our definition QSZKULHV serves as a space-bounded variant of honest-verifier (uni-
tary) quantum statistical zero-knowledge, denoted by QSZKHV, as introduced in [Wat02].
Our fifth theorem establishes that the statistical zero-knowledge property completely
negates the computational advantage typically gained through the interaction:

Theorem 6.5 (Informal of Theorem 6.29). QSZKUL = QSZKULHV = BQL.

In addition to QSZKULHV, we can define QSZKUL in line with [Wat09b], particu-
larly considering space-bounded unitary quantum statistical zero-knowledge against any
verifier (rather than an honest verifier). Following this definition, BQL ⊆ QSZKUL ⊆
QSZKULHV. Interestingly, Theorem 6.5 serves as a direct space-bounded counterpart to
QSZK = QSZKHV [Wat09b].

The intuition behind Theorem 6.5 is that the snapshot states after each turn capture
all the essential information in the proof system, such as allowing optimal prover strategies
to be “recovered” from these states [MY23, Section 7]. In space-bounded scenarios, space-
efficient quantum singular value transformation, as established in Chapter 5, enables fully
utilizing this information.

Finally, we emphasize that our consideration of this zero-knowledge property is purely
complexity-theoretic. A full comparison with other notions of (statistical) zero-knowledge
is beyond this scope. For more on classical and quantum statistical zero-knowledge,
see [Vad99] and [VW16, Chapter 5].

Connections to space-efficient quantum singular value transformation. Prov-
ing our main theorems mentioned above poses a significant challenge: establishing the

2See Section 1.1.1 for classical scenarios and Chapter 7 for recent advancements in quantum scenarios.
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containment in the relevant class (BQL or coRQUL), which is also the difficult direction
for showing the known family of BQL-complete problems [TS13, FL18, FR21].

Proving the containment in the one-sided error scenario is not an effortless task: such
a task is not only already relatively complicated for CertQHSlog, but also requires to
develop novel techniques for CertQSDlog. On the other hand, in two-sided error scenar-
ios, showing containment is straightforward for GapQHSlog. However, demonstrating
this for other problems, such as GapQSDlog, GapQEDlog, and GapQJSlog, requires
sophisticated techniques, notably the space-efficient quantum singular value transforma-
tion introduced in Chapter 5. This is because their time-bounded counterparts appear
significantly more challenging than merely preparing the states.

6.1.2 Time-bounded and space-bounded testing: A comparison

We summarize prior works and our main results for time-bounded and space-bounded
distribution and state testing with respect to ℓ1 norm, entropy difference, and ℓ2 norm in
Table 6.1. For a brief overview of time-bounded testing, see Section 1.1.

Interestingly, the sample complexity of testing the closeness of quantum states (resp.,
distributions) depends on the choice of distance-like measures,3 including the one-sided er-
ror counterpart known as quantum state certification[BOW19]. In particular, for distance-
like measures such as the ℓ1 norm, called total variation distance in the case of distribu-
tions [CDVV14] and trace distance in the case of states [BOW19], as well as classical en-
tropy difference [JVHW15, WY16] and its quantum analog [AISW20, OW21], the sample
complexity of distribution and state testing is polynomial in the dimension N . However,
for distance-like measures such as the ℓ2 norm, called Euclidean distance in the case of
distributions [CDVV14] and Hilbert-Schmidt distance in the case of states [BOW19], the
sample complexity is independent of dimension N .

ℓ1 norm ℓ2 norm Entropy
Classical

Time-bounded
SZK-complete4

[SV03, GSV98]
BPP-complete

Folklore
SZK-complete
[GV99, GSV98]

Quantum
Time-bounded

QSZK-complete5

[Wat02, Wat09b]
BQP-complete

[BCWdW01, RASW23]
QSZK-complete

[BASTS10, Wat02, Wat09b]

Quantum
Space-bounded

BQL-complete
Theorem 6.2(1)

BQL-complete
[BCWdW01] and Theorem 6.2(4)

BQL-complete
Theorem 6.2(2)

Table 6.1: Time- and space-bounded distribution or state testing.

As depicted in Table 6.1, this phenomenon that the required sample complexity for
distribution and state testing, with polynomial precision and exponential dimension, de-
pends on the choice of distance-like measure has reflections on time-bounded state testing:

• For the ℓ1 norm and entropy difference, the time-bounded scenario is seemingly
3It is noteworthy that the quantum entropy difference is not a distance.
4The SZK containment of SD[α, β] applies only in the regime α2(n)− β(n) ≥ 1/poly(n), rather than

the natural parameter regime α(n)− β(n) ≥ 1/poly(n). For further details, see Section 1.1.1.
5The QSZK containment of QSD[α, β] holds only in the regime α2(n) −

√
2 ln 2β(n) ≥ 1/poly(n).

However, the differences between classical and quantum distances make it challenging to push the bound
further. For more details, see Chapter 7.
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much harder than preparing states or distributions, given that the inclusions QSZK ⊆
BQP and SZK ⊆ BPP are unlikely.

• For the ℓ2 norm, the time-bounded scenario is computationally as easy as preparing
states or distributions.

However, interestingly, a similar phenomenon does not appear for space-bounded
quantum state testing. Although no direct classical counterpart has been investigated be-
fore in a complexity-theoretic fashion, namely space-bounded distribution testing, there
is another closely related model (a version of streaming distribution testing) that does
not demonstrate an analogous phenomenon either, as discussed in Section 3.4.

Among the prior works on streaming distribution testing, particularly entropy estima-
tion, the key takeaway is that the space complexity of the corresponding computational
problem is O(log(N/ϵ)). This observation leads to a conjecture that the computational
hardness of space-bounded distribution and state testing is independent of the choice of
commonplace distance-like measures. Our results, in turn, provide a positive answer for
space-bounded quantum state testing.

6.1.3 Proof overview: A general framework for quantum state testing

Our framework enables space-bounded quantum state testing, specifically for prov-
ing Theorem 6.1 and Theorem 6.2, and is based on the one-bit precision phase estima-
tion [Kit95], also known as the Hadamard test[AJL09]. Prior works [TS13, FL18] have
employed (one-bit precision) phase estimation in space-bounded quantum computation.

To address quantum state testing problems, we reduce them to estimating Tr(Pd′(A)ρ),
where ρ is a (mixed) quantum state prepared by a quantum circuit Qρ, A is an Hermitian
operator block-encoded in a unitary operator UA, and Pd′ is a space-efficiently computable
degree-d′ polynomial obtained from some degree-d averaged Chebyshev truncation with
d′ = 2d−1. Similar approaches have been applied in time-bounded quantum state testing,
including fidelity estimation [GP22] and subsequently trace distance estimation [WZ24a].

|0⟩ H H

|0̄⟩
UPd′ (A)

|0̄⟩
Qρ

|0̄⟩

Figure 6.1: General framework for quantum state testing T (Qρ, UA, Pd′).

To implement a unitary operator UPd′ (A) that (approximately) block-encodes Pd′(A) in
a space-efficient manner, we require Pd′ to meet the conditions specified in Theorem 5.2.
As illustrated in Figure 6.1, we denote the quantum circuit as T (Qρ, UA, Pd′), where we
exclude the precision for simplicity. The measurement outcome of T (Qρ, UA, Pd′) will be
0 with a probability close to 1

2

(
1 + Tr(Pd′(A)ρ)

)
. This property allows us to estimate
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Tr(Pd′(A)ρ) within an additive error ϵ using O(1/ϵ2) sequential repetitions, resulting in
a BQL containment.

As an example of the application, T (Qi, U ρ0−ρ1
2
, P sgn

d′ ) is utilized in GapQSD, where
U ρ0−ρ1

2
is a block-encoding of ρ0−ρ1

2 , and P sgn
d′ is a space-efficient polynomial approxi-

mation of the sign function. Notably, this algorithm can be viewed as a two-outcome
measurement {Π̂0, Π̂1} where Π̂0 = 1

2I + 1
2P

sgn
d′

(
ρ0−ρ1

2

)
, which is essentially the algorith-

mic Holevo-Helstrom measurement in Theorem 6.3. Similarly, T (Qi, Uρi
, P ln

d′ ) is utilized
in GapQED, where Uρi

is a block-encoding of ρi for i ∈ {0, 1}, and P ln
d′ is a space-efficient

polynomial approximation of the normalized logarithmic function. Both P sgn
d′ and P ln

d′ can
be obtained by employing Theorem 5.2.

Making the error one-sided. The main challenge is constructing a unitary U of inter-
est, such as T (Qρ, UA, Pd′), that accepts with a certain fixed probability p for yes instances
(ρ0 = ρ1), while having a probability that polynomially deviates from p for no instances.
As an example, we consider CertQHSlog and express HS2(ρ0, ρ1) as a linear combina-
tion of Tr(ρ2

0), Tr(ρ2
1), and Tr(ρ0ρ1). We can then design a unitary quantum algorithm

that satisfies the requirement for yes instances based on the SWAP test [BCWdW01],
and consequently, we can achieve perfect completeness by applying the exact amplitude
amplification [BBHT98, BHMT02]. The analysis demonstrates that the acceptance prob-
ability polynomially deviates from 1 for no instances. By applying error reduction for
coRQUL, the resulting algorithm is indeed in coRQUL.

Moving on to CertQSDlog, we consider the quantum circuit Ui = T (Qi, U ρ0−ρ1
2
, P sgn

d′ )
for i ∈ {0, 1}. Since our space-efficient QSVT preserves parity, specifically, the approxi-
mation polynomial P sgn

d′ satisfies P sgn
d′ (0) = 0,6 the requirement for yes instances is satis-

fied. Then we can similarly achieve the coRQUL containment of CertQSDlog.

6.1.4 Proof overview: The equivalence of QSZKUL and BQL

We demonstrate Theorem 6.5 by introducing a QSZKULHV-complete problem:

Theorem 6.6 (Informal of Theorem 6.30). IndivProdQSD is QSZKULHV-complete.

We begin by informally defining the promise problem Individual Product State
Distinguishability, denoted by IndivProdQSD[k(n), α(n), δ(n)], where the parame-
ters satisfy α(n)−k(n) · δ(n) ≥ 1/poly(n) and 1 ≤ k(n) ≤ poly(n). This problem consid-
ers two k-tuples of O(log n)-qubit quantum states, denoted by σ1, · · · , σk and σ′

1, · · · , σ′
k,

where the purifications of these states can be prepared by corresponding polynomial-size
unitary quantum circuits acting on O(log n) qubits. For yes instances, these two k-tuples
are “globally” far, satisfying

T(σ1 ⊗ · · · ⊗ σk, σ′
1 ⊗ · · · ⊗ σ′

k) ≥ α. (6.1)
While for no instances, each pair of corresponding states in these k-tuples are close,
satisfying

∀j ∈ [k], T
(
σj, σ

′
j

)
≤ δ. (6.2)

6Let f be any odd function such that space-efficient QSVT associated with f can be implemented
by Theorem 5.2. It follows that the corresponding approximation polynomial P (f)

d′ is also odd. See
Remark 5.13.
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Then we show that (1) the complement of IndivProdQSD, IndivProdQSD, is QSZKULHV-
hard; and (2) IndivProdQSD is in BQL, which is contained in QSZKULHV by definition.

IndivProdQSD is QSZKULHV-hard. The hardness proof draws inspiration from [Wat02,
Section 5]. Consider a QSZKULHV[2k, c, s] proof system, denoted by B. The logspace-
bounded simulator SB produces good state approximations ξj and ξ′

j of the snapshot
states ρMjWj

and ρM′
jWj

after the (2j − 1)-st turn and the (2j)-th turn in B, respectively,
satisfying ξj ≈δ ρMjWj

and ξ′
j ≈δ ρM′

jWj
, where δB(n) is a negligible function.

Since the verifier’s actions are unitary and the verifier is honest, it suffices to check
that the prover’s actions do not change the verifier’s private register, corresponding to
the type (ii) constraints in the SDP formulation for QIPL proof systems, as presented
in [LLNW24, Equation 1.1]. For convenience, let σj := TrMj

(ξj) and σ′
j := TrM′

j
(ξ′
j) for

j ∈ [k]. We then establish QSZKLHV hardness as follows:

• For yes instances, the message-wise closeness condition of the simulator SB implies
Equation (6.2) with δ(n) := 2δB(n).

• For no instances, the simulator SB produces the snapshot state before the final
measurement, which accepts with probability c(n) for all instances, while the proof
system accepts with probability at most s(n). The inconsistency between the sim-
ulator’s state approximations and the snapshot states yields Equation (6.1) with
α(n) := (

√
c−
√
s)2/4(l − 1).

IndivProdQSD ∈ BQL. Since it holds that BQL = QMAL [FKL+16, FR21], it suffices
to establish that IndivProdQSD ∈ QMAL. By applying an averaging argument in
combination with Equation (6.1), we derive the following:∑
j∈[k]

T
(
σj, σ

′
j

)
≥ T(σ1⊗· · ·⊗σk, σ′

1⊗· · ·⊗σ′
k) ≥ α ⇒ ∃j∈ [k] s.t. T

(
σj, σ

′
j

)
≥ α

k
. (6.3)

The QMAL protocol works as follows:

(1) The prover sends an index i ∈ [k] to the verifier;

(2) The verifier accepts if Tr(σi, σ′
i) ≥ α/k and rejects if Tr(σi, σ′

i) ≤ δ, in accordance
with Equation (6.3) and Equation (6.2).

The resulting promise problem to be verified is precisely an instance of GapQSDlog,
which is known to be BQL-complete, as stated in Theorem 6.2(1).

6.2 Space-bounded quantum state testing

We begin by defining the quantum state testing problem in a space-bounded manner:

Definition 6.7 (Space-bounded Quantum State Testing). Given polynomial-size quan-
tum circuits (devices) Q0 and Q1 that act on O(log n) qubits and have a succinct de-
scription (the “source code” of devices), with r(n) specified output qubits, where r(n) is a
deterministic logspace computable function such that 0 < r(n) ≤ O(log(n)). For clarity,
n represents the (total) number of gates in Q0 and Q1.7 Let ρi denote the mixed state

7It is noteworthy that in the time-bounded scenario, the input length of circuits, the size of circuit

116



obtained by running Qi on the all-zero state |0̄⟩ and tracing out the non-output qubits.
We define a space-bounded quantum state testing problem, with respect to a specified
distance-like measure, to decide whether ρ0 and ρ1 are easily distinguished or almost
indistinguishable. Likewise, we also define a space-bounded quantum state certification
problem to decide whether ρ0 and ρ1 are easily distinguished or exactly indistinguishable.

We remark that space-bounded state certification, defined in Definition 6.7, represents
a “white-box” space-bounded counterpart of quantum state certification [BOW19].
Remark 6.8 (Lifting to exponential-size instances by succinct encodings). For s(n) space-
uniform quantum circuits Q0 and Q1 acting on O(s(n)) qubits, if these circuits admit a
succinct encoding,8 namely there is a deterministic O(s(n))-space Turing machine with
time complexity poly(s(n)) can uniformly generate the corresponding gate sequences,
then Definition 6.7 can be extended to any s(n) satisfying Ω(log n) ≤ s(n) ≤ poly(n).9

Next, we define space-bounded quantum state testing problems, based on Defini-
tion 6.7, with respect to four commonplace distance-like measures.

Definition 6.9 (Space-bounded Quantum State Distinguishability Problem, GapQSDlog).
Consider deterministic logspace computable functions α(n) and β(n), satisfying 0 ≤
β(n) < α(n) ≤ 1 and α(n) − β(n) ≥ 1/poly(n). Then the promise is that one of the
following holds:

• Yes: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≥ α(n);

• No: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≤ β(n).

Moreover, we also define the certification counterpart of GapQSDlog, referred to as
CertQSDlog, given that β = 0. Specifically, CertQSDlog[α(n)] := GapQSDlog[α(n), 0].

In a similar manner to Definition 6.9, we can define GapQJSlog and GapQHSlog, also
the certification version CertQHSlog by replacing the distance-like measure accordingly:

• GapQJSlog[α(n), β(n)]: Decide whether QJSbit(ρ0, ρ1)≥α(n) or QJSbit(ρ0, ρ1)≤β(n);

• GapQHSlog[α(n), β(n)]: Decide whether HS2(ρ0, ρ1) ≥ α(n) or HS2(ρ0, ρ1) ≤ β(n).

Furthermore, we adopt the notation CertQSDlog to represent the complement of
CertQSDlog with respect to the chosen parameter α(n), and so does CertQHSlog.

Definition 6.10 (Space-bounded Quantum Entropy Difference Problem, GapQEDlog).
Consider a deterministic logspace computable function g : N → R+, satisfying g(n) ≥
1/poly(n). Then the promise is that one of the following cases holds:

• Yes: A pair of quantum circuits (Q0, Q1) such that S(ρ0)− S(ρ1) ≥ g(n);

• No: A pair of quantum circuits (Q0, Q1) such that S(ρ1)− S(ρ0) ≥ g(n).
descriptions, and the number of gates in circuits are polynomially equivalent. However, in the space-
bounded scenario, only the last two quantities are polynomially equivalent, and their dependence on the
first quantity may be exponential.

8For instance, the construction in [FL18, Remark 11], or [PY86, BLT92] in general.
9It is noteworthy that Definition 6.7 (mostly) coincides with the case of s(n) = Θ(logn) and directly

takes the corresponding gate sequence of Q0 and Q1 as an input.
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New complete problems for space-bounded quantum computation. We now
present the main theorems in this section and the chapter. Theorem 6.11 establishes the
first family of natural coRQUL-complete problems. By relaxing the error requirement from
one-sided to two-sided, Theorem 6.12 identifies a new family of natural BQL-complete
problems on space-bounded quantum state testing. It is noteworthy that Theorems 6.11
and 6.12 also have natural exponential-size up-scaling counterparts.10

Theorem 6.11. The computational hardness of the following space-bounded quantum
state certification problems, for any deterministic logspace computable α(n) ≥ 1/poly(n),
is as follows:

(1) CertQSDlog[α(n)] is coRQUL-complete;

(2) CertQHSlog[α(n)] is coRQUL-complete.

Theorem 6.12. The computational hardness of the following space-bounded quantum
state testing problems, where α(n) − β(n) ≥ 1/poly(n) or g(n) ≥ 1/poly(n) as well as
α(n), β(n), g(n) can be computed in deterministic logspace, is as follows:

(1) GapQSDlog[α(n), β(n)] is BQL-complete;

(2) GapQEDlog[g(n)] is BQL-complete;

(3) GapQJSlog[α(n), β(n)] is BQL-complete;

(4) GapQHSlog[α(n), β(n)] is BQL-complete.

To establish Theorems 6.11 and 6.12, we introduce a general framework for space-
bounded quantum state testing in Section 6.2.1. Interestingly, BQL and coRQUL contain-
ments for these problems with respect to different distance-like measures, utilizing our
general framework, correspond to approximate implementations of distinct two-outcome
measurements. The main technical challenges then mostly involve parameter trade-offs
when using our space-efficient QSVT to construct these approximate measurement im-
plementations. We summarize this correspondence in Table 6.2 and the associated sub-
section, which provides the detailed proof.

Distance-like measure State testing State certification Two-outcome measurement
Πb for b ∈ {0, 1}

Trace distance GapQSDlog
Section 6.2.2

CertQSDlog
Section 6.2.4

I
2 + (−1)b

2 sgn(SV)
(
ρ0−ρ1

2

)
for ρ0 and ρ1

Quantum entropy difference
Quantum JS divergence

GapQEDlog
GapQJSlog
Section 6.2.3

None
I
2 −

(−1)b

2 · ln(ρi)
2 ln(2/β)

for ρi where i ∈ {0, 1}
and λ(ρi) ∈ [−β, β]

Hilbert-Schmidt distance GapQHSlog
Section 6.2.4

CertQHSlog
Section 6.2.4

I
2 + (−1)b

2 SWAP
for ρ0 ⊗ ρ1

Table 6.2: The correspondence between the distance-like measures and measurements.
10We can naturally extend Theorems 6.11 and 6.12 to their exponential-size up-scaling counterparts

with 2−O(s(n))-precision, employing the extended version of Definition 6.7 outlined in Remark 6.8, thus
achieving the complete characterizations for coRQUSPACE[s(n)] and BQPSPACE[s(n)], respectively.
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Notably, the measurement corresponding to the trace distance in Table 6.2 can be
viewed as an algorithmic Holevo-Helstrom measurement, as discussed further in Sec-
tion 6.3. Lastly, the corresponding hardness proof for all these problems is provided
in Section 6.2.5.

6.2.1 Space-bounded quantum state testing: a general framework

In this subsection, we introduce a general framework for quantum state testing that
utilizes a quantum tester T . Specifically, the space-efficient tester T succeeds (outputting
the value “0”) with probability x, which is linearly dependent on some quantity closely
related to the distance-like measure of interest. Consequently, we can obtain an additive-
error estimation x̃ of x with high probability through sequential repetition (Lemma 2.13).

To construct T , we combine the one-bit precision phase estimation [Kit95], commonly
known as the Hadamard test [AJL09], for block-encodings (see Lemma 2.19), with our
space-efficient quantum singular value transformation (QSVT) technique, which we de-
scribe in Chapter 5.

|0⟩ H H x

|0̄⟩
UPd′ (A)

|0⟩⊗r
Q

|0̄⟩

Figure 6.2: Quantum tester T (Q,UA, Pd′ , ϵ): the circuit implementation.

Constructing a space-efficient quantum tester. We now provide a formal defini-
tion and the detailed construction of the quantum tester T . The quantum circuit shown
in Figure 6.2 defines the quantum tester T (Q,UA, Pd′ , ϵ) using the following parameters
with s(n) = Θ(log n):

• A s(n)-qubit quantum circuit Q prepares the purification of an r(n)-qubit quantum
state ρ where ρ is the quantum state of interest;

• UA is a (1, s(n) − r(n), 0)-block-encoding of an r(n)-qubit Hermitian operator A
where A relates to the quantum states of interest and r(n) ≤ s(n);

• Pd′ is the space-efficiently computable degree-d′ polynomial defined by Equation (2.3)
obtained from some degree-d averaged Chebyshev truncation Pd′ with d′ = 2d− 1,
where Pd′(x) = ĉ0/2 + ∑d′

k=1 ĉkTk(x) ∈ R[x] and Tk is the k-th Chebyshev polyno-
mial, with d′ ≤ 2O(s(n)), such that the coefficients ĉ := (ĉ0, · · · , ĉd′) can be computed
in bounded-error randomized space O(s(n));

• ϵ is the precision parameter used in the estimation of x, with ϵ ≥ 2−O(s(n)).

Leveraging our space-efficient QSVT, we assume that there is an (α, ∗, ∗)-block-
encoding of Pd′(A), which is an approximate implementation of UPd′ (A) in Figure 6.2. Now,
we can define the corresponding estimation procedure, T̂ (Q,UA, Pd′ , ϵ, ϵH , δ), namely a
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quantum algorithm that computes an additive-error estimate αx̃ of Re(Tr(Pd′(A)ρ)) from
the tester T (Q,UA, Pd′ , ϵ). Technically speaking, T̂ outputs x̃ such that

|αx̃− Re(Tr(Pd′(A)ρ))| ≤ ∥ĉ∥1ϵ+ αϵH

with probability at least 1− δ. Now we will demonstrate that both the tester T and the
corresponding estimation procedure T̂ are space-efficient:

Lemma 6.13 (Quantum tester T and estimation procedure T̂ are space-efficient). As-
sume that there is an (α, ∗, ∗)-block-encoding of Pd′(A) that approximately implements
UPd′ (A), where α is either ∥ĉ∥1 or 1 based on conditions of Pd′ and A. The quantum
tester T (Q,UA, Pd′ , ϵ), as specified in Figure 6.2, accepts (outputting the value “0”) with
probability 1

2

(
1+ 1

α
Re(Tr(Pd′(A)ρ))

)
± 1

2α∥ĉ∥1ϵ. In addition, T̂ (Q,UA, Pd′ , ϵ, ϵH , δ) outputs
x̃ such that, with probability at least 1− δ, it holds that

∥αx̃− Re(Tr(Pd′(A)ρ))∥ ≤ ∥ĉ∥1ϵ+ αϵH .

Moreover, we can compute the quantum circuit description of T in deterministic space
O(s+ log(1/ϵ)) given the coefficient vector ĉ of Pd′. Furthermore, we can implement the
corresponding estimation procedure T̂ in bounded-error quantum space O(s + log(1/ϵ) +
log(1/ϵH) + log log(1/δ)).

Proof. Note that UA is a (1, a, 0)-block-encoding of A, where a = s− r.
We first consider the case where α = ∥ĉ∥1, which holds for any Pd′ and A. By

Theorem 5.12 with ϵ1 := 0 and ϵ2 := ϵ, we can implement an O(s)-qubit quantum
circuit U ′ that is a (∥ĉ∥1, â, ϵ∥ĉ∥1)-block-encoding of Pd′(A), using O(d2) queries to UA,
where â = a + ⌈log d′⌉ + 1. Assume that U ′ is a (1, â, 0)-block-encoding of A′, then
∥∥ĉ∥1A

′−Pd′(A)∥ ≤ ∥ĉ∥1ϵ. Additionally, we can compute the quantum circuit description
of U ′ in deterministic space O(s + log(1/ϵ)) given the coefficient vector ĉ of Pd′ . As the
quantum tester T (Q,UA, Pd′ , ϵ) is mainly based on the Hadamard test, by employing
Lemma 2.19, we have that T outputs 0 with probability

Pr[x = 0] = 1
2
(
1 + Re(Tr(A′ρ))

)
= 1

2

(
1 + Re

(
Tr
(
Pd′(A)
∥ĉ∥1

ρ
)))

± 1
2ϵ.

It is left to construct the estimation procedure T̂ . As detailed in Lemma 2.13, we can
obtain an estimation x̃ by sequentially repeating the quantum tester T (Q,UA, Pd′ , ϵ) for
O(1/ϵ2

H) times. This repetition ensures that |x̃−Re(Tr(A′ρ))| ≤ ϵH holds with probability
at least Ω(1), and derives an further implication on Pd′(A):

Pr[|∥ĉ∥1x̃− Re(Tr(Pd′(A)ρ))| ≤ (ϵ+ ϵH)∥ĉ∥1] ≥ Ω(1).
We thus conclude that construction of the estimation procedure T̂ (Q,UA, Pd′ , ϵ, ϵH , δ) by
using O(log(1/δ)/ϵ2

H) sequential repetitions of T (Q,UA, Pd′ , ϵ). Similarly, by Lemma 2.13,
T̂ (Q,UA, Pd, ϵ, ϵH , δ) outputs an estimation x̃ satisfies the following condition:

Pr[|∥ĉ∥1x̃− Re(Tr(Pd′(A)ρ))| ≤ (ϵ+ ϵH)∥ĉ∥1] ≥ 1− δ.
In addition, a direct calculation indicates that we can implement T̂ (Q,UA, Pd′ , ϵ, ϵH , δ)
in quantum space O(s+ log(1/ϵ) + log(1/ϵH) + log log(1/δ)) as desired.

Next, we move to the case where α = 1, applicable to certain Pd′ and A, namely when
Pd′(A) is a partial isometry in Theorem 5.12 or Pd′ = P sgn

d′ in Corollary 5.17. The proof is
similar, and we just sketch the key points as follows. Using Theorem 5.12 with ϵ1 := 0 and
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ϵ2 := ϵ/36, we can implement an O(s)-qubit quantum circuit U ′ that is a (1, a′, ϵ∥ĉ∥1)-
block-encoding of Pd′(A), using O(d2∥ĉ∥1) queries to UA, where a′ = a + ⌈log d′⌉ + 3.
Assume that U ′ is a (1, a′, 0)-block-encoding of A′, then ∥A′−Pd′(A)∥ ≤ ∥ĉ∥1ϵ. Similarly,
T outputs 0 with probability

Pr[x = 0] = 1
2
(
1 + Re(Tr(A′ρ))

)
= 1

2 (1 + Re (Tr (Pd′(A)ρ)))± 1
2∥ĉ∥1ϵ. (6.4)

Therefore, we can obtain an estimate x̃ such that
Pr[|x̃− Re(Tr(Pd′(A)ρ))| ≤ ∥ĉ∥1ϵ+ ϵH ] ≥ 1− δ. (6.5)

Similarly, using Corollary 5.17 with ϵ1 := 0 and ϵ2 := ϵ/(36Ĉsgn +37) when Pd′ = P sgn
d′ ,

we can also obtain the corresponding formulas of Equation (6.4) and Equation (6.5) by
substituting ∥ĉ∥1 with Ĉsgn, where ∥ĉsgn∥ ≤ Ĉsgn is a constant defined in Corollary 5.8.

6.2.2 GapQSDlog is in BQL

In this subsection, we demonstrate Theorem 6.14 by constructing a quantum algorithm
that incorporates testers T (Qi, U ρ0−ρ1

2
, P sgn

d , ϵ) for i ∈ {0, 1}, where the construction of
testers utilizes the space-efficient QSVT associated with the sign function.

Theorem 6.14. For any functions α(n) and β(n) that can be computed in deterministic
logspace and satisfy α(n)− β(n) ≥ 1/poly(n), we have that

GapQSDlog[α(n), β(n)] is in BQL.

Proof. Inspired by time-efficient algorithms for the low-rank variant of GapQSD [WZ24a],
we devise a space-efficient algorithm for GapQSDlog, presented formally in Algorithm 6.2.1.

Algorithm 6.2.1: Space-efficient algorithm for GapQSDlog.
Input : Quantum circuits Qi that prepare the purification of ρi for i ∈ {0, 1}.
Output: An additive-error estimation of T(ρ0, ρ1).
Params: ε := α−β

4 , δ := ε
2r+3 , ϵ := ε

2(36Ĉsgn+2Csgn+37) , d
′ := C̃sgn · 1δ log 1

ϵ
= 2d−1,

εH := ε
4 .

1. Construct block-encodings of ρ0 and ρ1, denoted by Uρ0 and Uρ1 , respectively,
using O(1) queries to Q0 and Q1 and O(s(n)) ancillary qubits by Lemma 2.18;

2. Construct a block-encoding of ρ0−ρ1
2 , denoted by Uρ0−ρ1

2
, using O(1) queries to

Uρ0 and Uρ1 and O(s(n)) ancillary qubits by Lemma 5.15;
Let P sgn

d′ be the degree-d′ polynomial specified in Corollary 5.8 with parameters δ
and ϵ, and its coefficients {ĉk}d

′
k=0 are computable in deterministic space

O(log(d/ϵ));
3. Set x0 := T̂ (Q0, U ρ0−ρ1

2
, P sgn

d′ , ϵ, ϵH , 1/10), x1 := T̂ (Q1, U ρ0−ρ1
2
, P sgn

d′ , ϵ, ϵH , 1/10);
4. Compute x = (x0 − x1)/2. Return “yes” if x > (α+ β)/2, and “no” otherwise.

Let us prove the correctness of Algorithm 6.2.1 and analyze the computational com-
plexity. We focus on the setting with s(n) = Θ(log n). We set ε := (α−β)/4 ≥ 2−O(s) and
assume that Q0 and Q1 are s(n)-qubit quantum circuits that prepare the purifications of
ρ0 and ρ1, respectively. According to Lemma 2.18, we can construct O(s)-qubit quantum
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circuits Uρ0 and Uρ1 that encode ρ0 and ρ1 as (1, O(s), 0)-block-encodings, using O(1)
queries to Q0 and Q1 as well as O(1) one- and two-qubit quantum gates. Next, we apply
Lemma 5.15 to construct a (1, O(s), 0)-block-encoding U ρ0−ρ1

2
of ρ0−ρ1

2 , using O(1) queries
to Qρ0 and Qρ1 , as well as O(1) one- and two-qubit quantum gates.

Let δ := ε
2r+3 , ϵ := ε

2(36Ĉsgn+2Csgn+37) , and d′ := C̃sgn · 1δ log 1
ϵ
≤ 2O(s(n)), where C̃sgn comes

from Corollary 5.8. Let P sgn
d′ ∈ R[x] be the polynomial specified in Corollary 5.8 with

d′ = 2d−1. Let ϵH = ε/4. By employing Corollary 5.17 (with ϵ1 := 0 and ϵ2 := ϵ) and the
corresponding estimation procedure T̂ (Qi, U ρ0−ρ1

2
, P sgn

d′ ,Θ(ϵ), ϵH , 1/10) from Lemma 6.13,
we obtain the values xi for i ∈ {0, 1}, ensuring the following inequalities:

Pr
[∣∣∣∣xi − Tr

(
P sgn
d′

(
ρ0 − ρ1

2

)
ρi

)∣∣∣∣ ≤ (36Ĉsgn + 37)ϵ+ ϵH

]
≥ 0.9 for i ∈ {0, 1}. (6.6)

Here, the implementation uses O(d2) queries to U ρ0−ρ1
2

and O(d2) multi-controlled single-
qubit gates. Moreover, the circuit descriptions of T̂ (Qi, U ρ0−ρ1

2
, P sgn

d′ , ϵ, ϵH , 1/10) can be
computed in deterministic time Õ(d9/2/ϵ) and space O(s(n)).

Now let x := (x0 − x1)/2. We will finish the correctness analysis of Algorithm 6.2.1
by showing Pr[|x− T(ρ0, ρ1)| ≤ ε] > 0.8 through Equation (6.6). By considering the
approximation error of P sgn

d′ in Corollary 5.8 and the QSVT implementation error in
Corollary 5.17, we derive the following inequality in Proposition 6.14.1, and the proof is
deferred to the end of this subsection:
Proposition 6.14.1. Pr

[
|x− T(ρ0, ρ1)| ≤ (36Ĉsgn + 2Csgn + 37)ϵ+ ϵH + 2r+1δ

]
> 0.8.

Under the aforementioned choice of δ, ϵ, and ϵH , we have ϵH = ε/4, 2r+1δ = ε/4, and
(36Ĉsgn + 2Csgn + 37)ϵ ≤ ε/2, and thus Pr[|x− T(ρ0, ρ1)|] > 0.8.

Finally, we analyze the computational resources required for Algorithm 6.2.1. Ac-
cording to Lemma 6.13, we can compute x in BQL, with the resulting algorithm requiring
O(d2/ϵ2

H) = Õ(22r/ε4) queries to Q0 and Q1. In addition, its circuit description can be
computed in deterministic time Õ(d9/2/ε) = Õ(24.5r/ε5.5).

Proof of Proposition 6.14.1. Using the triangle inequality, we obtain the following:∣∣∣∣x0 − x1

2 − T(ρ0, ρ1)
∣∣∣∣ =

∣∣∣∣x0 − x1

2 − Tr
(
ρ0 − ρ1

2 sgn
(
ρ0 − ρ1

2

))∣∣∣∣
≤
∣∣∣∣x0 − x1

2 − Tr
(
ρ0 − ρ1

2 P sgn
d′

(
ρ0 − ρ1

2

))∣∣∣∣
+
∣∣∣∣Tr
(
ρ0 − ρ1

2 P sgn
d′

(
ρ0 − ρ1

2

))
− Tr

(
ρ0 − ρ1

2 sgn
(
ρ0 − ρ1

2

))∣∣∣∣ .
For the first term, by noting the QSVT implementation error in Corollary 5.17, we

know by Equation (6.6) that, with probability at least 0.92 > 0.8, it holds that∣∣∣∣x0 − x1

2 − Tr
(
ρ0 − ρ1

2 P sgn
d′

(
ρ0 − ρ1

2

))∣∣∣∣ ≤ (36Ĉsgn + 37)ϵ+ ϵH . (6.7)

For the second term, let ρ0−ρ1
2 = ∑

j λj|ψj⟩⟨ψj|, where {|ψj⟩} is an orthonormal basis.
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Then, we can derive the following∣∣∣∣Tr
(
ρ0−ρ1

2 P sgn
d′

(
ρ0−ρ1

2

))
− Tr

(
ρ0−ρ1

2 sgn
(
ρ0−ρ1

2

))∣∣∣∣
≤
∑
j

|λjP sgn
d′ (λj)−λjsgn(λj)| .

(6.8)

We split the summation over j into three separate summations:∑
j

=
∑

λj<−δ
+
∑
λj>δ

+
∑

−δ≤λj≤δ
.

By noticing the approximation error of P sgn
d′ in Corollary 5.8 and ∑j |λj| = T(ρ0, ρ1) ≤ 1,

we can then obtain the following results for each of the three summations:∑
λj>δ

|λjP sgn
d′ (λj)− λjsgn(λj)| =

∑
λj>δ

|λj| |P sgn
d′ (λj)− 1| ≤

∑
λj>δ

|λj|Csgnϵ ≤ Csgnϵ,

∑
λj<−δ

|λjP sgn
d′ (λj)− λjsgn(λj)| =

∑
λj<−δ

|λj| |P sgn
d′ (λj) + 1| ≤

∑
λj<−δ

|λj|Csgnϵ ≤ Csgnϵ,

∑
−δ≤λj≤δ

|λjP sgn
d′ (λj)− λjsgn(λj)| ≤

∑
−δ≤λj≤δ

2|λj| ≤ 2r+1δ.

Hence, we derive the following inequality by summing over these three inequalities:∑
j

|λjP sgn
d′ (λj)− λjsgn(λj)| ≤ 2r+1δ + 2Csgnϵ. (6.9)

By combining Equation (6.7), Equation (6.8), and Equation (6.9), we conclude that∣∣∣∣x0 − x1

2 − T(ρ0, ρ1)
∣∣∣∣ ≤ (36Ĉsgn + 37)ϵ+ ϵH + 2Csgnϵ+ 2r+1δ.

6.2.3 GapQEDlog and GapQJSlog are in BQL

In this subsection, we will demonstrate Theorem 6.15 by devising a quantum algorithm
that encompasses testers T (Qi, Uρi

, P ln
d′ , ϵ) for i ∈ {0, 1}, where the construction of testers

employs the space-efficient QSVT associated with the normalized logarithmic function.
Consequently, we can deduce that GapQJSlog is in BQL via a reduction from GapQJSlog
to GapQEDlog.
Theorem 6.15. For any deterministic logspace computable function g(n) that satisfies
g(n) ≥ 1/poly(n), we have that

GapQEDlog[g(n)] is in BQL.

Proof. We begin by presenting a formal algorithm in Algorithm 6.2.2.
Let us now demonstrate the correctness and computational complexity of Algorithm 6.2.2.

We concentrate on the scenario with s(n) = Θ(log n) and ε = g/4 ≥ 2−O(s). Our strategy
is to estimate the entropy of each of ρ0 and ρ1, respectively. We assume that Q0 and
Q1 are s-qubit quantum circuits that prepare the purifications of ρ0 and ρ1, respectively.
By Lemma 2.18, we can construct (1, O(s), 0)-block-encodings Uρ0 and Uρ1 of ρ0 and ρ1,
respectively, using O(1) queries to Q0 and Q1 as well as O(1) one- and two-qubit quantum
gates.

Let β = min{ ε
2r+6 ln(2r+6/ε) ,

1
4}, ϵ := ε

4 ln(2/β)(Ĉln+Cln) and d′ := C̃ln · 1
β

log 1
ϵ

= 2O(s(n))

where C̃ln comes from Corollary 5.11. Let P ln
d′ ∈ R[x] be the polynomial specified in
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Algorithm 6.2.2: Space-efficient algorithm for GapQEDlog.
Input : Quantum circuits Qi that prepare the purification of ρi for i ∈ {0, 1}.
Output: An additive-error estimation of S(ρ0)− S(ρ1).
Params: ε := g

4 , β := min{ ε
2r+6 ln(2r+6/ε) ,

1
4}, d

′ := C̃ln · 1β log 1
ϵ

= 2d−1,
ϵ := ε

4 ln(2/β)(Ĉln+Cln) , ϵH := ε
8 ln(2/β) .

1. Construct block-encodings of ρ0 and ρ1, denoted by Uρ0 and Uρ1 , respectively,
using O(1) queries to Q0 and Q1 and O(s(n)) ancillary qubits by Lemma 2.18;

Let P ln
d′ be the degree-d′ polynomial specified in Corollary 5.11 with parameters β

and ϵ, and its coefficients {cln
k }d

′
k=0 are computable in bounded-error randomized

space O(log(d/ϵ));
2. Set x0 := T̂ (Q0, Uρ0 , P

ln
d′ , ϵ, ϵH , 1/10), x1 := T̂ (Q1, Uρ1 , P

ln
d′ , ϵ, ϵH , 1/10);

3. Compute x = 2 ln( 2
β
)(x0 − x1). Return “yes” if x > 0, and “no” otherwise.

Corollary 5.11 with d′ = 2d−1. Let ϵH := ε
8 ln(2/β) . By utilizing Corollary 5.18 (with ϵ1 :=

0 and ϵ2 := ϵ) and the corresponding estimation procedure T̂ (Qi, Uρi
, P ln

d′ , ϵ, ϵH , 1/10) from
Lemma 6.13, we obtain the values xi for i ∈ {0, 1}, ensuring the following inequalities:

Pr
[∣∣∣xi − Tr

(
P ln
d′ (ρi) ρi

)∣∣∣ ≤ Ĉlnϵ+ ϵH
]
≥ 0.9 for i ∈ {0, 1}. (6.10)

Here, the implementation uses O(d2) queries to Uρi
and O(d2) multi-controlled single-

qubit gates. Moreover, the circuit descriptions of T̂ (Qi, Uρi
, P ln

d′ , ϵ, ϵH , 1/10) can be com-
puted in bounded-error time Õ(d9/ϵ4) and space O(s(n)).

We will finish the correctness analysis of Algorithm 6.2.2 by demonstrating
Pr[|xi − S(ρi)| ≤ ε] ≥ 0.9

through Equation (6.10). By considering the approximation error of P ln
d′ in Corollary 5.11

and the QSVT implementation error in Corollary 5.18, we derive the following inequality
in Proposition 6.15.1, and the proof is deferred:
Proposition 6.15.1. The following inequality holds for i ∈ {0, 1}:

Pr
[ ∣∣∣2 ln

(
2
β

)
xi − S(ρi)

∣∣∣ ≤ 2 ln
(

2
β

) (
(Ĉln + Cln)ϵ+ ϵH + 2r+1β

) ]
≥ 0.9.

Consequently, it is left to show that 2 ln
(

2
β

) (
(Ĉln + Cln)ϵ+ ϵH + 2r+1β

)
≤ ε for the

specified value of β, ϵ, and ϵH . This can be seen by noticing that 2 ln(2/β)ϵH = ε/4,
2 ln(2/β)(Ĉln + Cln)ϵ = ε/2, and 2 ln(2/β) · 2r+1β ≤ ε/4. The first two inequalities are
trivial. For the third inequality, we state it below and its proof is deferred:
Proposition 6.15.2. 2 ln( 2

β
) · 2r+1β ≤ ε

4 .

Finally, we analyze the computational resources required for Algorithm 6.2.2. As
per Lemma 6.13, we can compute x in BQL, with the resulting algorithm requiring
O(d2/ϵ2

H) = Õ(22r/ε4) queries to Q0 and Q1. Furthermore, its circuit description can
be computed in bounded-error randomized time Õ(d9/ε4) = Õ(29r/ε13).

Lastly, we present the proof of Proposition 6.15.1 and Proposition 6.15.2.
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Proof of Proposition 6.15.1. We only prove the case with i = 0 while the case with i = 1
follows straightforwardly. By applying the triangle inequality with i = 0, we have:∣∣∣2 ln

(
2
β

)
x0 − S(ρ0)

∣∣∣
=
∣∣∣2 ln

(
2
β

)
x0 − 2 ln

(
2
β

)
Tr
(
P ln
d′ (ρ0)ρ0

)∣∣∣+ ∣∣∣2 ln
(

2
β

)
Tr
(
P ln
d′ (ρ0)ρ0

)
− S(ρ0)

∣∣∣ .
For the first term, by noting the QSVT implementation error in Corollary 5.18, we have
by Equation (6.10) that with probability at least 0.9, it holds that∣∣∣2 ln

(
2
β

)
x0 − 2 ln

(
2
β

)
Tr
(
P ln
d′ (ρ0)ρ0

)∣∣∣ ≤ 2 ln
(

2
β

) (
Ĉlnϵ+ ϵH

)
. (6.11)

For the second term, let ρ0 = ∑
j λj|ψj⟩⟨ψj|, where {|ψj⟩} is an orthonormal basis. Then,∣∣∣2 ln

(
2
β

)
Tr
(
P ln
d′ (ρ0)ρ0

)
− S(ρ0)

∣∣∣ ≤∑
j

∣∣∣2 ln
(

2
β

)
λjP

ln
d′ (λj)− λj ln(1/λj)

∣∣∣ . (6.12)

We split the summation over j into two separate summations: ∑j = ∑
λj>β +∑

λ≤β . By
noticing the approximation error of P ln

d′ in Corollary 5.11 and ∑
j |λj| = Tr(ρ) ≤ 1, we

can then obtain the following results for each of the two summations:∑
λj>β

∣∣∣2 ln
(

2
β

)
λjP

ln
d′ (λj)− λj ln(1/λj)

∣∣∣ =
∑
λj>β

|λj| ·
∣∣∣2 ln

(
2
β

)
P ln
d′ (λj)− ln(1/λj)

∣∣∣
≤
∑
λj>β

|λj| · 2 ln
(

2
β

)
Clnϵ

≤ 2 ln
(

2
β

)
Clnϵ,

∑
λj≤β

∣∣∣2 ln
(

2
β

)
λjP

ln
d′ (λj)− λj ln(1/λj)

∣∣∣ ≤ ∑
λj≤β

(
2 ln

(
2
β

)
|λj|+ |λj| ln(1/β)

)
≤ 2 ln

(
2
β

)
2r+1β.

Hence, we have derived the following inequality by summing over these two inequalities:∑
j

∣∣∣2 ln
(

2
β

)
λjP

ln
d′ (λj)− λj ln(1/λj)

∣∣∣ ≤ 2 ln
(

2
β

)
Clnϵ+ 2 ln

(
2
β

)
2r+1β. (6.13)

By combining Equation (6.11), Equation (6.12), and Equation (6.13), we conclude that∣∣∣2 ln
(

2
β

)
x0 − S(ρ0)

∣∣∣ ≤ 2 ln
(

2
β

) (
Ĉlnϵ+ ϵH + Clnϵ+ 2r+1β

)
.

Proof of Proposition 6.15.2. Note that the choice of β is given by β := ε

2r+6 ln( 2r+6
ε

)
. Then,

to demonstrate the inequality 2 ln( 2
β
) · 2r+1β ≤ ε

4 , it suffices to prove that

2 ln
2r+7 ln(2r+6

ε
)

ε

 · ε

25 ln(2r+6

ε
)
≤ ε

4 . (6.14)

Let x := 2−r−6ε ∈ (0, 1), then Equation (6.14) becomes ln
(

2
x

ln
(

1
x

))
≤ 4 ln

(
1
x

)
. This

simplifies further to 2x3 ln
(

1
x

)
≤ 1.

To complete the proof, let f(x) = 2x3 ln( 1
x
), then its first derivative is

f ′(x) = 2x2
(

3 ln
(1
x

)
− 1

)
.

Note that f ′(x) > 0 for x ∈ (0, e−1/3) and f ′(x) < 0 for x ∈ (e−1/3, 1). Thus f(x) is mono-
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tonically increasing for x ∈ (0, e−1/3) and monotonically decreasing for x ∈ (e−1/3, 1).
Therefore, f(x) takes the maximum value at x = e−1/3, and consequently,

f(x) ≤ f(e−1/3) = 2
3e ≤ 1.

GapQJSlog is in BQL. It is noteworthy that we can achieve GapQJSlog ∈ BQL by
employing the estimation procedure T̂ in Algorithm 6.2.2 for three according states,
given that the quantum Jensen-Shannon divergence QJS(ρ0, ρ1) is a linear combination of
S(ρ0), S(ρ1), and S

(
ρ0+ρ1

2

)
. Nevertheless, the logspace Karp reduction from GapQJSlog

to GapQEDlog (Corollary 6.16) allows us to utilize T̂ for only two states. Furthermore,
our construction is adapted from the time-bounded scenario, specifically Lemma 7.22.

Corollary 6.16. For any functions α(n) and β(n) that can be computed in deterministic
logspace and satisfy α(n)− β(n) ≥ 1/poly(n), we have that

GapQJSlog[α(n), β(n)] is in BQL.

Proof. Let Q0 and Q1 be the given s(n)-qubit quantum circuits where s(n) = Θ(log n).
Consider a classical-quantum mixed state on a classical register B and a quantum register
Y, denoted by ρ′

1 := 1
2 |0⟩⟨0| ⊗ ρ0 + 1

2 |1⟩⟨1| ⊗ ρ1, where ρ0 and ρ1 are the state obtained
by running Q0 and Q1, respectively, and tracing out the non-output qubits.

We utilize our reduction to output classical-quantum mixed states ρ′
0 and ρ′

1, which
are the output of (s + 2)-qubit quantum circuits Q′

0 and Q′
1,11 respectively, where ρ′

0 :=
(p0|0⟩⟨0| + p1|1⟩⟨1|) ⊗ (1

2ρ0 + 1
2ρ1) and B′ := (p0, p1) is an independent random bit with

entropy H(B′) = 1 − 1
2 [α(n) + β(n)]. Let Sbit(ρ) := S(ρ)/ ln 2 for any quantum state ρ,

we then have derived that:

Sbit(ρ′
0)− Sbit(ρ′

1) = Sbit(B′,Y)ρ′
0
− Sbit(B,Y)ρ′

1

= [H(B′) + Sbit(Y|B′)ρ′
0
]− [H(B) + Sbit(Y|B)ρ′

1
]

= Sbit(Y)ρ′
0
− Sbit(Y|B)ρ′

1
+ H(B′)− H(B)

= Sbit(Y)ρ′
0
− Sbit(Y|B)ρ′

1
− 1

2 [α(n) + β(n)]
= Sbit

(
1
2ρ0 + 1

2ρ1
)
− 1

2(Sbit(ρ0) + Sbit(ρ1))− 1
2 [α(n) + β(n)]

= QJSbit(ρ0, ρ1)− 1
2 [α(n) + β(n)].

(6.15)

Here, the second line derives from the definition of quantum conditional entropy and
acknowledges that both B and B′ are classical registers. The third line owes to the
independence of B′ as a random bit. Furthermore, the fifth line relies on the Joint
entropy theorem (Lemma 3.22).

By plugging Equation (6.15) into the promise of GapQJSlog[α(n), β(n)], we can define
g(n′) := ln 2

2

(
α(n)− β(n)

)
and conclude that:

11To construct Q′
1, we follow these steps: We start by applying a H gate on B followed by a CNOTB→R

gate where B and R are single-qubit quantum registers initialized on |0⟩. Next, we apply the controlled-
Q1 gate on the qubits from B to S, where S = (Y,Z) is an s(n)-qubit register initialized on |0̄⟩. We then
apply X gate on B followed by the controlled-Q0 gate on the qubits from B to S, and we apply X gate
on B again. Finally, we obtain ρ′

1 by tracing out R and the qubits in Z. In addition, we can construct
Q′

0 similarly.
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• If QJSbit(ρ0, ρ1) ≥ α(n), then S(ρ′
0)− S(ρ′

1) ≥ ln 2
2

(
α(n)− β(n)

)
= g(n′);

• If QJSbit(ρ0, ρ1) ≤ β(n), then S(ρ′
0)− S(ρ′

1) ≤ − ln 2
2

(
α(n)− β(n)

)
= −g(n′).

As ρ′
1 and ρ′

0 are r′(n′)-qubit states where n′ := 3n12 and r′(n′) := r(n) + 1, the
output length of the corresponding space-bounded quantum circuits Q′

0 and Q′
1 is r′(n).

Therefore, GapQJSs[α, β] is logspace Karp reducible to GapQEDs+3[g] by mapping
(Q0, Q1) to (Q′

0, Q
′
1).

6.2.4 CertQSDlog and CertQHSlog are in coRQUL

To make the error one-sided, we adapt the Grover search when the number of solutions
is one quarter [BBHT98], also known as the exact amplitude amplification [BHMT02]. A
detailed lemma, as stated in Lemma 2.17, can be found in Section 2.4.2.

Notably, when dealing with the unitary of interest with the property specified in
Lemma 2.17, which is typically a quantum algorithm with acceptance probability lin-
early dependent on the chosen distance-like measure (e.g., a tester T from Lemma 6.13),
Lemma 2.17 guarantees that the resulting algorithm A accepts with probability exactly
1 for yes instances (ρ0 = ρ1). However, achieving A to accept with probability polynomi-
ally deviating from 1 for no instances requires additional efforts, leading to the coRQUL
containment established through error reduction for coRQUL (Corollary 5.20).

In a nutshell, demonstrating coRQUL containments require to satisfy the desired prop-
erty, which is achieved differently for CertQSDlog and CertQHSlog.

CertQSDlog is in coRQUL

Our algorithm in Theorem 6.17 relies on the quantum tester T (Qi, U ρ0−ρ1
2
, P sgn

d , ϵ), as
specified in Algorithm 6.2.1. Note that the exact implementation of the space-efficient
QSVT associated with odd polynomials preserves the original point (Remark 5.13). Con-
sequently, T (Qi, U ρ0−ρ1

2
, P sgn

d , ϵ) outputs 0 with probability exactly 1/2 when ρ0 = ρ1,
enabling us to derive the coRQUL containment through a relatively involved analysis for
cases when T(ρ0, ρ1) ≥ α:

Theorem 6.17. For any deterministic logspace computable function α(n) ≥ 1/poly(n),
the following holds:

CertQSDlog[α(n)] is in coRQUL.

Proof. We first provide a formal algorithm, as presented in Algorithm 6.2.3.

Constructing the unitary of interest via the space-efficient QSVT. We con-
sider the setting with s(n) = Θ(log n) and ε = α/2. Suppose Q0 and Q1 are s(n)-
qubit quantum circuits that prepare the purifications of ρ0 and ρ1, respectively. Similar
to Algorithm 6.2.1, we first construct an O(s)-qubit quantum circuit U ρ0−ρ1

2
that is a

12By inspecting the circuit description of Q′
0 and Q′

1 (see Figures 7.1 and 7.2 for details), the maximum
number of gates in Q′

0 and Q′
1 is 2n + 9 + polylog(1/ϵ) ≤ 3n for large enough n. Specifically, the

implementation of Rθ in Figure 7.1 requires polylog(1/ϵ) = polylog(n) gates due to the space-efficient
Solovay-Kitaev theorem [vMW12, Theorem 4.3].
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Algorithm 6.2.3: Space-efficient algorithm for CertQSDlog.
Input : Quantum circuits Qi that prepare the purification of ρi for i ∈ {0, 1}.
Output: Return “yes” if ρ0 = ρ1, and “no” otherwise.
Params: ε := α

2 , δ := ε
2r+3 , ϵ := ε

2(36Ĉsgn+2Csgn+37) , d
′ := C̃sgn · 1

δ
log 1

ϵ
= 2d− 1.

1. Construct block-encodings of ρ0 and ρ1, denoted by Uρ0 and Uρ1 , respectively,
using O(1) queries to Q0 and Q1 and O(s(n)) ancillary qubits by Lemma 2.18;

2. Construct a block-encoding of ρ0−ρ1
2 , denoted by U ρ0−ρ1

2
, using O(1) queries to

Uρ0 and Uρ1 and O(s(n)) ancillary qubits by Lemma 5.15;
Let P sgn

d′ be the degree-d′ odd polynomial specified in Corollary 5.8 with
parameters δ and ϵ, and its coefficients {ĉk}d

′
k=0 are computable in deterministic

space O(log(d/ϵ));
3. Let U0 := T (Q0, U ρ0−ρ1

2
, P sgn

d′ , ϵ) and U1 := T (Q1, U ρ0−ρ1
2
, P sgn

d′ , ϵ);
4. Let Gi := −(H ⊗ Ui)(I − 2|0̄⟩⟨0̄|)(H ⊗ U †

i )(I − 2Π0) for i ∈ {0, 1}, where Π0 is
the projection onto the subspace spanned by {|0⟩|0⟩|φ⟩} over all |φ⟩;

5. Measure the first two qubits of Gi(H ⊗ Ui)|0⟩|0⟩|0̄⟩, and let xi0 and xi1 be the
outcomes, respectively. Return “yes” if x00 = x01 = x10 = x11 = 0, and “no”
otherwise.

(1, O(s), 0)-block-encoding of ρ0−ρ1
2 , using O(1) queries to Q0 and Q1 and O(1) one- and

two-qubit quantum gates.
Let δ = ε

2r+3 , ϵ := ε
2(36Ĉsgn+2Csgn+37) and d′ := C̃sgn · 1

δ
log 1

ϵ
= 2O(s(n)) where C̃sgn comes

from Corollary 5.8. Let P sgn
d′ ∈ R[x] be the odd polynomial specified in Corollary 5.8.

Let Ui := T (Qi, U ρ0−ρ1
2
, P sgn

d′ , ϵ) for i ∈ {0, 1}, then we have the following equalities with
0 ≤ p0, p1 ≤ 1:

U0|0⟩|0̄⟩ = √p0|0⟩|ψ0⟩+
√

1− p0|1⟩|ψ1⟩,
U1|0⟩|0̄⟩ = √p1|0⟩|ϕ0⟩+

√
1− p1|1⟩|ϕ1⟩.

Let H be the Hadamard gate, then we derive the following equality for i ∈ {0, 1}:

(H ⊗ Ui)|0⟩|0⟩|0̄⟩ =
√
pi
2 |0⟩|0⟩|ψ0⟩+

√
pi
2 |0⟩|1⟩|ψ0⟩+

√
1− pi

2 |1⟩|0⟩|ψ1⟩+
√

1− pi
2 |1⟩|1⟩|ψ1⟩︸ ︷︷ ︸√

1− pi
2 |⊥i⟩

.

Making the error one-sided by exact amplitude amplification. Consider the
Grover operator Gi := −(H⊗Ui)(I−2|0̄⟩⟨0̄|)(H⊗U †

i )(I−2Π0), where Π0 is the projection
onto the subspace spanned by {|0⟩|0⟩|φ⟩} over all |φ⟩. By employing the exact amplitude
amplification (Lemma 2.17), we can obtain that:

Gi(H ⊗ Ui)|0⟩|0⟩|0̄⟩ = sin(3θi)|0⟩|0⟩|ψ0⟩+ cos(3θi)|⊥i⟩,
where sin2(θi) = pi/2 when θi ∈ [0, π/4].

(6.16)

Let xi0 and xi1 be the measurement outcomes of the first two qubits of
Gi(H ⊗ Ui)|0⟩|0⟩|0̄⟩ for i ∈ {0, 1}.

Algorithm 6.2.3 returns “yes” if x00 = x01 = x10 = x11 = 0, and “no” otherwise. Let
U
P sgn

d′ ( ρ0−ρ1
2 ) be the unitary operator being controlled in the implementation of Ui :=
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T (Qi, U ρ0−ρ1
2
, P sgn

d′ , ϵ), and note that by Corollary 5.17, U
P sgn

d′ ( ρ0−ρ1
2 ) is a (1, O(s), (36Ĉsgn+

37)ϵ)-block-encoding of P sgn
d′

(
ρ0−ρ1

2

)
. The correctness of our algorithm is established as

follows:

• For yes instances (ρ0 = ρ1), UP sgn
d′ ( ρ0−ρ1

2 ) is a (1, O(s), 0)-block-encoding of the zero
operator, following from Remark 5.13. Consequently, T (Qi, U ρ0−ρ1

2
, P sgn

d′ , ϵ) outputs
0 with probability 1/2 for i ∈ {0, 1}, i.e., p0 = p1 = 1/2. As a result, we have
θ0 = θ1 = π/6 and sin2(3θ0) = sin2(3θ1) = 1. Substituting these values into
Equation (6.16), we can conclude that x00 = x01 = x10 = x11 = 0 with certainty,
which completes the analysis.

• For no instances (T(ρ0, ρ1) ≥ α), U
P sgn

d′ ( ρ0−ρ1
2 ) is a (1, O(s), 0)-block-encoding of

A satisfying
∥∥∥A− P sgn

d′

(
ρ0−ρ1

2

)∥∥∥ ≤ (36Ĉsgn + 37)ϵ. Let pi be the probability that
T (Qi, U ρ0−ρ1

2
, P sgn

d′ , ϵ) outputs 0 for i ∈ {0, 1}, then pi = 1
2

(
1 + Re(Tr(ρiA))

)
follow-

ing from Lemma 6.13. A straightforward calculation similar to Proposition 6.14.1
indicates that:

|(p0 − p1)− T(ρ0, ρ1)| ≤ (36Ĉsgn + 2Csgn + 37)ϵ+ 2r+1δ.

Under the choice of δ and ϵ (the same as in the proof of Theorem 6.15), we obtain
that |(p0−p1)−T(ρ0, ρ1)| ≤ ε which yields that max{|p0−1/2|, |p1−1/2|} ≥ ε/2.13

Noting that Pr[xi0 = xi1 = 0] = sin2(3θi) for i ∈ {0, 1}, Algorithm 6.2.3 will return
“yes” with probability pyes = sin2(3θ0) sin2(3θ1). We now provide an upper bound
for pyes:

Proposition 6.17.1. Let f(θ0, θ1) := sin2(3θ0) sin2(3θ1) be a function such that
sin2(θi) = pi/2 for i ∈ {0, 1} and max{|p0 − 1/2|, |p1 − 1/2|} ≥ ε/2, then

f(θ0, θ1) ≤ 1− ε2/4.

Proof. We begin by stating the facts that sin2(θi) = pi/2 for i ∈ {0, 1} and
sin2(3θ) = sin6(θ) − 6 cos2(θ) sin4(θ) + 9 cos4(θ) sin2(θ). Then we notice that 0 ≤
p0, p1 ≤ 1 and complete the proof by a direct calculation:

f(θ0, θ1) =
(
2p3

0 − 6p2
0 + 9

2p0
) (

2p3
1 − 6p2

1 + 9
2p1

)
≤
(

1−
(
p0 − 1

2

)2
)(

1−
(
p1 − 1

2

)2
)

≤ 1−
(
max

{∣∣∣p0 − 1
2

∣∣∣ , ∣∣∣p1 − 1
2

∣∣∣})2

≤ 1− ε2

4 .

Consequently, we finish the analysis by noticing
pyes = f(θ0, θ1) ≤ 1− ε2/4 = 1− α2/16.

Now we analyze the complexity of Algorithm 6.2.3. Following Lemma 6.13, we can
compute x00, x01, x10, x11 in BQL. The quantum circuit that computes x00, x01, x10, x11

13This inequality is because |p0 − p1| ≥ T(ρ0, ρ1)− ε ≥ 2ε− ε = ε.
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takes O(d2) = Õ(22r/α2) queries to Q0 and Q1, and its circuit description can be com-
puted in deterministic time Õ(d9/2/α) = Õ(24.5r/α5.5).

Finally, we conclude the coRQUL containment of CertQSDlog by applying error
reduction for coRQUL (Corollary 5.20) to Algorithm 6.2.3.

CertQHSlog is in coRQUL

We begin with the two-sided scenario, particularly providing the BQL containment of
GapQHSlog, as stated in Theorem 6.18. We then proceed to the one-sided error scenario.

Theorem 6.18. For any functions α(n) and β(n) that can be computed in deterministic
logspace and satisfy α(n)− β(n) ≥ 1/poly(n), we have that

GapQHSlog[α(n), β(n)] is in BQL.

Proof. We start by noting that

HS2(ρ0, ρ1) = 1
2
(
Tr(ρ2

0) + Tr(ρ2
1)
)
− Tr(ρ0ρ1).

Let ε := (α − β)/100. According to Lemma 2.15, we can use the SWAP test to
estimate Tr(ρ2

0), Tr(ρ2
1), and Tr(ρ0ρ1), and hence HS2(ρ0, ρ1), within additive error ε

with high probability by performing O(1/ε2) sequential repetitions. Therefore, we can
conclude that GapQHSlog[α(n), β(n)] is in BQL.

Our algorithm in Theorem 6.19 is based on the observation that by expressing HS2(ρ0, ρ1)
as a summation of 1

2Tr(ρ2
0), 1

2Tr(ρ2
1), and −Tr(ρ0ρ1), we can devise a hybrid algorithm

with two random coins using the SWAP test. However, to ensure unitary, we design
another algorithm employing the LCU technique, which serves as the unitary of interest
with the desired property.

Theorem 6.19. For any deterministic logspace computation function α(n) ≥ 1/poly(n),
the following holds:

CertQHSlog[α(n)] is in coRQUL.

Proof. We first provide a formal algorithm, as presented in Algorithm 6.2.4.

Constructing the unitary of interest via the SWAP test. We consider the setting
with s(n) = Θ(s(n)). Our main building block is the circuit implementation of the SWAP
test (Lemma 2.15). Specifically, we utilize the subroutine SWAP(ρi, ρj) for i, j ∈ {0, 1},
which involves applying Qi and Qj to prepare quantum states ρi and ρj, respectively, and
then employing the SWAP test on these states ρi and ρj. We denote by pij the probability
that SWAP(ρi, ρj) outputs 0 based on the measurement outcome of the control qubit in
the SWAP test. Following Lemma 2.15, we have pij = 1

2

(
1 + Tr(ρiρj)

)
for i, j ∈ {0, 1}.

We define Tij := SWAP(ρi, ρj) for (i, j) ∈ I := {(0, 0), 1, 1, 0, 1}, with the control
qubit in SWAP(ρi, ρj) serving as the output qubit of Tij. By introducing another ancil-
lary qubit, we construct T ′

ij := CNOT(I ⊗ Tij) for (i, j) ∈ I, where CNOT is controlled
by the output qubit of Tij and targets on the new ancillary qubit. It is effortless to see
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Algorithm 6.2.4: Space-efficient algorithm for CertQHSlog.
Input : Quantum circuits Qi that prepare the purification of ρi for i ∈ {0, 1}.
Output: Return “yes” if ρ0 = ρ1, and “no” otherwise.
1. Construct subroutines Tij := SWAP(ρi, ρj) for (i, j) ∈ {(0, 0), (1, 1), (0, 1)},
which output 0 with probability pij. The subroutine SWAP(ρi, ρj) involves
applying Qi and Qj to prepare quantum states ρi and ρj, respectively, and then
employing the SWAP test (Lemma 2.15) on these states ρi and ρj;

2. Construct a block-encoding of ϱ
(

1
2 + HS2(ρ0,ρ1)

4

)
where

ϱ(p) := p|0⟩⟨0|+ (1− p)|1⟩⟨1|, denoted by U , using O(1) queries to T00, T11, and
T01 by Lemma 5.15;

3. Let G := −U(I − 2|0̄⟩⟨0̄|)U †(I − 2|0̄⟩⟨0̄|);
4. Measure all qubits of GU |0̄⟩ in the computational basis. Return “yes” if the
measurement outcome is an all-zero string, and “no” otherwise.

that T ′
ij prepares the purification of ϱ(pij) with ϱ(pij) := pij|0⟩⟨0| + (1 − pij)|1⟩⟨1| for

(i, j) ∈ I.
By applying Lemma 2.18, we can construct quantum circuits T ′′

ij for (i, j) ∈ I that
serve as (1, O(s), 0)-block-encoding of ϱ(pij), using O(1) queries to T ′

ij and O(1) one- and
two-qubit quantum gates. Notably, (X ⊗ I)T ′′

01, with X acting on the qubit of ϱ(p2),
prepares the purification of Xϱ(p01)X† = p01|1⟩⟨1|+ (1− p01)|0⟩⟨0| = ϱ(1− p01), leading
to the equality:

ϱ(ρ0, ρ1) := 1
4ϱ(p00) + 1

4ϱ(p11) + 1
2ϱ(1− p01) = ϱ

(
1
2 + HS2(ρ0, ρ1)

4

)
.

Consequently, we employ Lemma 5.15 to construct a unitary quantum circuit U that
is a (1,m, 0)-block-encoding of ϱ

(
1
2 + HS2(ρ0,ρ1)

4

)
using O(1) queries to T ′′

00, T ′′
11, (X⊗I)T ′′

01,
and O(1) one- and two-qubit quantum gates, where m := O(s). The construction ensures
the following:

U |0⟩|0⟩⊗m =
(

1
2 + HS2(ρ0, ρ1)

4

)
︸ ︷︷ ︸

sin(θ)

|0⟩|0⟩⊗m + cos(θ)|⊥⟩, where ⟨0|⟨0|⊗m|⊥⟩ = 0. (6.17)

Making the error one-sided. Let us consider the Grover operator G := −U(I −
2|0̄⟩⟨0̄|)U †(I − 2|0̄⟩⟨0̄|). By applying Lemma 2.17, we derive that

GU |0⟩|0⟩⊗m = sin(3θ)|0⟩|0⟩⊗m + cos(3θ)|⊥⟩.
Subsequently, we measure all qubits of GU |0⟩|0⟩⊗m in the computational basis, repre-
sented as x ∈ {0, 1}m+1. Hence, Algorithm 6.2.4 returns “yes” if the outcome x is 0m+1

and “no” otherwise. Algorithm 6.2.4 accepts with probability sin2(3θ). Now we analyze
the correctness of the algorithm:

• For yes instances (ρ0 = ρ1), we have HS2(ρ0, ρ1) = 0. Following Equation (6.17), we
obtain sin(θ) = 1/2 and thus sin2(3θ) = 1. We conclude that Algorithm 6.2.4 will
always return “yes”.

131



• For no instances, we have HS2(ρ0, ρ1) ≥ α. According to Equation (6.17), we obtain:

sin(θ) = 1
2 + HS2(ρ0, ρ1)

4 ≥ 1
2 + α

4 ,

1
4 ≤ sin2(θ) =

(
1
2 + HS2(ρ0, ρ1)

4

)2

≤
(1

2 + 1
4

)2
= 9

16 .
(6.18)

As a result, considering the fact that
sin2(3θ) = f(sin2(θ)) where f(x) := 16x3 − 24x2 + 9x,

we require Proposition 6.19.1 and the proof is deferred to the end of this subsection:

Proposition 6.19.1. The polynomial function f(x) := 16x3 − 24x2 + 9x is mono-
tonically decreasing in [1/4, 9/16]. Moreover, we have

f

((1
2 + α

4

)2)
≤ 1− α2

2 for any 0 ≤ α ≤ 1.

Combining Equation (6.18) and Proposition 6.19.1, we have that

sin2(3θ) = f(sin2(θ)) ≤ f

((1
2 + α

4

)2)
≤ 1− α2

2 .

Hence, Algorithm 6.2.4 will return “no” with probability at least α2/2.

Regarding the computational complexity of Algorithm 6.2.4, this algorithm requires
O(s(n)) qubits and performs O(1) queries to Q0 and Q1. Finally, we finish the proof by
applying error reduction from coRQUL (Corollary 5.20) to Algorithm 6.2.3.

Lastly, we provide the proof of Proposition 6.19.1:

Proof of Proposition 6.19.1. Through a direct calculation, we have f ′(x) = 48x2− 48x+
9 ≤ 0 for x ∈ [1/4, 3/4], then f(x) is monotonically decreasing in [1/4, 9/16] ⊆ [1/4, 3/4].
Moreover, it is left to show that:

f
((

1
2 + α

4

)2
)

= α6

256 + 3α5

64 + 9α4

64 −
α3

8 −
3α2

4 + 1 ≤ 1− α2

2 .

Equivalently, it suffices to show that g(x) := − x4

256 −
3x3

64 −
9x2

64 + x
8 + 1

4 ≥ 0 for 0 ≤ x ≤ 1.
We first compute the first derivative of g(x), which is g′(x) = −x3

64 −
9x2

64 −
9x
32 + 1

8 . Setting
g′(x) equal to zero, we obtain three roots: x1 = −4, x2 = 1

2(−
√

33 − 5) < 0, and
x3 = 1

2(
√

33− 5) ∈ (0, 1).
Since g′(0) = 1/8 > 0 and g′(1) = −5/16 < 0, we conclude that g(x) is monotonically

increasing in [0, x3] and monotonically decreasing in [x3, 1]. Therefore, we can determine
the minimum value of g(x) by evaluating g(0) = 1

4 and g(1) = 47
256 . Since both values are

greater than zero, we conclude that min{g(0), g(1)} =
{

1
4 ,

47
256

}
> 0, as desired.
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6.2.5 BQL- and coRQUL-hardness of space-bounded state testing prob-
lems

We will prove that space-bounded state testing problems mentioned in Theorem 6.12
are BQUL-hard, which implies their BQL-hardness since BQL=BQUL [FR21]. Similarly, all
space-bounded state certification problems mentioned in Theorem 6.11 are coRQUL-hard.

Hardness results for GapQSDlog, GapQHSlog, and their certification version

Employing analogous constructions, we can establish the BQUL-hardness of both
GapQSDlog and GapQHSlog. The former involves a single-qubit pure state and a single-
qubit mixed state, while the latter involves two pure states.

Lemma 6.20 (GapQSDlog is BQUL-hard). For any deterministic logspace computable
functions a(n) and b(n) such that a(n)− b(n) ≥ 1/poly(n), we have that

GapQSDlog[1−
√
a(n),

√
1− b(n)] is BQUL[a(n), b(n)]-hard.

Proof. Consider a promise problem (Pyes,Pno) ∈ BQUL[a(n), b(n)], then we know that the
acceptance probability Pr[Cx accepts] ≥ a(n) if x ∈ Pyes, whereas Pr[Cx accepts] ≤ b(n)
if x ∈ Pno. Now we notice that the acceptance probability is the fidelity between a
single-qubit pure state ρ0 and a single-qubit mixed state ρ1 that is prepared by two
logarithmic-qubit quantum circuits Q0 and Q1, respectively:

Pr[Cx accepts] =
∥∥∥|1⟩⟨1|outCx|0̄⟩

∥∥∥2

2

=Tr
(
|1⟩⟨1|outTrout

(
Cx|0̄⟩⟨0̄|C†

x

))
=F2

(
|1⟩⟨1|out,Trout

(
Cx|0̄⟩⟨0̄|C†

x

))
:=F2(ρ0, ρ1).

(6.19)

In particular, the corresponding Q0 is simply flipping the designated output qubit, as well
as the corresponding Q1 is exactly the circuit Cx, then we prepare ρ0 and ρ1 by tracing
out all non-output qubits. By utilizing Lemma 3.17, we have derived that:

• For yes instances, F2(ρ0, ρ1) ≥ a(n) deduces that T(ρ0, ρ1) ≤ 1−
√
a(n);

• For no instances, F2(ρ0, ρ1) ≤ b(n) yields that T(ρ0, ρ1) ≥
√

1− b(n)

Therefore, we prove that GapQSDlog[1−
√
a(n),

√
1− b(n)] is BQL[a(n), b(n)]-hard.

To construct pure states, we adapt the approach from Lemma 6.20 by replacing the
final measurement in the BQL circuit Cx with a quantum gate (CNOT). We then design a
new algorithm based on Cx, with the final measurement on all qubits in the computational
basis, as demonstrated in the proof of Lemma 6.21.

Lemma 6.21 (GapQHSlog is BQUL-hard). For any deterministic logspace computable
functions a(n) and b(n) such that a(n)− b(n) ≥ 1/poly(n), we have that

GapQHSlog[1− a2(n), 1− b2(n)] is BQUL[a(n), b(n)]-hard.
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Proof. For any promise problem (Pyes,Pno) ∈ BQUL[a(n), b(n)], we have that the accep-
tance probability Pr[Cx accepts] ≥ a(n) if x ∈ Pyes, whereas Pr[Cx accepts] ≤ b(n) if
x ∈ Pno. For simplicity, let the output qubit be the register O. Now we construct a new
quantum circuit C ′

x with an additional ancillary qubit on the register F initialized to zero:
C ′
x := C†

xX
†
OCNOTO→FXOCx.

And we say that C ′
x accepts if the measurement outcome of all qubits (namely the working

qubit of Cx and F) are all zero. Through a direct calculation, we obtain:

Pr[C ′
x accepts] =

∥∥∥(|0̄⟩⟨0̄| ⊗ |0⟩⟨0|F)C†
xXOCNOTO→FXOCx(|0̄⟩ ⊗ |0⟩F)

∥∥∥2

2

=
∣∣∣(⟨0̄| ⊗ ⟨0|F)C†

x(|1⟩⟨1|O ⊗ IF + |0⟩⟨0|O ⊗XF)Cx(|0̄⟩ ⊗ |0⟩F)
∣∣∣2

=
∣∣∣⟨0̄|C†

x|1⟩⟨1|OCx|0̄⟩
∣∣∣2

= Pr2 [Cx accepts] .

(6.20)

Here, the second line owes to CNOTO→F = |0⟩⟨0|O⊗IF + |1⟩⟨1|O⊗XF, and the last line is
because of Equation (6.19). Interestingly, by defining two pure states ρ0 := |0̄⟩⟨0̄|⊗|0⟩⟨0|F
and ρ1 := C ′

x(|0̄⟩⟨0̄| ⊗ |0⟩⟨0|F)C ′†
x corresponding to Q0 = I and Q1 = C ′

x, respectively, we
deduce the following from Equation (6.20):

Pr[C ′
x accepts] = Tr(ρ0ρ1) = 1− HS2(ρ0, ρ1). (6.21)

Combining Equation (6.20) and Equation (6.21), we complete the proof by concluding
the following:

• For yes instances, Pr[Cx accepts] ≥ a(n) implies that HS2(ρ0, ρ1) ≤ 1− a2(n);

• For no instances, Pr[Cx accepts] ≤ b(n) yields that HS2(ρ0, ρ1) ≥ 1− b2(n).

Our constructions in the proof of Lemma 6.20 and Lemma 6.21 are somewhat analo-
gous to [RASW23, Theorem 12 and 13]. Then we proceed with a few direct corollaries
of Lemmas 6.20 and 6.21.
Corollary 6.22 (BQUL- and coRQUL-hardness). For any functions a(n) and b(n) are
computable in deterministic logspace such that a(n) − b(n) ≥ 1/poly(n), the following
holds for some polynomial p(n) which can be computed in deterministic logspace:

(1) GapQSDlog[α(n), β(n)] is BQUL-hard for α ≤ 1− 1/p(n) and β ≥ 1/p(n);

(2) CertQSDlog[γ(n)] is coRQUL-hard for γ ≤ 1− 1/p(n);

(3) GapQHSlog[α(n), β(n)] is BQUL-hard for α ≤ 1− 1/p(n) and β ≥ 1/p(n);

(4) CertQHSlog[γ(n)] is coRQUL-hard for γ ≤ 1− 1/p(n).

Proof. Firstly, it is important to note that BQUL is closed under complement, as demon-
strated in [Wat99, Corollary 4.8]. By combining error reduction for BQUL (Corollary 5.20)
and Lemma 6.20 (resp., Lemma 6.21), we can derive the first statement (resp., the third
statement).

Furthermore, to obtain the second statement (resp., the fourth statement), we can
utilize error reduction for coRQUL (Corollary 5.20) and set a = 1 in Lemma 6.20 (resp.,
Lemma 6.21).
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Hardness results for GapQJSlog and GapQEDlog

We prove the BQUL-hardness of GapQJSlog by reducing GapQSDlog to GapQJSlog,
following a similar approach as shown in Lemma 7.31.

Lemma 6.23 (GapQJSlog is BQUL-hard). For any functions α(n) and β(n) are com-
putable in deterministic logspace, we have that: For α(n) ≤ 1−

√
2√
p(n)

and β(n) ≥ 1
p(n) ,

GapQJSlog[α(n), β(n)] is BQUL-hard.
Here, p(n) is some deterministic logspace computable polynomial.

Proof. By employing Corollary 6.22, it suffices to reduce GapQSDlog[1− 1/p(n), 1/p(n)]
to GapQJSlog[α(n), β(n)]. Consider logarithmic-qubit quantum circuits Q0 and Q1,
which is a GapQSDlog instance. We can obtain ρk for k ∈ {0, 1} by performing Qk

on |0n⟩ and tracing out the non-output qubits. We then have the following:

• If T(ρ0, ρ1) ≥ 1− 1/p(n), then Lemma 3.25 yields that

QJSbit(ρ0, ρ1) ≥ 1− Hbit
(

1−T(ρ0,ρ1)
2

)
≥ 1− Hbit

(
1

2p(n)

)
≥ 1−

√
2√
p(n)
≥ α(n),

where the third inequality owing to Hbit(x) ≤ 2
√
x for all x ∈ [0, 1].

• If T(ρ0, ρ1) ≤ 1/p(n), then Lemma 3.26 indicates that
QJSbit(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 1

p(n) ≤ β(n).

Therefore, we can utilize the same quantum circuits Q0 and Q1, along with their cor-
responding quantum states ρ0 and ρ1, respectively, to establish a logspace Karp reduction
from GapQSDlog[1− 1/p(n), 1/p(n)] to GapQJSlog[α(n), β(n)], as required.

By combining the reduction from GapQSDlog to GapQJSlog (Lemma 6.23) and the
reduction from GapQJSlog to GapQEDlog (Corollary 6.16), we will demonstrate that
the BQUL-hardness of GapQEDlog through reducing GapQSDlog to GapQEDlog. This
proof resembles the approach outlined in Corollary 7.21.

Corollary 6.24 (GapQEDlog is BQUL-hard). For any function g(n) are computable in
deterministic logspace, we have that:

For any g(n) ≤ ln 2
2

(
1−

√
2√

p(n/3)
− 1

p(n/3)

)
,GapQEDlog[g(n)] is BQUL-hard.

Here, p(n) is some polynomial that can be computed in deterministic logspace.

Proof. By combining Corollary 6.22 and Lemma 6.23, we establish that:
For any α(n) ≤ 1−

√
2√
p(n)

and β(n) ≥ 1
p(n) ,GapQJSlog[α(n), β(n)] is BQUL-hard.

Here, p(n) is some deterministic logspace computable polynomial. The GapQSDlog-hard
(and simultaneously GapQJSlog-hard) instances, as specified in Corollary 6.22, consist of
s(n)-qubit quantum circuits Q0 and Q1 that prepare a purification of r(n)-qubit quantum
(mixed) states ρ0 and ρ1, respectively, where 1 ≤ r(n) ≤ s(n) = Θ(log n).
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Subsequently, by employing Corollary 6.16, we construct (s + 3)-qubit quantum cir-
cuits Q′

0 and Q′
1 that prepare a purification of (r + 1)-qubit quantum states ρ′

0 =(
p|0⟩⟨0| + (1 − p)|1⟩⟨1|

)
⊗ (1

2ρ0 + 1
2ρ1) satisfying Hbit(p) = 1 − ln 2

2

(
α(n) + β(n)

)
and

ρ′
1 = 1

2 |0⟩⟨0|⊗ρ0 + 1
2 |1⟩⟨1|⊗ρ1, respectively. Following Corollary 6.16, GapQEDlog[g(n)]

is BQUL-hard as long as

g(n) = ln 2
2

(
α(n/3)− β(n/3)

)
≤ ln 2

2

(
1−

√
2√

p(n/3)
− 1

p(n/3)

)
.

Therefore, GapQSDs is logspace Karp reducible to GapQEDs+1 by mapping (Q0, Q1)
to (Q′

0, Q
′
1).

6.3 Application: Algorithmic Holevo-Helstrom measurement and
an improved upper bound of QSZK

In this section, we introduce an algorithmic Holevo-Helstrom measurement that achieves
the optimal probability (with an additive error) for discriminating between quantum
states ρ0 and ρ1, as outlined in Theorem 3.12. We assume knowledge of the correspond-
ing polynomial-size quantum circuits, viewed as “source codes” for quantum devices, used
to prepare (purifications of) these states. We now define the Computational Quan-
tum Hypothesis Testing Problem:
Problem 6.25 (Computational Quantum Hypothesis Testing Problem). Given polynomial-
size quantum circuits Q0 and Q1 acting on n qubits and having r designated output qubits.
Let ρb denote the quantum state obtained by performing Qb on the initial state |0n⟩ and
tracing out the non-output qubits for b ∈ {0, 1}. Now, consider the following computa-
tional task:

• Input: A quantum state ρ, either ρ0 or ρ1, is chosen uniformly at random.

• Output: A bit b indicates that ρ = ρb.

For the Quantum Hypothesis Testing Problem analogous to Problem 6.25,
where ρ0 and ρ1 are not necessarily efficiently preparable, the maximum success prob-
ability to discriminate between quantum states ρ0 and ρ1 is given by the celebrated
Holevo-Helstrom bound, as stated in Theorem 3.12.

Next, we specify the optimal two-outcome measurement {Π0,Π1} that achieves the
maximum discrimination probability in Theorem 3.12:

Π0 = I

2 + 1
2sgn(SV)

(
ρ0 − ρ1

2

)
and Π1 = I

2 −
1
2sgn(SV)

(
ρ0 − ρ1

2

)
. (6.22)

It is straightforward to see that T(ρ0, ρ1) = 1
2Tr|ρ0 − ρ1| = Tr(Π0ρ0)− Tr(Π0ρ1).

By leveraging our space-efficient quantum singular value transformation in Chapter 5,
we can approximately implement the Holevo-Helstrom measurement specified in Equa-
tion (6.22) in quantum single-exponential time and linear space. We refer to this explicit
implementation of the Holevo-Helstrom measurement as the algorithmic Holevo-Helstrom
measurement:
Theorem 6.26 (Algorithmic Holevo-Helstrom measurement). Let ρ0 and ρ1 be quantum
states prepared by n-qubit quantum circuits Q0 and Q1, respectively, as defined in Prob-
lem 6.25. An approximate version of the Holevo-Helstrom measurement Π0 specified in
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Equation (6.22), denoted as Π̃0, can be implemented such that

|T(ρ0, ρ1)−
(
Tr(Π̃0ρ0)− Tr(Π̃0ρ1)

)
| ≤ 2−n.

The quantum circuit implementation of Π̃0, acting on O(n) qubits, requires 2O(n) queries
to the quantum circuits Q0 and Q1, as well as 2O(n) one- and two-qubit quantum gates.
Furthermore, the circuit description can be computed in deterministic time 2O(n) and
space O(n).

In addition, we show an implication of our algorithmic Holevo-Helstrom measurement
in Theorem 6.26. By inspecting the (honest-verifier) quantum statistical zero-knowledge
protocol (“distance test”) for (α, β)-QSD where α2 > β in [Wat02], we established a
slightly improved upper bound for the class QSZK since GapQSD is QSZK-hard:
Theorem 6.27 (GapQSD is in QIP(2) with a quantum linear-space honest prover).
There is a two-message quantum interactive proof system for GapQSD[α(n), β(n)] with
completeness c(n) =

(
1+α(n)−2−n

)
/2 and soundness s(n) = (1+β(n))/2. Moreover, the

optimal prover strategy for this protocol can be implemented in quantum single-exponential
time and linear space.
Consequently, for any α(n) and β(n) satisfying α(n)− β(n) ≥ 1/poly(n),

GapQSD[α(n), β(n)] is in QIP(2) with a quantum O(n′) space honest prover.
Here, n′ is the total input length of the quantum circuits that prepare the corresponding
tuple of quantum states.14

In the rest of this section, we provide the proof of Theorem 6.26 and the proof of
Theorem 6.27 in Section 6.3.1 and Section 6.3.2, respectively.

6.3.1 Algorithmic Holevo-Helstrom measurement: Proof of Theorem 6.26

Our algorithmic Holevo-Helstrom measurement primarily utilizes the space-efficient
quantum state tester (see Figure 6.2) in Section 6.2. By leveraging the space-efficient
polynomial approximation P sgn

d′ of the sign function (Corollary 5.8), it suffices to imple-
ment another two-outcome measurement {Π̂0, Π̂1}:

Π̂0 = I

2 + 1
2P

sgn
d′

(
ρ0 − ρ1

2

)
and Π̂1 = I

2 −
1
2P

sgn
d′

(
ρ0 − ρ1

2

)
.

By applying the space-efficient QSVT associated with the polynomial P sgn
d′ to the

block-encoding of (ρ0−ρ1)/2 (Corollary 5.17), we obtain the unitary UHH which is a block-
encoding of AHH :≈ P sgn

d′

(
ρ0−ρ1

2

)
. We now instead implement two-outcome measurement

{Π̃0, Π̃1} where Π̃0 = (I + AHH)/2, and the difference between {Π̂0, Π̂1} and {Π̃0, Π̃1} is
caused by the implementation error of our space-efficient QSVT.

We now proceed to the actual proof.

Proof of Theorem 6.26. Our algorithmic Holevo-Helstrom measurement is inspired by Al-
gorithm 6.2.1 in the proof of Theorem 6.14 (GapQSDlog is in BQL), as presented in
Figure 6.3.

14This tuple of quantum states results from a standard parallel repetition of the two-message quantum
interactive proof system for GapQSD[α(n), β(n)] with c(n)− s(n) ≥ 1/poly(n).
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|0⟩ H H b

|0̄⟩
UHH :≈ U

P sgn
d′

(
ρ0−ρ1

2

)
ρ

Figure 6.3: Algorithmic Holevo-Helstrom measurement.

Note that the input state ρ to the circuit specified in Figure 6.3 is an r(n)-qubit
quantum state, either ρ0 or ρ1, prepared by an n-qubit polynomial-size quantum circuit
(Q0 or Q1) after tracing out all n− r non-output qubits, where Q0 and Q1 are defined in
Problem 6.25. The key ingredient in Figure 6.3 is to implement the unitary UHH, which
can be achieved as follows:

(1) Applying Lemma 2.18, we can construct n-qubit quantum circuits Uρ0 and Uρ1 that
encode ρ0 and ρ1 as (1, n− r, 0)-block-encodings, using O(1) queries to Q0 and Q1,
together with O(1) one- and two-qubit quantum gates.

(2) Applying Lemma 5.15, we can construct a (1, n− r+ 1, 0)-block-encoding U ρ0−ρ1
2

of
ρ0−ρ1

2 , using O(1) queries to Q0 and Q1, as well as O(1) one- and two-qubit quantum
gates.

(3) Let P sgn
d′ ∈ R[x] be the degree-d′ polynomial obtained from some degree-d averaged

Chebyshev truncation, with d′ = 2d − 1, as specified in Corollary 5.8. We choose
parameters ε := 2−n, δ := ε

2r+3 , ϵ := ε
2(36Ĉsgn+2Csgn+37) , and d′ := C̃sgn · 1

δ
log 1

ϵ
= 2O(n)

where C̃sgn comes from Corollary 5.8. Applying the space-efficient QSVT associated
with the sign function (Corollary 5.17 with ϵ1 := 0 and ϵ2 := ϵ), we obtain the
unitary UHH.

Error analysis. We first bound the error caused by space-efficient polynomial approx-
imation in Corollary 5.8. Consider the spectral decomposition ρ0−ρ1

2 = ∑
j λj|ψj⟩⟨ψj|,

where {|ψj⟩} is an orthonormal basis. We can define index sets Λ− := {j : λj < −δ},
Λ0 := {j : − δ ≤ λj ≤ δ}, and Λ+ := {j : λj > δ}. Next, we have derived that:∣∣∣T(ρ0, ρ1)−

(
Tr(Π̂0ρ0)− Tr(Π̂0ρ1)

)∣∣∣
=
∣∣∣∣Tr

(
sgn

(ρ0 − ρ1
2

)ρ0 − ρ1
2

)
− Tr

(
P sgn
d′

(ρ0 − ρ1
2

)ρ0 − ρ1
2

)∣∣∣∣
≤

∑
j∈Λ−

∣∣λjsgn(λj)−λjP sgn
d′ (λj)

∣∣+ ∑
j∈Λ0

∣∣λjsgn(λj)−λjP sgn
d′ (λj)

∣∣+ ∑
j∈Λ+

∣∣λjsgn(λj)−λjP sgn
d′ (λj)

∣∣
≤

∑
j∈Λ−

|λj | · | − 1−P sgn
d′ (λj)|+

∑
j∈Λ0

∣∣λjsgn(λj)−λjP sgn
d′ (λj)

∣∣+ ∑
j∈Λ+

|λj | · |1−P sgn
d′ (λj)|

≤
∑
j∈Λ−

|λj |Csgnϵ+
∑
j∈Λ0

2|λj |+
∑
j∈Λ+

|λj |Csgnϵ

≤ 2Csgnϵ+ 2r+1δ.

Here, the third line owes to the triangle inequality, the fourth line applies the sign
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function, the fifth line is guaranteed by Corollary 5.8, and the last line is because∑j |λj| =
T(ρ0, ρ1) ≤ 1 and rank

(
ρ0−ρ1

2

)
is at most 2r. We then bound the error caused by space-

efficient QSVT implementation in Corollary 5.17:∣∣∣(Tr(Π̂0ρ0)− Tr(Π̂0ρ1)
)
−
(
Tr(Π̃0ρ0)− Tr(Π̃0ρ1)

)∣∣∣
=
∣∣∣∣Tr

(
P sgn
d′

(
ρ0 − ρ1

2

)
ρ0 − ρ1

2

)
− Tr

(
(⟨0̄| ⊗ Ir)UHH(|0̄⟩ ⊗ Ir)

ρ0 − ρ1

2

)∣∣∣∣
≤
∥∥∥∥P sgn

d′

(
ρ0 − ρ1

2

)
− (⟨0̄| ⊗ Ir)UHH(|0̄⟩ ⊗ Ir)

∥∥∥∥ · T(ρ0, ρ1)

≤(36Ĉsgn + 37)ϵ · 1.
Here, the third line is due to a matrix Hölder inequality (e.g., Corollary IV.2.6 in [Bha96])
and the last line is guaranteed by Corollary 5.17.

Combining the above error bounds caused by Corollary 5.8 and Corollary 5.17, re-
spectively, we obtain the following under the aforementioned choice of parameters:∣∣∣T(ρ0, ρ1)−

(
Tr(Π̃0ρ0)−Tr(Π̃0ρ1)

)∣∣∣
≤
∣∣∣T(ρ0, ρ1)−

(
Tr(Π̂0ρ0)−Tr(Π̂0ρ1)

)∣∣∣+ ∣∣∣(Tr(Π̂0ρ0)−Tr(Π̂0ρ1)
)
−
(
Tr(Π̃0ρ0)−Tr(Π̃0ρ1)

)∣∣∣
≤ 2Csgnϵ+ 2r+1δ + (36Ĉsgn + 37)ϵ · 1
≤ ε.

Complexity analysis. We complete the proof by analyzing the computational com-
plexity of our algorithm. According to Corollary 5.17, our algorithm specified in Figure 6.3
requires O(n) qubits and O(d2) ≤ Õ(22r/ε2) ≤ 2O(n) queries to Q0 and Q1. In addition,
the circuit description of our algorithm can be computed in deterministic time

Õ(d9/2/ε) = Õ(24.5r/ε5.5) ≤ 2O(n).

6.3.2 A slightly improved upper bound for QSZK: Proof of Theorem 6.27

We start by presenting the quantum interactive proof protocol used in Theorem 6.27,
as shown in Protocol 6.3.1. This protocol draws inspiration from [Wat02, Figure 2], and
the honest prover now employs the algorithmic Holevo-Helstrom measurement {Π̃0, Π̃1}
from Theorem 6.26, rather than the optimal measurement {Π0,Π1} in Equation (6.22)
as per Theorem 3.12.

Protocol 6.3.1: Two-message protocol for GapQSD with a quantum linear-
space prover.

1. The verifier V first chooses b ∈ {0, 1} uniformly at random. Subsequently, V
applies Qb to |0n⟩, and traces out all non-output qubits. The resulting state ρb
in the remaining qubits is then sent to the prover P ;

2. The prover P measures the received state ρ using the algorithmic
Holevo-Helstrom measurement {Π̃0, Π̃1} specified in Theorem 6.26. Let b̂ be the
measurement outcome, specifically, the outcome is b̂ if the measurement
indicates ρ is ρb̂, with b̂ ∈ {0, 1}. P then sends b̂ to V ;

3. The verifier V accepts if b = b̂; otherwise V rejects.

Following that, we delve into the analysis of Protocol 6.3.1:
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Proof of Theorem 6.27. Note that Pr
[
b̂ = a′|b = a

]
denotes the probability that the prover

P uses a two-outcome measurement {Π′
0,Π′

1}, which is arbitrary in general, to measure
the state ρa, resulting in the measurement outcome a′ for a, a′ ∈ {0, 1}. We then derive
the corresponding acceptance probability of Protocol 6.3.1:

Pr
[
b = b̂

]
= 1

2 Pr
[
b̂ = 0|b = 0

]
+ 1

2 Pr
[
b̂ = 1|b = 1

]
= 1

2 + 1
2
(
Tr(Π′

0ρ0)−Tr(Π′
0ρ1)

)
. (6.23)

For yes instances where T(ρ0, ρ1) ≥ α(n), as the prover P is honest, we have

Pr
[
b = b̂

]
=1

2 + 1
2

(
Tr(Π̃0ρ0)− Tr(Π̃0ρ1)

)
≥1

2 + 1
2

(
Tr(Π0ρ0)− Tr(Π0ρ1)

)
−
∣∣∣12(Tr(Π0ρ0)− Tr(Π0ρ1)

)
− 1

2

(
Tr(Π̃0ρ0)− Tr(Π̃0ρ1)

)∣∣∣
=1

2 + 1
2T(ρ0, ρ1)−

∣∣∣12T(ρ0, ρ1)− 1
2

(
Tr(Π̃0ρ0)− Tr(Π̃0ρ1)

)∣∣∣
≥1

2 + 1
2

(
α(n)− 2−n

)
.

Here, the first line follows Equation (6.23), the second line owes to the triangle equality
and the fact that Tr(Π̃0ρ0)−Tr(Π̃0ρ1) > 0,15 the third line is because of Theorem 3.12 and
Equation (6.22), and the last line uses Theorem 6.26. Hence, we have the completeness
c(n) = 1

2 + 1
2

(
α(n)− 2−n

)
.

For no instances where T(ρ0, ρ1) ≤ β(n), we obtain the following from Equation (6.23):

Pr
[
b = b̂

]
= 1

2 + 1
2
(
Tr(Π′

0ρ0)− Tr(Π′
0ρ1)

)
≤ 1

2 + 1
2T(ρ0, ρ1) ≤

1
2
(
1 + β(n)

)
:= s(n).

Here, the first inequality is guaranteed by the Holevo-Helstrom bound (Theorem 3.12).

Therefore, since the honest prover (for yes instances) utilizes the algorithmic Holevo-
Helstrom measurement {Π̃0, Π̃1}, the optimal prover strategy aligned with Protocol 6.3.1
is indeed implementable in quantum single-exponential time and linear space due to
Theorem 6.26.

Error reduction for Protocol 6.3.1. Note that the class QIP(2) consists of two-
message quantum interactive proof systems with completeness c ≥ 2/3 and soundness
s ≤ 1/3 [JUW09, Section 3.1]. We aim to reduce the completeness and soundness errors
in Protocol 6.3.1.

Following [JUW09, Section 3.2], we can achieve this task by a standard parallel rep-
etition of Protocol 6.3.1. Specifically, we define new verifier V ′ and honest prover P ′

such that for any polynomial-bounded function l(n), the resulting two-message quantum
interactive proof system has completeness c′(n) ≥ 1−2−l(n) and soundness s′(n) ≤ 2−l(n).
Let c(n) − s(n) ≥ 1/q(n) for some polynomially-bounded function q and define [l] :=
{1, · · · , l}, a description of V ′ follows:

(1) Let s := 2lq and t := 8lq2s. Run st independent and parallel executions of Protocol
15This is because the difference between Tr(Π0ρ0)−Tr(Π0ρ1) and Tr(Π̃0ρ0)−Tr(Π̃0ρ1) is much smaller

than Tr(Π0ρ0)−Tr(Π0ρ1) = T(ρ0, ρ1) ≥ α(n), guaranteeing by the parameters chosen in Theorem 6.26.
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6.3.1 for V ′, one for each pair (i, j) with i ∈ [s] and j ∈ [t]. Measure the output
qubit for each execution, and let the measurement outcome for execution (i, j) be
denoted by yi,j ∈ {0, 1}.

(2) For each i ∈ [s], set zi :=

1, if ∑t
j=1 yi,j ≥ t · a+b

2
0, otherwise .

(3) V ′ accepts if ∧si=1zi = 1; otherwise, it rejects.

The correctness of V ′ directly follows from [JUW09, Section 3.2].
We now analyze the complexity of the honest prover P ′. Since st independent

and parallel executions of Protocol 6.3.1 can be viewed as discriminating st pairs of
quantum states (ρ(j)

0 , ρ
(j)
1 ) for 1 ≤ j ≤ st, the total input length of the quantum cir-

cuits to independently and parallelly prepare the states ρ(1)
b , · · · , ρ(st)

b for b ∈ {0, 1} is
n · st = 16nl2(n)q3(n) ≤ O(nc) := n′ for some constant c. Replacing n with n′, the space
complexity of the honest prover P ′ is still O(n′).

Lastly, we completely the proof by choosing an appropriate r(n) such that the com-
pleteness c(n′) ≥ 1− 2−r1/c(n′) ≥ 2/3 and the soundness s(n′) ≤ 2−r1/c(n′) ≤ 1/3.

6.4 Application: Space-bounded unitary quantum statistical zero-
knowledge

In this section, we will introduce (honest-verifier) space-bounded unitary quantum
statistical zero-knowledge, denoted as QSZKUL and QSZKULHV, as specific types of space-
bounded unitary quantum interactive proofs (QIPUL) that possess an additional statis-
tical zero-knowledge property. Further characterizations of the space-bounded quantum
interactive proofs can be found in [LLNW24].

Before presenting our results, we start by defining the promise problem IndivProdQSD,
which is analogous to QSD [Wat02] and GapQSDlog (see Definition 6.9):

Definition 6.28 (Individual Product State Distinguishability, IndivProdQSD[k, α, δ]).
Let k(n), α(n), δ(n), and r(n) be logspace computable functions such that 1 ≤ k(n) ≤
poly(n), 0 ≤ α(n), δ(n) ≤ 1, α(n) − δ(n) · k(n) ≥ 1/poly(n), and 1 ≤ r(n) ≤ O(log n).
Let Q1, · · · , Qk and Q′

1, · · · , Q′
k be polynomial-size unitary quantum circuits acting on

O(log n) qubits, each with r(n) specified output qubits. For j ∈ [k], let σj and σ′
j denote

the states obtained by running Qj and Q′
j on the all-zero state |0̄⟩, respectively, and tracing

out the non-output qubits, then the promise is that one of the following holds:

• Yes: Two k-tuples of quantum circuits (Q1, · · · , Qk) and (Q′
1, · · · , Q′

k) such that
T(σ1 ⊗ · · · ⊗ σk, σ′

1 ⊗ · · · ⊗ σ′
k) ≥ α(n);

• No: Two k-tuples of quantum circuits (Q1, · · · , Qk) and (Q′
1, · · · , Q′

k) such that

∀j ∈ [k], T
(
σj, σ

′
j

)
≤ δ(n).

Additionally, we denote the complement of IndivProdQSD[k(n), α(n), δ(n)], with
respect to the chosen parameters α(n), δ(n), and k(n), as IndivProdQSD.
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With these definitions in hand, we now provide our first theorem in this section:

Theorem 6.29 (The equivalence of QSZKUL and BQL). The following holds:

(1) For any logspace-computable function m(n) such that 1 ≤ m(n) ≤ poly(n),
∪c(n)−s(n)≥1/poly(n)QSZKULHV[m, c, s] ⊆ BQL.

(2) BQL ⊆ QSZKUL ⊆ QSZKULHV.

The class QSZKUL consists of space-bounded unitary quantum interactive proof sys-
tems that possess statistical zero-knowledge against any verifier, whereas QSZKL proof
systems possess statistical zero-knowledge against only an honest verifier. Consequently,
the inclusion in Theorem 6.29(2) is straightforward, following directly from these defini-
tions. To establish the direction QSZKULHV ⊆ BQL, we proceed by proving the following:

Theorem 6.30 (IndivProdQSD is QSZKULHV-complete). The following holds:

(1) Let c(n) and s(n) be logspace computable functions such that 0 ≤ s(n) < c(n) ≤ 1.
For any logspace-computable function m(n) such that 3 ≤ m(n) ≤ poly(n),

IndivProdQSD[m/2, α, 2δ] is QSZKULHV[m, c, s]-hard.
Here, α := (

√
c−
√
s)2/(2m− 4) and δ is some negligible function.

(2) Let k(n), α(n) and δ(n) be logspace computable functions such that 1 ≤ k(n) ≤
poly(n), 0 ≤ α(n), δ(n) ≤ 1, and α(n)− δ(n) · k(n) ≥ 1/poly(n). It holds that:

IndivProdQSD[k, α, δ] ∈ BQL ⊆ QSZKULHV.

In the remainder of this section, we first provide the definition of space-bounded uni-
tary quantum interactive proofs, with useful results taken from [LLNW24]. We then pro-
vide the definition of honest-verifier space-bounded quantum statistical zero-knowledge
proofs (the class QSZKULHV) in Section 6.4.2. Next, we establish that IndivProdQSD
is QSZKULHV-hard (Theorem 6.30(1)) in Section 6.4.3. Subsequently, we present the BQL
upper bound for QSZKULHV (Theorem 6.30(2)) in Section 6.4.4.

6.4.1 Definitions of space-bounded unitary quantum interactive proofs

Our definitions of space-bounded quantum interactive proofs follow that of [KW00,
Section 2.3] and [Wat02, Section 2.3]. In this framework, a (log)space-bounded quantum
interactive proof system consists of two parties: an untrusted prover with unbounded
computational power, and a verifier constrained to using only O(log n) qubits, enabling
at most polynomial-time quantum computation.

We introduce space-bounded unitary quantum interactive proof systems, denoted by
QIPUL. The verifier has direct access to the messages exchanged during interactions, which
limits each message size to O(log n). Additionally, the verifier’s actions are implemented
using space-bounded unitary quantum circuits.

Formal definition QIPUL. Given a promise problem P = (Pyes,Pno), a quantum veri-
fier is logspace-computable mapping V , where for each input string x ∈ P ⊆ {0, 1}∗, V (x)
is interpreted as an encoding of a k(|x|)-tuple (V (x)1, · · · , V (x)k) of quantum circuits.

142



These circuits represent the verifier’s actions at each round of the proof system. Specifi-
cally, each V (x)j is a space-bounded unitary quantum circuit acting on two registers M
and W, which hold qM(|x|) and qW(|x|) qubits, respectively. The total number of qubits
satisfies qM(|x|) + qW(|x|) ≤ O(log n), with W private to the verifier.

Furthermore, the logspace-computability of V (x) requires a strong notion of unifor-
mity: there must exist a logspace deterministic Turing machineM that, for each input x,
outputs the classical description of (V (x)1, · · · , V (x)k).16 Lastly, the verifier V is called
m(|x|)-message if k(|x|) = ⌊m(|x|)/2 + 1⌋ for all integer |x|, depending on whether m is
even or odd.

Similar to standard quantum interactive proofs, the prover and the verifier in the same
space-bounded quantum interactive proof system must be compatible. This means that
they must agree on the maximum length qM(|x|) of each message exchanged in the proof
system and the total number m(|x|) of these messages. Hence, a quantum prover P is a
function that maps each input x ∈ P to an l(|x|)-tuple (P (x)1, · · · , P (x)l) of quantum
circuits, where l(|x|) = ⌊(m(|x|) + 1)/2⌋. Each circuit P (x)j acts on two registers Q and
M with qQ(|x|) and qM(|x|) qubits, respectively, satisfying that Q is private to the prover.
Since there are no restrictions on the prover P , each P (x)j can be viewed as an arbitrary
unitary transformation in general.

Figure 6.4: A 2l-turn space-bounded quantum interactive proof system (with snapshots).

Given an input x ∈ P , and a prover P and a verifier V that exchange m(|x|) messages,
we define an m(|x|)-turn space-bounded unitary quantum interactive proof system (P⇌
V )(x), namely a QIPUL proof system, as a quantum circuit acting on the registers Q, M,
and W as follows:

• If m(|x|) = 2l(|x|) is even, circuits V (x)1, P (x)1, · · · , V (x)l, P (x)l, V (x)l+1 are ap-
plied in sequence to the registers M and W, or to the registers Q and M accordingly.

• If m(|x|) = 2l(|x|) + 1 is odd, the situation is similar, except that the prover
starts the protocol, so the circuits P (x)1, V (x)1, · · · , P (x)l+1, V (x)l+1 are applied
in sequence.

Without the loss of generality, we assume that the prover always sends the last mes-
sage. See also Figure 6.4 for an illumination of the case when m(|x|) is even. For
convenience, we sometimes omit the dependence on x and |x| when describing P and V ,
e.g., using Pj and Vj to denote P (x)j and V (x)j, respectively, and m to denote m(|x|).

16This uniformity requirement is slightly stronger and less general than merely requiring all quantum
circuits V (x)1, · · · , V (x)k to be logspace-bounded (referred to as a weaker notion of uniformity), as the
classical descriptions of these quantum circuits may not be generated by a single logspace deterministic
Turing machine (although a polynomial-time deterministic Turing machine would suffice).

143



Assuming the mapping V (x) = (V (x)1, · · · , V (x)k) in a QIPUL proof system is a
collection of unitary quantum circuits,17 the state of the qubits in the circuit P⇌V is a
pure state on the registers (Q,M,V) after the verifier’s j-th action. Thus, for a given input
x, the probability that P⇌V accepts x is defined as the probability that measuring the
designated output qubit – typically the first qubit of (M,W) – of (P⇌V )(x)|0̄⟩Q|0̄⟩M|0̄⟩W
in the computational basis yields the outcome 1.

Let ω(V ) denote the maximum acceptance probability of the verifier V in the proof
system P⇌V . We are now ready to define space-bounded unitary quantum interactive
proof systems:

Definition 6.31 (Space-bounded unitary quantum interactive proofs, QIPUL). Let c(n),
s(n), and m(n) be logspace-computable functions of the input length n := |x| such that
0 ≤ s(n) < c(n) ≤ 1 and 1 ≤ m(n) ≤ poly(n). A promise problem P = (Pyes,Pno) is in
QIPULm[c, s], if there exists an m(n)-turn logspace-computable unitary quantum verifier
V such that:

• Completeness. For any x ∈ Pyes, there is an m(n)-message prover P such that
ω(V ) ≥ c(n).

• Soundness. For any x ∈ Pno and any m(n)-message prover P ,
ω(V ) ≤ s(n).

Furthermore, we define QIPULm := QIPULm[2/3, 1/3] and QIPUL := ∪m≤poly(n)QIPULm.

In addition to the formal definition, as established in [LLNW24], QIPUL admits error
reduction based through sequential repetition:

Lemma 6.32 (Error reduction for QIPUL). Let c(n), s(n), and m(n) be logspace-computable
functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n) − s(n) ≥ 1/poly(n), and 1 ≤ m(n) ≤
poly(n). For any polynomial k(n), it holds that

QIPULm[c, s] ⊆ QIPULm′

[
1, 2−k

]
.

Here, the number of turns m′ := O
(
km/ log 1

1−(c−s)2/2

)
.

6.4.2 Definition of space-bounded unitary quantum statistical zero-knowledge

Our definition of (honest-verifier) space-bounded quantum statistical zero-knowledge
follows that of [Wat02, Section 3.1]. In this framework, an honest-verifier space-bounded
unitary quantum statistical zero-knowledge proof system is a space-bounded unitary
quantum interactive proof system, as defined in Section 6.4.1, that satisfies an addi-
tional zero-knowledge property. Intuitively, the zero-knowledge property in QIPUL proof
systems requires that, after each message is sent, the quantum states representing the
verifier’s view – including snapshot states in the message register M and the verifier’s pri-
vate register W – should be approximately indistinguishable by a space-bounded unitary
quantum circuit on accepted inputs.

17This assumption about the verifier’s actions is crucial for adapting several techniques from standard
quantum interactive proofs. For further details, see [VW16, Section 4.1.4].
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We then formalize this notion. Consider a set {ρx,i} of mixed states, we say that this
state set is logspace-preparable if there exists a family of m-tuples Sx := (Sx,1, · · · , Sx,m),
where each Sx,i for i ∈ [m] is a space-bounded unitary quantum circuit (see Definition 2.1)
with a specified collection of output qubits, such that for each input x and index i,
the state ρx,i is the mixed state obtained by running Sx,i on the input state |0̄⟩, and
then tracing out all non-output qubits. We refer to such {Sx}x∈P as the space-bounded
simulator for the promise problem P .

Next, for any space-bounded quantum interactive proof system P ⇌ V , we define
the verifier’s view after the i-th turn, denoted by viewP⇌V (x, i), as the reduced state in
registers (M,W) immediately after i messages have been exchanged, with the prover’s
private qubits traced out.

We are now ready for the formal definition:

Definition 6.33 (Honest-verifier space-bounded unitary quantum statistical zero-knowl-
edge, QSZKULHV). Let c(n), s(n), and m(n) be logspace-computable functions of the input
length n := |x| such that 0 ≤ s(n) < c(n) ≤ 1 and 1 ≤ m(n) ≤ poly(n). A promise
problem P = (Pyes,Pno) is in QSZKULHV[m, c, s], if there exists an m(n)-message space-
bounded unitary quantum interactive proof system (P⇌V )(x) such that:

• Completeness. For any x ∈ Pyes, there is an m(n)-message prover P such that
Pr (P⇌V )(x) accepts ≥ c(n).

• Soundness. For any x ∈ Pno and any m(n)-message prover P ,
Pr (P⇌V )(x) accepts ≤ s(n).

• Zero-knowledge. There exists a space-bounded simulator {Sx}x∈P and a negligible
function δ(n) such that for any x ∈ Pyes and each message i ∈ [m], the circuit Sx(i)
produces the corresponding state σx,i satisfying

T(σx,i, viewP⇌V (x, i)) ≤ δ(n).

We define QSZKULHV[m] := QSZKULHV
[
m, 2

3 ,
1
3

]
and QSZKULHV := ∪m≤poly(n)QSZKULHV[m].

Since the inequality condition in the zero-knowledge property holds independently for
each message in Definition 6.33, error reduction via sequential repetition (Lemma 6.32)
directly applies to an honest-verifier space-bounded quantum statistical zero-knowledge
proof system, with the zero-knowledge property automatically preserved.
Remark 6.34 (Robustness of the zero-knowledge property in QSZKULHV). Let QSZKUL⋆HV
denote a weaker version of QSZKULHV, where the threshold function

δ(n) :=
(√

c−
√
s
)2
/
(
2m2

)
, 18

rather than being negligible. While it is clear that QSZKULHV ⊆ QSZKUL⋆HV, the standard
approach to establish the reverse direction does not apply to QSZKULHV.19 Instead, the
inclusion QSZKUL⋆HV ⊆ QSZKULHV only follows from QSZKUL⋆HV = BQL (Theorem 6.29).

18This bound results from the reduction to the QSZKULHV-hard problem IndivProdQSD, see The-
orem 6.35.

19In particular, the polarization lemma for the trace distance [Wat02, Section 4.1] is not applicable in
the space-bounded scenario due to message size constraints.
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6.4.3 IndivProdQSD is QSZKULHV-hard

Instead of directly proving that IndivProdQSD is QSZKULHV-hard, we establish
a slightly stronger result: the promise problem IndivProdQSD is hard for the class
QSZKUL⋆HV that contains QSZKULHV (Remark 6.34), as detailed in Theorem 6.35. This
result mirrors the relationship between QSD and the class QSZK.

Theorem 6.35 (IndivProdQSD is QSZKUL⋆HV-hard). Let c(n), s(n), and m(n) be
logspace computable functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n) − s(n) ≥ 1/poly(n),
and 3 ≤ m(n) ≤ poly(n).20 Then, it holds that

IndivProdQSD[⌈m(n)/2⌉, α(n), 2δ(n)] is QSZKUL⋆HV[m(n), c(n), s(n)]-hard.
Here, δ := (

√
c−
√
s)2/(2m2) and α := (

√
c−
√
s)2/(2m− 4).

Before presenting the proof, we will first illustrate the properties of the simulator and
explain the underlying intuition behind the proof. Our proof strategy follows some ideas
from [Wat02, Section 5]. Consider a space-bounded quantum interactive proof system
P ⇌ V for a promise problem P ∈ QSZKUL⋆HV[m(n), c(n), s(n)] that is statistical zero-
knowledge against an honest verifier. Without loss of generality, assume that the number
of turns in P⇌V is even. Additionally, we adopt the notations introduced in Figure 6.4
and [LLNW24, Section 3.2].

We now focus on the space-bounded simulator {Sx}x∈P . Let ξ′
0, · · · , ξ′

l and ξ1, · · · , ξl+1
denote the simulator’s approximation to the reduced snapshot states in registers (M,W)
after the (2j − 1)-st and the (2j)-th turn, respectively, during the execution of P ⇌ V ,
as specified in Figure 6.5. For yes instances, these states closely approximate the actual
view of the verifier (the corresponding snapshot states) during the execution of P ⇌V .
However, there is no direct closeness guarantee for no instances. Consequently, we can
assume that the state ξl+1 satisfies Tr(|1⟩⟨1|Zξl+1)) = c(n) for all instances.

Figure 6.5: Quantum states ξ′
0, · · · , ξ′

l and ξ, · · · , ξl+1 prepared by the simulator.

In addition, given that the verifier is always assumed to act honestly, we can take21

ξ′
0 = (|0⟩⟨0|)⊗(qM+qW) and ξj = Vjξ

′
j−1V

†
j for j ∈ [l + 1]. (6.24)

Proof intuition. Notably, the space-bounded simulator {Sx}x∈P essentially produces
an approximation solution, in the form of snapshot states, to the SDP program (see
Equation 3.2 in [LLNW24]) for computing the maximum acceptance probability ω(V ) of

20Without loss of generality, we can assume that m ≥ 3 by adding one or two dummy messages when
m < 3, as discussed in Footnote 22.

21Hence, the simulator only needs to prepare ξ′
j−1, since ξj is obtained by applying Vj to this state.
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the space-bounded unitary quantum interactive proof systems P⇌V for P ∈ QIPUL. As
presented in the proof of [LLNW24, Lemma 3.9], there are only two types of constraints,
in particular: (1) Verifier’s actions are honest; and (2) Prover’s actions do not affect the
verifier’s private qubits.

As mentioned in Equation (6.24), these states produced by the simulator exactly
satisfy the first type of constraints for all instances, but satisfy the second type of con-
straints only for yes instances. This observation leads to our proof and the hard problem
IndivProdQSD. Specifically, we consider two tensor product states, each consisting
of a polynomial number of O(log n)-qubit states, where all components are defined in
Figure 6.5:

TrM(ξ1)⊗ · · · ⊗ TrM(ξl) and TrM(ξ′
1)⊗ · · · ⊗ TrM(ξ′

l). (6.25)

For yes instances, the zero-knowledge property ensures a component-wise closeness
bound TrM(ξj) ≈ TrM(ξ′

j) for j ∈ [l]. For no instances, we need to show that the two
states in Equation (6.25) are far from each other, given that ω(V ) ≤ s(n). This follows
directly from [Wat02, Lemma 15]. We state the counterpart result below and omit the
detailed proof:
Proposition 6.35.1 (Adapted from [Wat02, Lemma 15]). Let P ⇌V be an m(n)-turn
space-bounded quantum interactive proof system, with even m := 2l, such that ω(V ) ≤
s(n). Let ξ′

0, · · · , ξ′
l and ξk, · · · , ξl+1 be the states produced by the simulators as defined in

Figure 6.5. Assume that Tr
(
|0̄⟩⟨0̄|M0W0ξ

′
0

)
= 1 and Tr(|1⟩⟨1|Zξl+1) = c. Then, it holds that

T(TrM(ξ1)⊗ · · · ⊗ TrM(ξl),TrM(ξ′
1)⊗ · · · ⊗ TrM(ξ′

l)) ≥
(
√
c−
√
s)2

4(l − 1) .

Then, we proceed with the formal proof of Theorem 6.35:

Proof of Theorem 6.35. Let P ⇌ V be an m(n)-turn honest-verifier unitary quantum
statistical zero-knowledge proof system for a promise problem P ∈ QSZKL⋆HV[m, c, s],
with completeness c(n) and soundness s(n). Without loss of generality, we assume that
m is even for all x ∈ P .22 Hence, we can denote the verifier’s actions by V1, · · · , Vl+1 for
l = m/2, and the verifier initiates the protocol. Let {σx,i}x∈P,i∈[m+2] represent the mixed
states produced by the simulator {Sx}x∈P , with the threshold function δ(n) := 1/m(n)2.
For any x ∈ P , we can define states ξ′

0, · · · , ξ′
l and ξ1, · · · , ξl+1 as illustrated in Figure 6.5:

• Initial state before executing P⇌V : ξ′
0 := |0̄⟩⟨0̄|M0W0 .

• (2j)-th message for j ∈ [l] in P⇌V : ξ′
j := σx,2j, where σx,2j satisfies:

∀x ∈ Pyes, T(σx,2j−1, viewP⇌V (x, 2j)) = T
(
σx,2j−1, ρMjWj

)
≤ δ(n). (6.26)

• (2j + 1)-st message for j ∈ [l] in P⇌V : ξj := Vjξ
′
j−1V

†
j .

• State before the final measurement in P⇌V : ξl+1 := Vl+1ξ
′
lV

†
l+1 satisfies

Tr(|1⟩⟨1|Zξl+1) = c(n).

Let Q1, · · · , Qk and Q′
1, · · · , Q′

k be polynomial-size unitary quantum circuits acting on
O(log n) qubits which satisfy that Qj = Sx,2j−1 and Q′

j = Sx,2j for j ∈ [l], and the output
22More specifically, if m is odd, we can add an initial turn to P ⇌ V in which the verifier sends the

all-zero state to the prover.
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qubits are qubits in the verifier’s private register W. It is evident that Qj and Q′
j prepare

the states TrM(ξj) and TrM
(
ξ′
j

)
, respectively. We claim that the l-tuples (Q1, · · · , Ql)

and (Q′
1, · · ·Q′

l) form an instance of IndivProdQSD[l(n), α(n), δ′(n)], satisfying the
following conditions:

∀x ∈ Pyes, T
(
TrM(ξj),TrM

(
ξ′
j

))
≤ 2δ = (

√
c−
√
s)2

4l2
:= δ′ for j ∈ [l]; (6.27)

∀x ∈ Pno, T(TrM(ξ1)⊗· · ·⊗TrM(ξl),TrM(ξ′
1)⊗· · ·⊗TrM(ξ′

l)) ≥
(
√
c−
√
s)2

4(l−1)
:= α. (6.28)

By substituting Equation (6.27) into Lemma 3.13, it follows that:

T(TrM(ξ1)⊗ · · · ⊗ TrM(ξl),TrM(ξ′
1)⊗ · · · ⊗ TrM(ξ′

l)) ≤
∑
j∈[l]

T
(
TrM(ξj),TrM

(
ξ′
j

))

≤ (
√
c−
√
s)2

4l .

(6.29)

Consequently, by comparing Equations (6.27) to (6.29), we can conclude the parameter
requirement of IndivProdQSD[l(n), α(n), δ′(n)], specifically that

α(n)− δ′(n) · l(n) ≥ 1/poly(n).

It remains to establish Equation (6.27) and Equation (6.28). The latter follows directly
from Proposition 6.35.1. To prove the former, note that the prover’s actions do not
affect the verifier’s private register for yes instances, we thus derive the following for
j ∈ {2, · · · , l}:

T
(
TrM(ξj),TrM

(
ξ′
j

))
≤ T

(
ξj, ξ

′
j

)
≤ T

(
ξj, ρMjWj

)
+ T

(
ρMjWj

, ρM′
jWj

)
+ T

(
ρM′

jWj
, ξ′
j

)
= T

(
ξ′
j−1, ρM′

j−1Wj−1

)
+ T

(
ρMjWj

, ρM′
jWj

)
+ T

(
ρM′

jWj
, ξ′
j

)
≤ δ(n) + 0 + δ(n)
= 2δ(n).

Here, the first line follows from the data-process inequality (Lemma 3.14), the second line
is due to the triangle inequality, the third line owes to the unitary invariance (Lemma 3.15)
and the fact that ρMjWj

= VjρM′
j−1Wj−1V

†
j , and the fourth line is because of Equation (6.26).

We complete the proof by noting that similar reasoning applies to the case of j = 1, using
T(ξ1, ρM1W1) = 0 instead of at most δ(n).

6.4.4 QSZKULHV is in BQL

We will establish the hard direction in the equivalence of QSZKULHV and BQL.
The key lemma underlying the proof involves a logspace (many-to-one) reduction In-
divProdQSD to an “existential” version of GapQSDlog, where GapQSDlog is a BQL-
complete problem (see Section 6.2). This reduction leads to a BQL containment of Indi-
vProdQSD:

Lemma 6.36 (IndivProdQSD is in BQL). Let k(n), α(n) and δ(n) be logspace com-
putable functions such that 1 ≤ k(n) ≤ poly(n), 0 ≤ α(n), δ(n) ≤ 1, and α(n) − δ(n) ·
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k(n) ≥ 1/poly(n). Then, it holds that
IndivProdQSD[k(n), α(n), δ(n)] ∈ BQL.

As IndivProdQSD is QSZKULHV-hard (Theorem 6.35), and given that BQUL is
closed under complement [Wat99, Corollary 4.8] and the equivalence BQL = BQUL [FR21],
we can directly conclude the following corollary:
Corollary 6.37. QSZKULHV ⊆ BQL.

We now proceed with the formal proof of the key lemma:

Proof of Lemma 6.36. We first establish a logspace (many-to-one) reduction from Indi-
vProdQSD to an “existential” version of GapQSDlog. Let (Q1, · · · , Qk) and (Q′

1, · · · , Q′
k)

be an instance of IndivProdQSD[k, α, δ]. For each j ∈ [k], let σj and σ′
j denote the

states obtained by running Qj and Q′
j on the all-zero state |0̄⟩, respectively, and trac-

ing out the non-output qubits. We now need to decide which of the following cases in
Equation (6.30) and Equation (6.31) holds:

T(σ1 ⊗ · · · ⊗ σk, σ′
1 ⊗ · · · ⊗ σ′

k) ≥ α(n). (6.30)
∀j ∈ [k], T

(
σj, σ

′
j

)
≤ δ(n). (6.31)

By combining Lemma 3.13 with Equation (6.30), we obtain:∑
j∈[k]

T
(
σj, σ

′
j

)
≥ T(σ1 ⊗ · · · ⊗ σk, σ′

1 ⊗ · · · ⊗ σ′
k) ≥ α(n). (6.32)

Applying an averaging argument to Equation (6.32), we can conclude that

∃j ∈ [k], T
(
σj, σ

′
j

)
≥ α/k. (6.33)

Clearly, a violation of Equation (6.33) implies a violation of Equation (6.30), without
contradicting Equation (6.31). For each j ∈ [k], the pair of circuits Qj and Q′

j forms an
instance of GapQSDlog. The resulting promise problem is thus an “existential” version
of GapQSDlog, where yes instances satisfy Equation (6.33) and no instances satisfy
Equation (6.31).

Next, we proceed by showing the BQL containment. Given the equivalence of BQL and
QMAL [FKL+16, FR21], it remains to establish a QMAL containment of this “existential”
version of GapQSDlog. The verification protocol is outlined in Algorithm 6.4.1.

Protocol 6.4.1: A QMAL proof system for IndivProdQSD.
1. The verifier receives an index j ∈ [k] from the prover.
2. The verifier executes the quantum logspace algorithm A for
GapQSDlog[α/k, δ] underlying in Theorem 6.14, using the pair of circuits Qj

and Q′
j as the GapQSDlog instance. The verifier accepts (or rejects) if A

accepts (or rejects).

To complete the proof, we establish the correctness of Algorithm 6.4.1. Since the
algorithm A is a BQL containment of GapQSDlog[α/k, δ] (Theorem 6.14), we conclude
the following:
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• For yes instances, Equation (6.33) ensures that there exists an j ∈ [k] (the witness)
such that T

(
σj, σ

′
j

)
≥ α/k. Consequently, A accepts with probability at least 2/3.

• For no instances, Equation (6.31) yields that for all j ∈ [k], T
(
σj, σ

′
j

)
≤ δ. This

statement implies that A accepts with probability at most 1/3.
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Chapter 7

Quantum state testing beyond the
polarizing regime

7.1 Introduction

This chapter focuses on improving the QSZK containment regime for the time-bounded
state testing problem with respect to the trace distance (Quantum State Distin-
guishability, QSDP). For a brief overview of time-bounded distribution and state
testing problems, such as the time-bounded distribution testing problem with respect to
the total variation distance (Statistical Difference, SDP), see Section 1.1.

Error reduction for SDP[α, β], referred to as the polarization lemma [SV03], polar-
izes the total variation distance between two classical probability distributions. Put it
differently, for any constants α and β satisfying α2 > β, the lemma constructs new dis-
tributions such that they are either very far apart (approaching 1) for yes instances or
very close (approaching 0) for no instances, thereby reducing errors on both sides.

By employing the polarization lemma, the SZK containment of SDP[α, β] in the
regime where α2 > β, denoted as the constant polarizing regime, is established in [SV03].
Furthermore, an analog of the direct product lemma for the Hellinger affinity leads to
error reduction for StoqMA when the error for yes instances is negligible [Liu21].

Sahai and Vadhan left an open problem concerning reducing error parameters α and β
beyond the constant polarizing regime, specifically considering the non-polarizing regime
where α > β > α2. This challenge also extends to the quantum counterpart (QSDP).
Recently, Berman, Degwekar, Rothblum, and Vasudevan [BDRV19] made significant
progress in addressing this problem by examining the limitations of existing polariza-
tion approaches. As a result, they extended the SZK containment of SDP beyond the
constant polarizing regime:1

Theorem 7.1 (Informal of [BDRV19]). The SZK containment of SDP[α, β] holds for
the following parameter regimes:

(1) α2(n)− β(n) ≥ 1/poly(n);

(2) (α, β) in the non-polarizing regime where α > β > α2, provided that α(n)− β(n) ≥
1As indicated in [BDRV19], SDP is in SZK for α2(n)−β(n) ≥ 1/O(logn) by inspecting the construc-

tion in [SV03].
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1/poly(n) and certain criteria on the total variation distance (TV) and the triangu-
lar discrimination (TD). Specifically, two pairs of distributions (p0, p1) and (p′

0, p
′
1)

satisfy the following conditions
TV(p0, p1) > TV(p′

0, p
′
1) > TV2(p0, p1) and TD(p0, p1) > TD(p′

0, p
′
1).

The proof of Theorem 7.1 involves a series of tailored reductions to two time-bounded
distribution testing problems: the Jensen-Shannon Divergence Problem (JSP)
and the Triangular Discrimination Problem (TDP). These distances are impor-
tant because they capture the limitation of two known approaches to polarization:

• The original polarization approach [SV03] reduces errors alternately for yes in-
stances (via the direct product lemma, which drives the distance toward 1) and no
instances (via the XOR lemma, which drives the distance toward 0). This approach
is fully characterized by the triangular discrimination [BDRV19], as TDP[α, β] is
in SZK for the natural parameter regime with logarithmic precision, satisfying

α(n)− β(n) ≥ 1/O(log n).

• The entropy extraction approach [GSV99] (see also [GV99]) is designed for scenarios
in which one of the two probability distributions is guaranteed to be uniform and
remains so throughout. This approach relies fundamentally on the Jensen-Shannon
divergence, which serves as a distance version of entropy difference. This connection
arises from interpreting the Jensen-Shannon divergence as the (conditional) entropy
difference, as noted implicitly in [Vad99]. Consequently, JSP[α, β] is in SZK for the
natural parameter regime with polynomial precision, satisfying

α(n)− β(n) ≥ 1/poly(n).

This work explores a similar challenge in the quantum world. While classical distances
(more formally, classical closeness measures) often have multiple quantum counterparts,
the trace distance uniquely serves as the quantum analog of the total variation distance.
Consequently, the polarization lemma extends almost directly to the trace distance, as
noted in [Wat02]. In contrast, quantum counterparts of the Jensen-Shannon divergence
and the triangular discrimination – key tools for examining the limitations of existing
techniques in polarizing quantum distances – either have several choices or have not been
defined yet. Defining proper quantum analogs for JSP and TDP is therefore a nontrivial
task, as these analogs may exhibit behavior distinct from their classical counterparts.

7.1.1 Main results

Quantum state testing beyond the constant polarizing regime. We introduce
two time-bounded state testing problems: the Quantum Jensen-Shannon Diver-
gence Problem (QJSP) and the Measured Quantum Triangular Discrimina-
tion Problem (measQTDP). QJSP is based on the quantum Jensen-Shannon diver-
gence defined in [MLP05], while measQTDP involves a quantum analog of the triangular
discrimination, which will be described later. The QSZK containments of these problems,
as stated in Theorem 7.2, lead to improved QSZK containments of QSDP:2

2The reader may feel confused with [VW16, Theorem 5.4] on the QSZK containment of QSDP which
builds upon adapting techniques in [SV03]. However, it was claimed in [GV11] that the proof in [SV03]
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Theorem 7.2 (Improved QSZK containments of QSDP, informal). For time-bounded
state testing problems with respect to the quantum Jensen-Shannon divergence and the
measured triangular discrimination problem, specifically QJSP and measQTDP, the
following holds, where n denotes the number of qubits used by the states ρ0 and ρ1:

(1) QJSP[α, β] is in QSZK if α(n)− β(n) ≥ 1/poly(n).
Consequently, QSDP[α, β] is in QSZK if α2(n)−

√
2 ln 2β(n) ≥ 1/poly(n).

(2) measQTDP[α, β] is in QSZK if α(n)− β(n) ≥ 1/O(log n).
This containment further implies that QSDP[α, β] is in QSZK for certain instances
where α2 ≤ β ≤ α and α(n) − β(n) ≥ 1/O(log n). Specifically, for two pairs of
states (ρ0, ρ1) and (ρ′

0, ρ
′
1), the following conditions hold:3

T(ρ0, ρ1) > T(ρ′
0, ρ

′
1) > T2(ρ0, ρ1) and QTDmeas(ρ0, ρ1) > QTDmeas(ρ′

0, ρ
′
1).

Furthermore, both QJSP and measQTDP are QSZK-complete.

Importantly, our definitions of measQTDP and QJSP serve as proper quantum
analogs of TDP and JSP, respectively. The measured quantum triangular discrimina-
tion exposes the limitation of the original polarization lemma approach [SV03, Wat02],
achieving a quadratic improvement in the direct product lemma (Lemma 7.29) and re-
sulting in an improved QSZK containment under the natural parameter regime with log-
arithmic precision. In contrast, another quantum analog, QTD, exhibits no improvement
over the trace distance scenario.

Our reductions used to establish that QJSP is QSZK-complete also provide a simple
QSZK-hardness proof for the Quantum Entropy Difference Problem (QEDP)
introduced in [BASTS10], as stated in Corollary 7.21. Consequently, the quantum Jensen-
Shannon divergence captures the limitation of the quantum entropy extraction approach
to polarization [BASTS10]. However, our result, stated in Theorem 7.2(1), is slightly
weaker than the classical counterpart described in Theorem 7.1(1). This difference arises
from the distinct behaviors exhibited by quantum analogs of the triangular discrimination
compared to their classical equivalent.

Easy regimes for the class QSZK. The existence of an oracle separating SZK from PP,
as provided in [BCH+19], highlights the difficulty of establishing SZK-hardness of SDP
instances that are contained in PP (referred to as the easy regime). This challenge is due
to the need for non-black-box techniques. When the error parameter ϵ is at most some
inverse-exponential, SDP[1− ϵ, ϵ] is in PP. Let QSDP and SDP denote the complement
of QSDP and SDP, respectively. We establish a similar result for QSDP[1− ϵ, ϵ], where
these instances become even easier to solve when error-free:

Theorem 7.3 (Easy regimes for QSZK, informal). Let ϵ(n) be an error parameter satis-
fying ϵ(n) ≤ 2−n/2−1. Then, the following holds:

QSDP[1− ϵ, ϵ] is in PP.

does extend to the parameter regime of α2(n) − β(n) ≥ 1/poly(n), but this claim was later retracted,
see [Gol19].

3If ρ0+ρ1
2 is diagonal of full rank (see Footnote 7), it is fairly effortless to find examples by numerical

simulations. For instance, (ρ0, ρ1) where ρ0 = 1
2 (I + σX

7 + σY

3 + σZ

4 ) and ρ1 = 1
2 (I − σX

7 −
σY

3 −
σZ

4 ),
together with (ρ′

0, ρ
′
1) where ρ′

0 = 1
2 (I − σX

7 −
σY

5 −
σZ

6 ) and ρ′
1 = 1

2 (I + σX

7 + σY

5 −
σZ

6 ).
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Furthermore, QSDP[1, 0] is in NQP when there is no error.

We notice that NQP (defined in [ADH97, YY99]) serves as a precise variant of BQP
with perfect soundness, specifically having an exact zero acceptance probability for no
instances. Furthermore, researchers initially regarded NQP as a quantum analog of NP.4
Prior works [FGHP99, YY99] have established the relationships NQP = coC=P ⊆ PP.

Parameter regimes SDP[1− ϵ, ϵ] QSDP[1− ϵ, ϵ]

ϵ = 0 in NP
Folklore

in NQP
This work (Theorem 7.33(2))

ϵ(n) ≤ 2−n/2−1 in PP
Theorem 7.1 in [BCH+19]

in PP
This work (Theorem 7.33(1))

ϵ(n) ≥ 2−n1/2−γ for γ ∈ (0, 1/2) SZK-hard
Implicitly stated in [SV03]

QSZK-hard
Implicitly stated in [Wat02]

Table 7.1: Easy and hard regimes for SZK and QSZK.

We summarize our results and compare them with the counterpart SZK results in
Table 7.1. The improved SZK-hardness and QSZK-hardness are obtained from skill-
fully applying the polarization lemma for the relevant distance, as shown in [BDRV19,
Theorem 3.14]. To demonstrate the PP containment, we first note that HS2(ρ0, ρ1) =
1
2(Tr(ρ2

0) + Tr(ρ2
1)) − Tr(ρ0ρ1). The remaining results are mainly derived from a hybrid

algorithm based on the SWAP test [BCWdW01], specifically tossing two random coins
and performing the SWAP test on the corresponding states.

In essence, the phenomenon that parameter regimes with some negligible errors are
easier to solve is not unique to QSZK. Analogous phenomena can also be observed in
other complexity classes, such as QMA(2) [KMY09] and StoqMA [AGL20]. Nevertheless,
it is important to note that these similar results in other classes do not always necessitate
the dimension-preserving property. In particular, polarization lemma for some quantum
distance is considered dimension-preserving if the resulting quantum states use the same
number of qubits as the original quantum states. Since SZK is a subclass of QSZK,
Theorem 7.3 suggests that QSDP may not remain QSZK-hard when the acceptance
probability deviates tinily from 0 or 1.

7.1.2 Proof techniques

The QSZK completeness of QJSP and measQTDP crucially relies on the inequali-
ties between quantum analogs of common classical f -divergences.5 We start by reviewing
and defining these quantum analogs. The most widely used quantum distances are the
trace distance (T) and the Bures distance (B, essentially the fidelity), which are quan-
tum counterparts of the total variation distance (TV) and the Hellinger distance (H),

4NQP is incomparable to QMA due to its equivalence to PreciseQMA with perfect soundness [KMY09].
Two main distinctions between these classes are: (1) NQP allows an exponentially small gap between
acceptance probabilities for yes and no instances, while QMA permits only an inverse-polynomial gap;
and (2) NQP guarantees rejection for no instances, whereas QMA allows any reasonable choice.

5An f -divergence is a function Df (p0∥p1) that measures the difference between two probability dis-
tributions p0 and p1, and this divergence is defined as Df (p0∥p1) := Ex∼p1f(p0(x)/p1(x)).
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respectively. Other commonly used f -divergences are the KL divergence (also known as
the relative entropy) and the χ2-divergence, which are unbounded, so we instead focus
on their symmetrized versions, the Jensen-Shannon divergence (JS) and the triangular
discrimination (TD), respectively.

The relationship between two quantum analogs of the Jensen-Shannon divergence
constitutes a specific instance of the Holevo’s bound, namely the measured quantum
Jensen-Shannon divergence is upper bounded by the quantum Jensen-Shannon diver-
gence. To the best of our knowledge, there is no known quantum analog of triangular
discrimination. We thus introduce the definition of the quantum triangular discrimina-
tion (QTD) and the measured quantum triangular discrimination (QTDmeas), based on
their connection to the quantum analogs of χ2-divergence [TKR+10]. We further examine
their relationship with other aforementioned quantum distances and divergences:

Theorem 7.4 (Inequalities on quantum analogs of the triangular discrimination, infor-
mal). For any quantum states ρ0 and ρ1, the following holds:

(1) T2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ T(ρ0, ρ1);

(2) 1
2QTD2(ρ0, ρ1) ≤ QJS(ρ0, ρ1) ≤ QTD(ρ0, ρ1);

(3) 1
2B2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ B2(ρ0, ρ1) and 1

2B2(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ B(ρ0, ρ1).

We summarize our new results and known inequalities in Table 7.2, together with the
usages of these inequalities in our proof. In addition, we highlight that the quantum trian-
gular discrimination behaves differently from its classical counterpart since the triangular
discrimination is a constant multiplicative error approximation of the Jensen-Shannon di-
vergence. This difference breaks down the quantum equivalent of the ingenious reduction
from TDP to JSP presented in [BDRV19], leading to a slightly worse parameter in the
improved QSZK containment of QSDP, as stated in Theorem 7.2(1).

Classical Quantum Usages related to QSZK

SDP vs. H2 H2 ≤ SDP ≤
√

2H
[Kai67]

1
2B2 ≤ T ≤ B

[FvdG99]
A polarization lemma

for the trace distance [Wat02]

SDP vs. JS 1− Hbit
(

1−SDP
2

)
≤ JSbit ≤ SDP

[FvdG99, Top00]
1− Hbit

(
1−T

2

)
≤ QJSbit ≤ T

[BH09, FvdG99]
QJSP is QSZK-hard
This work (Lemma 7.31)

SDP vs. TD SDP2 ≤ TD ≤ SDP
[Top00]

T2 ≤ QTDmeas ≤ QTD ≤ T
This work (Theorem 7.7)

measQTDP is QSZK-hard
This work (Lemma 7.32)

JS vs. TD
1
2TD ≤ JS ≤ ln 2 · TD

[Top00]

1
2QTD2 ≤ QJS ≤ QTD
This work (Theorem 7.8)

None

TD vs. H2 H2 ≤ TD ≤ 2H2

[LC86]

1
2B2 ≤ QTDmeas ≤ B2

1
2B2 ≤ QTD ≤ B

This work (Theorem 7.9)

Polarization lemmas
for QTDmeas and QTD

This work (Lemmas 7.25 and 7.26)

Table 7.2: A comparison between classical and quantum distances with usages related to QSZK.

Leveraging inequalities in Table 7.2, we establish that QJSP, measQTDP, and
QTDP are QSZK-complete. The QSZK containments of measQTDP and QTDP are
achieved through new polarization lemmas for the measured quantum triangular discrim-
ination (QTDmeas) and the quantum triangular discrimination (QTD), while the QSZK
containment of QJSP is established via a reduction to QEDP [BASTS10], using the
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joint entropy theorem on classical-quantum states. Furthermore, the QSZK-hardness of
these problems directly mirrors that of their classical counterparts [BDRV19], due to the
corresponding inequalities in Table 7.2.

7.2 Quantum analogs of the triangular discrimination

In this section, we introduce two quantum analogs of the triangular discrimination and
prove their relationships with several commonly used distances, such as trace distance,
Bures distance (closely related to the fidelity), and quantum Jensen-Shannon divergence.

To the best of our knowledge, there is no known quantum analog of the triangular
discrimination (also known as Vincent-Le Cam divergence). Since the triangular discrim-
ination is a symmetrized version of the χ2 divergence, specifically

TD(p0, p1) = χ2
(
p0

∥∥∥∥p0 + p1

2

)
= χ2

(
p1

∥∥∥∥p0 + p1

2

)
.

The first quantum analog is derived from the quantum χ2 divergence in [TKR+10]:

Definition 7.5 (Quantum Triangular Discrimination). Let ρ0 and ρ1 be two quantum
states. The quantum triangular discrimination between ρ0 and ρ1 is defined as

QTD(ρ0, ρ1) := 1
2Tr

(
(ρ0 − ρ1)(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)−1/2

)
.

Furthermore, if ρ0 + ρ1 is not full-rank, then the inverse is defined only on its support.

It is noteworthy that this quantum analog of the triangular discrimination can be
defined as QTDα(ρ0, ρ1) = χ2

α

(
ρz
∥∥∥ρ0+ρ1

2

)
for z ∈ {0, 1} in general, following the approach

presented in [TKR+10]. However, QTDα is only upper-bounded by the trace distance for
α = 1/2.6 Therefore, we use QTDα=1/2(ρ0, ρ1) for defining QTD in this chapter.

In addition, we establish another quantum analog of triangular discrimination, de-
noted by the Measured Quantum Triangular Discrimination (QTDmeas), based on dis-
tributions induced by quantum measurements in terms of Equation (3.2). By utilizing
Lemma 5 in [TV15], we can derive an explicit formula for QTDmeas.7 As is typical, QTD
is lower-bounded by its measured variant QTDmeas, following from a data-processing
inequality for the quantum χ2-divergence [TKR+10, Proposition 6]:

Lemma 7.6. Let ρ0 and ρ1 be two quantum states. Then, it holds that:
QTD(ρ0, ρ1) ≥ QTDmeas(ρ0, ρ1).

Proof. According to [TKR+10, Proposition 6], a data-processing inequality for the quan-
tum χ2

α=1/2-divergence, we have: for any states ρ0 and ρ1,

QTD(ρ0, ρ1) = χ2
α=1/2

(
ρ0

∥∥∥ρ0+ρ1
2

)
≥ χ2

α=1/2

(
M(ρ0)

∥∥∥M(ρ0+ρ1
2 )

)
6See Remark 7.11 for the details.
7Given TD(p0, p1) = χ2(pz

∥∥p0+p1
2 ) for z ∈ {0, 1}, an explicit formula for QTDmeas follows Lemma

5 in [TV15]: QTDmeas(ρ0, ρ1) = Tr
(

ρ0−ρ1
2 Ωρ+

(
ρ0−ρ1

2
))

where ρ+ := ρ0+ρ1
2 and the linear operator Ωρ

satisfies Ω−1
ρ (A) = (ρA+Aρ)/2. In particular, as observed in [BOW19, Section 3.1.2], if ρ+ = (β1, · · · , βd)

is diagonal of full rank, then QTDmeas(ρ0, ρ1) =
∑d

i,j=1
2

βi+βj
|(ρ−)ij |2 where ρ− := ρ0−ρ1

2 .
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= χ̃2
α=1/2

(
ρ0

∥∥∥ρ0+ρ1
2

)
= QTDmeas(ρ0, ρ1).

Here, we denote the measured χ2-divergence as χ̃2
α(·, ·), defining in terms of Equa-

tion (3.2). Additionally, we choose the quantum channel M that corresponds to the
optimal POVM in χ̃2

α

(
ρ0

∥∥∥ρ0+ρ1
2

)
.

We now present three theorems that examine the relationships between the quantum
triangular discrimination (QTD) and other commonly used quantum distances and di-
vergences. Theorem 7.7 compares QTD with the trace distance (T) and is established
through a combination of Lemma 7.10 and Lemma 7.13 in Section 7.2.1. The latter relies
on the trace distance being also a measured version of the total variation distance.

Theorem 7.7 (QTD vs. trace distance). For any quantum states ρ0 and ρ1,
T2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ T(ρ0, ρ1).

Theorem 7.8 proves the relationship between QTD and the quantum Jensen-Shannon
divergence (QJS), which is based on a combination of Lemma 7.17 and Lemma 7.18 in
Section 7.2.2. The proof of these lemmas takes advantage of inequalities on the trace
distance, thereby linking QJS and QTD.

Theorem 7.8 (QTD vs. QJS). For any quantum states ρ0 and ρ1,
1
2QTD2(ρ0, ρ1) ≤ QJS(ρ0, ρ1) ≤ QTD(ρ0, ρ1).

Theorem 7.9 explores the relationship between the QTD and the Bures distance. The
bounds of QTDmeas (Lemma 7.14) rely on the Bures distance being the measured version
of the Hellinger distance, while the upper and lower bounds for QTD (Lemma 7.15) are
established using inequalities involving the trace distance. The detailed proof can be
found in Section 7.2.3.

Theorem 7.9 (QTD vs. Bures distance). For any quantum states ρ0 and ρ1,
1
2B2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ B2(ρ0, ρ1) and 1

2B2(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ B(ρ0, ρ1).

7.2.1 QTD vs. trace distance

We begin by establishing the challenging direction in Theorem 7.7, particularly the
quantum triangular discrimination is upper bounded by the trace distance (Lemma 7.10),
and then highlighting two important subtleties of QTD. The proof of the converse direc-
tion will be provided at the end of this subsection.

Lemma 7.10 (QTD ≤ T). For any quantum states ρ0 and ρ1,
QTD(ρ0, ρ1) ≤ T(ρ0, ρ1).

The first subtlety of QTD lies in the fact that the inequality in Lemma 7.10 holds
solely for a particular choice of α = 1/2 for QTDα, which leads to the minimum:
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Remark 7.11 (QTDα ≤ T holds only for α = 1/2). As [TKR+10, Proposition 7] implies
that QTDα=1/2 ≤ QTDα, we may wonder whether Lemma 7.10 holds for any α ∈ [0, 1].
Here is a counterexample: Consider two single-qubit pure states

ρ∗
0 := 1

2

(
I + 6

7σX + 3
7σY + 2

7σZ
)

and ρ∗
1 := 1

2

(
I − 3

7σX −
2
7σY + 6

7σZ
)
,

where σX , σY and σZ are Pauli matrices. Then we simply have
QTDα=1/2(ρ∗

0, ρ
∗
1) = T(ρ∗

0, ρ
∗
1) < QTDα>1/2(ρ∗

0, ρ
∗
1).

The second subtlety of QTD concerns the notable difference in the equality condition
of this inequality (Lemma 7.12) compared to its classical counterpart. Specifically, the
classical counterpart merely requires Lemma 7.12(1).8 However, the inequalities in Theo-
rem 7.7 exhibit a similar behavior to the inequalities between the corresponding classical
distances, namely triangular discrimination (TD) and total variation distance (TV).

Lemma 7.12 (Equality condition for QTD ≤ T). Let ρ0 and ρ1 be two quantum states.
Then, the equality QTD(ρ0, ρ1) = T(ρ0, ρ1) holds if and only if these quantum states
satisfy the following conditions:

(1) (ρ0 − ρ1)(ρ0 + ρ1)−1(ρ0 − ρ1) = (ρ0 + ρ1);

(2) (ρ0 − ρ1)†(ρ0 − ρ1) = Tr((ρ0−ρ1)†(ρ0−ρ1))
|supp(ρ0−ρ1)| I;

(3) For any k ∈ supp (ρ0 − ρ1), it holds that

sgnλk(ρ0 − ρ1) = sgnλk
(
(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)1/2

)
.

Here, λk(A) is the k-th eigenvalue of the matrix A.

We now outline the proof of Lemma 7.10: Firstly, we establish an upper bound of QTD
by the trace distance with an infinite norm (multiplicative) factor using a matrix version
of Hölder inequality. Subsequently, we bound this infinite norm factor by analyzing its
largest singular value employing the Weyl’s inequalities. The detailed proof follows below.

Proof of Lemma 7.10. Using a matrix Hölder inequality (e.g., Corollary IV.2.6 in [Bha96]),
we obtain the following:

QTD(ρ0, ρ1) = 1
2Tr

(
(ρ0 − ρ1)(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)−1/2

)
≤ 1

2∥ρ0 − ρ1∥1 · ∥(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)−1/2∥∞

(7.1)

It is sufficient to show that
∥(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)−1/2∥∞ = σmax

(
(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)−1/2

)
≤ 1,

where σmax(A) is the largest singular value of A. Let ρ := 1
2(ρ0 + ρ1), then we have

(ρ0 + ρ1)−1/2(ρ0 − ρ1)(ρ0 + ρ1)−1/2 = ρ−1/2(ρ− ρ1)ρ−1/2 = I − ρ−1/2ρ1ρ
−1/2.

Note that ρ−1/2ρ1ρ
−1/2 is positive semi-definite, and I−ρ−1/2ρ1ρ

−1/2 thus is Hermitian.
8In particular, (p0(x)− p1(x))2 = (p0(x) + p1(x))2 holds for any x ∈ supp (p0) ∪ supp (p1).
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We then obtain that |I − ρ−1/2ρ1ρ
−1/2| ⪯ I.9 With the help of [HJ12, Corollary 4.3.12],

a corollary of Weyl’s inequalities, this inequality implies that:

σmax
(
I − ρ−1/2ρ1ρ

−1/2
)

= λmax
(
I − ρ−1/2ρ1ρ

−1/2
)

≤ λmax
((
I − ρ−1/2ρ1ρ

−1/2
)

+ ρ−1/2ρ1ρ
−1/2

)
≤ 1.

(7.2)

Here, the first line is derived from the fact that the singular values of a Hermitian
matrix are equal to the absolute values of the corresponding eigenvalues of the same
matrix, and the last line is due to λmax(I) = 1.

To derive the equality condition of Lemma 7.10, and thereby prove Lemma 7.12, a
thorough analysis of the equality condition of the matrix Hölder inequality in [Cio21] is
required. The detailed proof is provided subsequently.

Proof of Lemma 7.12. We begin with the equality condition of the matrix Hölder inequal-
ity in [Cio21, Theorem 2.11]. Let A = ρ0−ρ1

2 and B =
(
ρ0+ρ1

2

)−1/2 (ρ0−ρ1
2

) (
ρ0+ρ1

2

)−1/2
.

Then, it holds that
A†B

Tr|A|∥B∥∞
= B†A

Tr|A|∥B∥∞
= |A|

Tr|A| = |B|∞

Tr (|B|∞) . (7.3)

Moreover, B†A is supposed to be symmetric and positive semi-definite. Note that A and
B are Hermitian, we obtain [A,B] = 0 by using the first equality in Equation (7.3). This
equality implies that B†A is indeed symmetric, as well as the singular value decomposition

A =
∑
k

σk(A)|vk⟩⟨vk| and B =
∑
k

σk(B)|vk⟩⟨vk|.

Then, by Equation (7.3), we obtain
B†A =

∑
k

σk(B)σk(A)|vk⟩⟨vk| = σmax(B)
∑
k

σk(A)|vk⟩⟨vk| = ∥B∥∞|A|,

|A|
Tr|A| =

∑
k

σk(A)∑
i
σi(A) |vi⟩⟨vi| =

∑
k

σ∞
k∑

j
σ∞

k
(B) |vk⟩⟨vk| =

|B|∞
Tr(|B|∞) .

Noting that {|vi⟩}vi∈supp(ρ0−ρ1) is an orthonormal basis, by comparing the coefficients,
we have the following:

∀k : σk(A) = σmax(A) and σk(B) = σmax(B) = 1. (7.4)
Here, σmax(B) = 1 due to Equation (7.2) with the equality. Therefore, we obtain that B
is an orthogonal matrix, which is equivalent to

(ρ0 − ρ1)(ρ0 + ρ1)−1(ρ0 − ρ1) = (ρ0 + ρ1).

Moreover, noting that Tr(A†A) = ∑
k σ

2
k(A), this equality implies the desired equality:

A†A =
Tr
(
A†A

)
|supp (ρ0 − ρ1) |

I.

9It suffices to show that −I ⪯ I − ρ−1/2ρ1ρ
−1/2 ⪯ I. The right-hand side is evident, while the

left-hand side follows from ρ−1/2ρ1ρ
−1/2 ⪯ 2I, which holds by applying Φ(σ) := ρ1/2σρ1/2 on both sides.
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Finally, to make B†A to be positive semi-definite, we finish the proof by noting that
sign λk(A) = sign λk(B) for any k ∈ supp (ρ0 − ρ1) .

Lastly, we present the proof of Lemma 7.13 (the converse direction in Theorem 7.7).
In particular, by leveraging Lemma 7.6, we can derive a lower bound for the quantum
counterparts of triangular discrimination in terms of the trace distance.

Lemma 7.13 (T2 ≤ QTD). For quantum states ρ0 and ρ1, it holds that:
∀α ∈ [0, 1], T(ρ0, ρ1)2 ≤ QTDmeas(ρ0, ρ1) ≤ QTD(ρ0, ρ1).

Proof. Owing to Lemma 7.6, it suffices to show that QTDmeas(ρ0, ρ1) ≥ T(ρ0, ρ1). Anal-
ogous to the approach presented in [Top00], we obtain the following for any POVM E :

QTDmeas(ρ0, ρ1) ≥ TD
(
p

(E)
0 , p

(E)
1

)
= 1

2
∑
x

(
p

(E)
0 (x)−p(E)

1 (x)
)2

p
(E)
0 (x)+p(E)

1 (x)

=
∑
x

p
(E)
0 (x)+p(E)

1 (x)
2 ·

(
p

(E)
0 (x)−p(E)

1 (x)
p

(E)
0 (x)+p(E)

1 (x)

)2

≥
(∑

x

p
(E)
0 (x)+p(E)

1 (x)
2 · p

(E)
0 (x)−p(E)

1 (x)
p

(E)
0 (x)+p(E)

1 (x)

)2

=
(

1
2

∑
x

|p(E)
0 (x)− p(E)

1 (x)|
)2
,

(7.5)

where the fourth line is because of E[X2] ≥ (E[X])2 for any random variable X. We then
complete the proof by choosing E that maximizes the last line in Equation (7.5).

7.2.2 QTD vs. (squared) Bures distance

We now present inequalities concerning two different quantum analogs of the triangu-
lar discrimination (TD), namely QTD and the measured version QTDmeas, expressed in
terms of the Bures distance. Interestingly, these inequalities exhibit divergent behaviors
for QTD (Lemma 7.14) and QTDmeas (Lemma 7.15), and we can identify an example
(in Remark 7.16) that distinguishes between these two quantum analogs of TD. These
divergent behaviors have implications in quantum complexity theory, particularly in the
corresponding polarization lemma and the complexity class QSZK.10

We begin by establishing the inequalities between QTDmeas and the Bures distance,
as stated in Lemma 7.14. The proof crucially relies on the fact that the Bures distance
corresponds to the measured version of Hellinger distance [FC94].

Lemma 7.14 (QTDmeas vs. B2). For any quantum states ρ0 and ρ1,
1
2B2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ B2(ρ0, ρ1).

10See Lemmas 7.25 and 7.26 in Section 7.3.3 for further details.
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Proof. Let E∗ be the optimized measurement for QTDmeas(ρ0, ρ1). We first notice that

QTDmeas(ρ0, ρ1) = 1
2
∑
x

(
p

(E∗)
0 (x)− p(E∗)

1 (x)
)2

p
(E∗)
0 (x) + p

(E∗)
1 (x)

= 1
2
∑
x

(√
p

(E∗)
0 (x)−

√
p

(E∗)
1 (x)

)2 (√
p

(E∗)
0 (x) +

√
p

(E∗)
1 (x)

)2

p
(E∗)
0 (x) + p

(E∗)
1 (x)

.

Noting that a2 + b2 ≤ (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0, we have derived that
1
2
∑
x

(√
p

(E)
0 (x)−

√
p

(E)
1 (x)

)2
≤ QTDmeas(ρ0, ρ1) ≤

∑
x

(√
p

(E∗)
0 (x)−

√
p

(E∗)
1 (x)

)2
. (7.6)

Note that the Bures distance is the measured Hellinger distance [FC94], we have:

• For the lower bound, since the first inequality in Equation (7.6) holds for arbitrary
POVM E , we choose E ′ that maximizes the measured Hellinger distance, then:

QTDmeas(ρ0, ρ1) ≥
1
2
∑
x

(√
p

(E ′)
0 (x)−

√
p

(E ′)
1 (x)

)2

= sup
POVM E

H2
(
p

(E)
0 , p

(E)
1

)
= 1

2B2(ρ0, ρ1).

• For the upper bound, let E ′ be the POVM measurement that maximizes the mea-
sured Hellinger distance. By the second inequality in Equation (7.6), we deduce:

QTDmeas(ρ0, ρ1) ≤
∑
x

(√
p

(E ′)
0 (x)−

√
p

(E ′)
1 (x)

)2

= sup
POVM E

2H2
(
p

(E)
0 , p

(E)
1

)
= B2(ρ0, ρ1).

Next, we present the inequalities between QTD and the Bures distance, as detailed
in Lemma 7.15. It is noteworthy that the upper bound in these inequalities is as weak
as the trace distance, and we further provide an example (in Remark 7.16) to distinguish
these two quantum analogs of the triangle discrimination in terms of the Bures distance.

Lemma 7.15 (QTD vs. B). For any quantum states ρ0 and ρ1,
1
2B2(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ B(ρ0, ρ1).

Proof. We establish the left-hand side inequality by plugging Lemma 7.6 into Lemma 7.14.
The right-hand side inequality follows from combining Lemma 3.17 and Lemma 7.10.

Remark 7.16 (QTDmeas vs. QTD). The squared Bures distance is an example that sep-
arates between QTDmeas and QTD: Utilizing the counterexample ρ∗

0 and ρ∗
1 defined in

Remark 7.11, we can obtain
QTDmeas(ρ∗

0, ρ
∗
1) ≤ B2(ρ∗

0, ρ
∗
1) < QTDα=1/2(ρ∗

0, ρ
∗
1) = T(ρ∗

0, ρ
∗
1) < B(ρ∗

0, ρ
∗
1).
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7.2.3 QTD vs. QJS

We now establish the inequalities between QTD and QJS. It is worth noting that the
corresponding classical distance, the triangular discrimination (TD), serves as a constant
multiplicative-error approximation of the Jensen-Shannon divergence (JS), as illustrated
by the inequalities 1

2TD(p0, p1) ≤ JS(p0, p1) ≤ ln 2 · TD(p0, p1) in [Top00, Theorem 2].
However, such a property does not extend to QTD and QJS.11

We start with the lower bound of QJS in terms of QTD, as stated in Lemma 7.17.
The proof straightforwardly follows from inequalities concerning the trace distance.

Lemma 7.17. For any quantum states ρ0 and ρ1,
1
2QTD2(ρ0, ρ1) ≤ QJS(ρ0, ρ1).

Proof. Plugging Lemma 7.10 into Lemma 3.25, we obtain that: for any states ρ0 and ρ1,

QJS(ρ0, ρ1) ≥
∞∑
v=1

T(ρ0,ρ1)2v

2v(2v−1) ≥
∞∑
v=1

QTD(ρ0,ρ1)2v

2v(2v−1) ≥ 1
2QTD2(ρ0, ρ1),

where the last inequality uses the first-order approximation. This completes the proof.

Next, we present the upper bound of QJS in terms of QTD, as detailed in Lemma 7.18.
The proof strategies is analogous to the proof of Theorem 8 in [TKR+10].

Lemma 7.18. For any quantum states ρ0 and ρ1,
QJS(ρ0, ρ1) ≤ QTD(ρ0, ρ1).

Proof. We begin with an upper bound for the quantum relative entropy in [RS90]:

D(ρ0∥ρ1) ≤
1
γ

Tr
(
ρ1+γ

0 ρ−γ
1 − ρ0

)
= 1
γ

[
Tr
(
ρ1+γ

0 ρ−γ
1

)
− 1

]
for 0 < γ ≤ 1. (7.7)

Since the quantum Jensen-Shannon divergence is a symmetrized version of the quan-
tum relative entropy, we deduce the following by setting γ = 1/2 in Equation (7.7):

QJS(ρ0, ρ1) = 1
2

∑
z∈{0,1}

D
(
ρz
∥∥∥ρ0+ρ1

2

)
≤

∑
z∈{0,1}

[
Tr
(
ρ3/2
z

(
ρ0+ρ1

2

)−1/2
)
− 1

]

≤ 1
2

∑
z∈{0,1}

[
Tr
(
ρz
(
ρ0+ρ1

2

)−1/2
ρz
(
ρ0+ρ1

2

)−1/2
)
− 1

]
= QTD(ρ0, ρ1),

where the third line follows from Tr
[(
ρ1/2
z ρ−1/2ρ1/2

z − ρ1/2
z

)† (
ρ1/2
z ρ−1/2ρ1/2

z − ρ1/2
z

)]
≥ 0

since ρ1/2
z ρ−1/2ρ1/2

z is positive semi-definite and thus ρ1/2
z ρ−1/2ρ1/2

z −ρ1/2
z is Hermitian.

11For further details, please refer to Footnote 12.
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7.3 Complete problems for QSZK on the quantum state testing

In this section, we introduce two new QSZK complete problems: the Quantum
Jensen-Shannon Divergence Problem (QJSP) and the Measured Quantum
Triangular Discrimination Problem (measQTDP). These results establish the
proper quantum analog of the classical problems investigated in [BDRV19] and exhibit
how their behavior differs from the classical counterparts.

Theorem 7.19 (QJSP is QSZK-complete). Let α(n) and β(n) be efficiently computable
functions such that 0 ≤ β < α ≤ 1, where n denotes the number of qubits used by quantum
states ρ0 and ρ1. Then, it holds that:

For any α(n)− β(n) ≥ 1/poly(n),QJSP[α, β] is in QSZK.

Furthermore, QJSP[α, β] is QSZK-hard if α(n) ≤ 1 − 2−n1/2−ϵ and β(n) ≥ 2−n1/2−ϵ for
every n ∈ N and some constant ϵ ∈ (0, 1/2).

Theorem 7.20 (measQTDP is QSZK-complete). Let α(n) and β(n) be efficiently com-
putable functions such that 0 ≤ β < α ≤ 1, where n denotes the number of qubits used by
quantum states ρ0 and ρ1. Then, it holds that:

For any α(n)− β(n) ≥ 1/O(log n),measQTDP[α, β] is in QSZK.

Furthermore, measQTDP[α, β] is QSZK-hard if α(n) ≤ 1−2−n1/2−ϵ and β(n) ≥ 2−n1/2−ϵ

for every n ∈ N and some constant ϵ ∈ (0, 1/2).

In addition to measQTDP, we also investigate the Quantum Triangular Dis-
crimination Problem (QTDP), defined using another quantum analog of triangular
discrimination, and establish that this problem is QSZK-complete. However, the QSZK
containment of QTDP holds only for the parameter regime α2(n)− β(n) ≥ 1/O(log n),
encountering the same limitation as the trace distance case (QSDP) in [Wat02].

It is noteworthy that by using the reductions for proving Theorem 7.19, we achieve
a simple QSZK-hardness proof for the Quantum Entropy Difference Problem
(QEDP) introduced by Ben-Aroya, Schwartz, and Ta-Shma [BASTS10]:

Corollary 7.21 (Simple QSZK-hardness of QEDP). QEDP[g(n)] is QSZK-hard when
g(n) ≤ ln 2

2

(
1− 2(n−1)1/2−ϵ+1

)
for some ϵ ∈ (0, 1/2) and n ≥ n(ϵ) + 3.

Subsequently, we proceed to demonstrate the proof of these theorems.

7.3.1 QSZK containment using the quantum entropy extraction

Along the line of [BDRV19], we implicitly employ the quantum entropy extraction
approach to polarize quantum distances [BASTS10]. This approach leads to the QSZK
containment of QJSP, as stated in Lemma 7.22, with a promise gap that is inverse-
polynomial. This containment is accomplished through establishing a reduction from
QJSP to QEDP. For a concise overview of QEDP, please refer to Section 3.3.

Lemma 7.22 (QJSP is in QSZK). For any 0 ≤ β(n) < α(n) ≤ 1 satisfying α(n)−β(n) ≥
1/p(n), where p(n) is some polynomial of n, it holds that:

QJSP[α, β] is in QSZK.
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Using inequalities between the trace distance and the quantum Jensen-Shannon di-
vergence, we further derive a QSZK containment with an inverse-polynomial promise gap
for QSDP on some parameter regime:

Theorem 7.23. For any 0 ≤
√

2 ln 2β(n) < α2(n) ≤ 1 satisfying α2(n)−
√

2 ln 2β(n) ≥
1/p(n), where p(n) is some polynomial of n, it holds that:

QSDP[α2,
√

2 ln 2β] is in QSZK.

Proof. The reduction from QSDP to QJSP directly follows from the inequalities on QJS:

• For yes instances, QJSbit(ρ0, ρ1) ≥ α2 implies that T(ρ0, ρ1) ≥ α2 due to Lemma 3.26.

• For no instances, QJSbit(ρ0, ρ1) ≤ 2 ln 2 · β2 yields that

2 ln 2 · β2 ≥
∞∑
v=1

T(ρ0, ρ1)2v

v(2v − 1) ≥ T(ρ0, ρ1)2

as desired, where the last inequality utilizes the first-order approximation.

It is noteworthy that TDP[α, β] is in SZK when α(n)− β(n) is at least some inverse
polynomial [BDRV19]. However, we are unlikely to have a similar reduction from QTDP
to QJSP since these distances behave differently from their classical counterpart:
Remark 7.24 (An obstacle to a reduction from QTDP to QJSP). The SZK containment
of TDP follows from a tailor-made (Karp) reduction from TDP to JSP. The key obser-
vation is that TD(p0, p1) is a constant multiplicative-error approximation of JSbit(p0, p1),
and specifically, the lower bound TD(p0, p1)/2 is exactly the first-order approximation of
the series used in the upper bound ln 2 · TD(p0, p1).

Utilizing this fact, Lemma 4.5 in [BDRV19] show that λ2TD(p0, p1) is a 1/poly(n)-
additive error approximation of JSbit(q0, q1) where λ is some specific 1/poly(n) factor
and q0 (also q1) is a convex combination of p0 and p1 parameterized by λ. However,
QTD(ρ0, ρ1) is not a constant multiplicative error approximation of QJSbit(ρ0, ρ1).12

7.3.2 QJSP is in QSZK

For any given QJSP instance and its corresponding states ρ0 and ρ1, the QSZK
containment of QJSP essentially follows from an equality concerning S(ρ′

0)− S(ρ′
1) and

QJS(ρ0, ρ1), where the preparation of ρ′
0 and ρ′

1 requires additional gadgets using ρ0 and
ρ1 as building blocks. This approach resembles the classical proof from Proposition 4.1
and Lemma 4.2 in [BDRV19].

However, several modifications are required due to discrepancies between classical
and quantum probabilities. In particular, the classical proof relies on a probability that
conditions on distributions are supposed to be distinguished, whereas its quantum coun-
terpart – quantum conditional probability – is not well-defined in general. To address
the challenge, we circumvent this issue by instead considering a conditional entropy of
classical-quantum states conditioned on a classical register.

12Numerical simulations suggest that the tight bound is QTD2(ρ0, ρ1) ≤ QJSbit(ρ0, ρ1) ≤ QTD(ρ0, ρ1),
while we only managed to prove a slightly weaker bound 1

2 QTD2(ρ0, ρ1) ≤ QJSbit(ρ0, ρ1) ≤ QTD(ρ0, ρ1)
in Theorem 7.8.
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Proof of Lemma 7.22. The proof is primarily a reduction from QJSP[α, β] to QEDP[g],
where 0 ≤ β < α ≤ 1 and α(n)− β(n) ≥ 1/poly(n). We will specify the function g later.

Let Q0 and Q1 be the given quantum circuits acting on n all-zero qubits and having
k specified output qubits. These circuits produce quantum (mixed) states ρ0 and ρ1,
respectively, after tracing out the non-output qubits.

Now, consider a classical-quantum mixed state on a classical register B and a quantum
register Y, denoted as ρ′

1 = 1
2 |0⟩⟨0|⊗ρ0 + 1

2 |1⟩⟨1|⊗ρ1. We apply our reduction to produce
quantum circuits Q′

0 and Q′
1, which prepare classical-quantum mixed states ρ′

0 and ρ′
1,

respectively. In particular, ρ′
0 = (p0|0⟩⟨0| + p1|1⟩⟨1|) ⊗ (1

2ρ0 + 1
2ρ1), and B′ = (p0, p1) is

an independent random bit with H(B′) = 1− 1
2 [α(n) + β(n)].

By utilizing a rotation gate Rθ such that Rθ|0⟩ = √p0|0⟩ + √p1|1⟩, we provide the
quantum circuit description of Q′

0 and Q′
1 in Figure 7.1 and Figure 7.2, respectively. Here,

A and A′ are ancillary single-qubit registers, and quantum registers Y and Z collectively
act on n qubits.

trace

trace

trace

|0⟩B′ H Rθ

|0⟩A′

|0⟩A H X X

|0̄⟩Y
Q1 Q0

|0̄⟩Z

Figure 7.1: Quantum circuit Q′
0.

trace

trace

|0⟩B H X X

|0⟩A

|0̄⟩Y
Q1 Q0

|0̄⟩Z

Figure 7.2: Quantum circuit Q′
1.

We then obtain the following:
Sbit(ρ′

0)− Sbit(ρ′
1) = Sbit(B′,Y)ρ′

0
− Sbit(B,Y)ρ′

1

= [H(B′) + Sbit(Y|B′)ρ′
0
]− [H(B) + Sbit(Y|B)ρ′

1
]

= Sbit(Y)ρ′
0
− Sbit(Y|B)ρ′

1
+ H(B′)− H(B)

= Sbit(Y)ρ′
0
− Sbit(Y|B)ρ′

1
− 1

2 [α(n) + β(n)]
= Sbit

(
1
2ρ0 + 1

2ρ1
)
− 1

2(Sbit(ρ0) + Sbit(ρ1))− 1
2 [α(n) + β(n)]

= QJSbit(ρ0, ρ1)− 1
2 [α(n) + β(n)],

(7.8)

Here, the second line is due to the definition of quantum conditional entropy and both
B and B′ are classical registers, the third line owes to the fact that B′ is an independent
random bit, the fifth line follows from the joint entropy theorem (Lemma 3.22).

Plugging Equation (7.8) into the promise of QJSP[α, β], we obtain the following and
choose g(n′) = ln 2

2 (α(n)− β(n)):

• If QJSbit(ρ0, ρ1) ≥ α(n), then S(ρ′
0)− S(ρ′

1) ≥ ln 2
2 (α(n)− β(n)) = g(n′);

• If QJSbit(ρ0, ρ1) ≤ β(n), then S(ρ′
0)− S(ρ′

1) ≤ − ln 2
2 (α(n)− β(n)) = −g(n′).
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By inspecting the description of quantum circuits Q′
0 and Q′

1, we know that the
number of output qubit is n′ := n+ 1 and these circuits act on at most m′(n′) = n+ 3 =
n′ + 2 qubits. Therefore, QJSP[α, β] is Karp reducible to QEDP[g(n)] by mapping
(Q0, Q1) to (Q′

0, Q
′
1).

7.3.3 QSZK containments using the polarization lemma

We introduce new polarization lemmas for the measured quantum triangular discrim-
ination (QTDmeas) and the quantum triangular discrimination (QTD), as stated in Lem-
mas 7.25 and 7.26, respectively. This techniques can similarly lead to QSZK containments
of measQTDP and QTDP. A notable feature of this technique is that the polarization
lemma for QTDmeas requires only α > β, in contrast to the parameter requirements for
the trace distance and QTD, which demand α2 > β.

Lemma 7.25 (A polarization lemma for QTDmeas). Given quantum circuits Q0 and Q1
that prepare quantum states ρ0 and ρ1, respectively, there exists a deterministic procedure
that takes as input (Q0, Q1, α, β, k), where α > β, and outputs quantum circuits Q̃0 and
Q̃1, which prepare quantum states ρ̃0 and ρ̃1, respectively. The resulting states satisfy:

QTDmeas(ρ0, ρ1) ≥ α =⇒ QTDmeas(ρ̃0, ρ̃1) ≥ 1− 2−k,

QTDmeas(ρ0, ρ1) ≤ β =⇒ QTDmeas(ρ̃0, ρ̃1) ≤ 2−k.

Here, the states ρ̃0 and ρ̃1 are defined over Õ
(
nk

O

(
β ln(2/α)

α−β

))
qubits. Furthermore, when

k ≤ O(1) or α− β ≥ Ω(1), the time complexity of the procedure is polynomial in the size
of Q0 and Q1, k, and exp

(
β log(1/α)
α−β

)
.

Lemma 7.26 (A polarization lemma for QTD). Given quantum circuits Q0 and Q1 that
prepare quantum states ρ0 and ρ1, respectively, there exists a deterministic procedure that
takes as input (Q0, Q1, α, β, k), where α2 > β, and outputs quantum circuits Q̃0 and Q̃1,
which prepare quantum states ρ̃0 and ρ̃1, respectively. The resulting states satisfy:

QTD(ρ0, ρ1) ≥ α =⇒ QTD(ρ̃0, ρ̃1) ≥ 1− 2−k,

QTD(ρ0, ρ1) ≤ β =⇒ QTD(ρ̃0, ρ̃1) ≤ 2−k.

Here, the states ρ̃0 and ρ̃1 are defined over Õ
(
nk

O

(
β ln(2/α2)

α2−β

))
qubits. Furthermore, when

k ≤ O(1) or α− β ≥ Ω(1), the time complexity of the procedure is polynomial in the size
of Q0 and Q1, k, and exp

(
β log(1/α2)
α2−β

)
.

Analogous to the QSZK containment of QSDP, we can establish QSZK containments
of measQTDP and QTDP by leveraging their respective polarization lemmas:

Lemma 7.27 (measQTDP and QTDP are in QSZK). Let α(n) and β(n) be efficiently
computable functions satisfying 0 ≤ β < α ≤ 1. Then, the following holds:

(1) For any α(n)− β(n) ≥ 1/O(log n), measQTDP[α, β] is in QSZK.

(2) For any α2(n)− β(n) ≥ 1/O(log n), QTDP[α, β] is in QSZK.

Proof. For any measQTDP[α, β] instance satisfying α(n) − β(n) ≥ 1/O(log n), the
polarization lemmas for QTDmeas (Lemma 7.25) enables mapping it to a measQTDP[1−
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2−l(n), 2−l(n)] instance, where 2−l(n) is a negligible function. Similarly, for any QTDP[α, β]
instance with α2(n)−β(n) ≥ 1/O(log n), the polarization lemmas for QTD (Lemma 7.26)
allows mapping it to a measQTDP[1− 2−l(n), 2−l(n)] instance. Using the inequalities in
Theorem 7.7, we establish reductions from measQTDP and QTDP to QSDP:

• For yes instances, it holds that
T(ρ0, ρ1) ≥ QTDmeas(ρ0, ρ1) ≥ 1− 2−l and T(ρ0, ρ1) ≥ QTD(ρ0, ρ1) ≥ 1− 2−l.

• For no instances, the inequality T(ρ0, ρ1) ≤ 2−l/2 is guaranteed by
T2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ 2−l and T2(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ 2−l.

Finally, by following [Wat02, Theorem 10], specifically the protocol in [Wat02, Figure
2], we conclude that measQTDP[1−2−l(n), 2−l(n)] and QTDP[1−2−l(n), 2−l(n)] are indeed
contained in QSZK.

Polarization lemmas for QTDmeas and QTD

We now present the proof of the polarization lemmas for QTDmeas (Lemma 7.25) and
QTD (Lemma 7.26). The proof technique utilizes one-sided error reduction, for both yes
instances and no instances, separately and alternately.

No-instance error reduction for measQTDP and QTDP. We begin with no-
instance error reduction, commonly referred to as the XOR lemma in the polarization
lemma for SDP. It is noteworthy that the corresponding results for both QTDmeas and
QTD share the same equality.

Lemma 7.28 (No-instance error reduction for measQTDP and QTDP). Given quan-
tum circuits Q0 and Q1 that prepare the quantum states ρ0 and ρ1, respectively, there
exists a deterministic procedure that, on input (Q0, Q1, l), produces new quantum cir-
cuits Q̃0 and Q̃1 preparing the states ρ̃0 and ρ̃1, respectively. These states are defined as
ρ̃b = 2−l+1∑

b1⊕···⊕bl=b ρb1 ⊗ · · · ⊗ ρbl
for b ∈ {0, 1}, and satisfy the following equalities:

QTDmeas(ρ̃0, ρ̃1) = QTDmeas(ρ0, ρ1)l and QTD(ρ̃0, ρ̃1) = QTD(ρ0, ρ1)l.

Proof. It suffices to prove that for quantum states ρ0, ρ1, ρ′
0, and ρ′

1, defining

ρ̃0 := 1
2(ρ′

0 ⊗ ρ0 + ρ′
1 ⊗ ρ1) and ρ̃1 := 1

2(ρ′
0 ⊗ ρ1 + ρ′

1 ⊗ ρ0),

the following equalities hold:
QTDmeas(ρ̃0, ρ̃1) = QTDmeas(ρ′

0, ρ
′
1) ·QTDmeas(ρ0, ρ1), (7.9)

QTD(ρ̃0, ρ̃1) = QTD(ρ′
0, ρ

′
1) ·QTD(ρ0, ρ1). (7.10)

Consequently, we can conclude the proof by inductively applying Equation (7.9) to
QTDmeas

(
ρ̃

(l)
0 , ρ̃

(l)
1

)
, and Equation (7.10) to QTD

(
ρ̃

(l)
0 , ρ̃

(l)
1

)
.

It remains to demonstrate the equalities in Equations (7.9) and (7.10). For Equa-
tion (7.9), mirroring the approach of Proposition 4.12 in [BDRV19], we obtain:

QTDmeas(ρ̃0, ρ̃1) = sup
POVM E

TD
(
p̃

(E)
0 , p̃

(E)
1

)
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= sup
POVM E

TD
(
p

(E)
0 , p

(E)
1

)
· TD

(
p′

0
(E)
, p′

1
(E))

= sup
POVM E1

TD
(
p

(E1)
0 , p

(E1)
1

)
· sup

POVM E2

TD
(
p′

0
(E2)

, p′
1

(E2))
=QTDmeas(ρ0, ρ1) ·QTDmeas(ρ′

0, ρ
′
1).

For Equation (7.10), the equality follows from the equalities:

ρ̃0 − ρ̃1 = 1
2(ρ′

0 − ρ′
1)⊗ (ρ0 − ρ1) and ρ̃0 + ρ̃1 = 1

2(ρ′
0 + ρ′

1)⊗ (ρ0 + ρ1).

Yes-instance error reduction for measQTDP and QTDP. We then proceed with
yes-instance error reduction, which is referred to as the direct product lemma in polariza-
tion lemma for SDP. Notably, the QTDmeas case (Lemma 7.29) achieves a lower bound
with a quadratic improvement compared to both the trace distance case [Wat02, Lemma
9] and the QTD case (Lemma 7.30). However, the upper bound is slightly worse than
the trace distance case, reflecting a key distinction: while the trace distance and total
variation distance are metrics, the triangular discrimination and its quantum analogs
(QTDmeas and QTD) are (conjectured to be) the squares of a metric.

Lemma 7.29 (Yes-instance error reduction for measQTDP). Given quantum circuits
Q0 and Q1 that prepare the quantum states ρ0 and ρ1, respectively, there exists a deter-
ministic procedure that, on input (Q0, Q1, l), produces new quantum circuits Q̃0 and Q̃1
preparing the states ρ̃0 and ρ̃1. These states are defined as ρ̃b := ρ⊗l

b for b ∈ {0, 1}, and
satisfy the inequalities:

1− exp
(
− l2 ·QTDmeas(ρ0, ρ1)

)
≤ QTDmeas(ρ̃0, ρ̃1) ≤ 2l ·QTDmeas(ρ0, ρ1).

Proof. The proof follows the approach of [BDRV19, Lemma 4.10], utilizing a key property
of the Bures distance on tensor-product states ρ⊗l

0 and ρ⊗l
1 :

1
2B2

(
ρ⊗l

0 , ρ
⊗l
1

)
= 1− F

(
ρ⊗l

0 , ρ
⊗l
1

)
= 1− F(ρ0, ρ1)l = 1−

(
1− 1

2B2(ρ0, ρ1)
)l
. (7.11)

By utilizing the inequalities in Lemma 7.14, we obtain the following upper bound:
QTDmeas(ρ⊗l

0 , ρ
⊗l
1 ) ≤ B2(ρ⊗l

0 , ρ
⊗l
1 )

= 2
(

1−
(
1− 1

2B2(ρ0, ρ1)
)l)

≤ lB2(ρ0, ρ1)
≤ 2lQTDmeas(ρ0, ρ1).

Here, the third line is because (1− x)k ≥ 1− kx for any x and integer k.
Likewise, we can also deduce the following lower bound:

QTDmeas(ρ⊗l
0 , ρ

⊗l
1 ) ≥ 1

2B2(ρ⊗l
0 , ρ

⊗l
1 )

=
(

1−
(
1− 1

2B2(ρ0, ρ1)
)l)

≥
(

1−
(
1− 1

2QTDmeas(ρ0, ρ1)
)l)

≥ 1− exp
(
− l

2QTDmeas(ρ0, ρ1)
)
.
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We complete the proof by noting that the last line owes to 1− x ≤ e−x for any x.

Interestingly, the lower bound in Lemma 7.30 matches that of the trace distance case,
even though the proof techniques differ. The trace distance case relies on the triangle in-
equality, which is only conjectured to hold for

√
QTD. In contrast, our proof circumvents

this barrier by leveraging the inequalities between QTD and the Bures distance.

Lemma 7.30 (Yes-instance error reduction for QTDP). Given quantum circuits Q0 and
Q1 that prepare the quantum states ρ0 and ρ1, respectively, there exists a deterministic
procedure that, on input (Q0, Q1, l), produces new quantum circuits Q̃0 and Q̃1 preparing
the states ρ̃0 and ρ̃1. These states are defined as ρ̃b := ρ⊗l

b for b ∈ {0, 1}, and satisfy the
inequalities:

1− exp
(
− l2 ·QTD(ρ0, ρ1)2

)
≤ QTD(ρ̃0, ρ̃1) ≤

√
2l ·

√
QTD(ρ0, ρ1).

Proof. Our proof strategy closely follows the approach used in Lemma 7.29. For the
upper bound, we use the inequalities from Lemma 7.15 and Equation (7.11), which give

QTD
(
ρ⊗l

0 , ρ
⊗l
1

)
≤ B

(
ρ⊗l

0 , ρ
⊗l
1

)
≤
√
l · B(ρ0, ρ1) ≤

√
2l ·

√
QTD(ρ0, ρ1).

For the lower bound, we again apply Lemma 7.15 and Equation (7.11), obtaining

QTD
(
ρ⊗l

0 , ρ
⊗l
1

)
≥ 1

2B2
(
ρ⊗l

0 , ρ
⊗l
1

)
= 1−

(
1− 1

2B2(ρ0, ρ1)
)l

≥ 1−
(

1− 1
2QTD(ρ0, ρ1)2

)l
≥ 1− exp

(
− l2 ·QTD(ρ0, ρ1)2

)
.

Putting everything together. We can now establish Lemmas 7.25 and 7.26 by se-
lecting appropriate parameters based on the polarization lemma for the triangular dis-
crimination, as established in [BDRV19, Lemma 4.9].

Specifically, we first apply no-instance error reduction (Lemma 7.28), then use yes-
instance error reduction (Lemma 7.29 or Lemma 7.30) to ensure that the soundness
parameter is at most 1/2, and finally apply no-instance error reduction (Lemma 7.28)
again. The time complexity analysis aligns with [CCKV08, Lemma 38].

Proof of Lemma 7.25. Let λ := min{α/β, 2} ∈ (1, 2], and choose l := ⌈logλ 8k⌉. Applying
the no-instance error reduction for measQTDP (Lemma 7.28) to the input (Q0, Q1, l),
where the quantum circuits Q0 and Q1 prepare the states ρ0 and ρ1, respectively, produces
new quantum circuits (Q′

0, Q
′
1) with corresponding states (ρ′

0, ρ
′
1) such that:

QTDmeas(ρ0, ρ1) ≥ α =⇒ QTDmeas(ρ′
0, ρ

′
1) ≥ αl;

QTDmeas(ρ0, ρ1) ≤ β =⇒ QTDmeas(ρ′
0, ρ

′
1) ≤ βl.

Let m := λl/(4αl) ≤ 1/(4βl), and define the states ρ′′
0 := (ρ′

0)⊗m and ρ′′
1 := (ρ′

1)⊗m,
along with the corresponding circuits Q′′

0 and Q′′
1. Applying the yes-instance error reduc-

tion for measQTDP (Lemma 7.29) to the input (Q′
0, Q

′
1,m) yields that:

QTDmeas(ρ0, ρ1) ≥ α =⇒ QTDmeas(ρ′′
0, ρ

′′
1) ≥ 1− exp(−αlm/2) ≥ 1− e−k;
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QTDmeas(ρ0, ρ1) ≤ β =⇒ QTDmeas(ρ′′
0, ρ

′′
1) ≤ 2mβl ≤ 1/2.

Finally, applying the no-instance error reduction for measQTDP (Lemma 7.28) again
to the input (Q′′

0, Q
′′
1, k) produces new quantum circuits (Q̃0, Q̃1) with the corresponding

states (ρ̃0, ρ̃1), satisfying:
QTDmeas(ρ0, ρ1) ≥ α =⇒ QTDmeas(ρ̃0, ρ̃1) ≥ (1− e−k)k ≥ 1− ke−k ≥ 1− 2−k;
QTDmeas(ρ0, ρ1) ≤ β =⇒ QTDmeas(ρ̃0, ρ̃1) ≤ 2−k.

The last step holds for sufficiently large k, which we can be determined by selecting
an appropriate value at the beginning of our construction.

The time complexity analysis follows a similar approach to [CCKV08, Lemma 38].
Specifically, noting that λ ∈ (1, 2], we have

ln(λ) = ln(1 + (λ− 1)) ≥ λ− 1
2 ≥ Ω

(
α− β
β

)
.

Here, the first inequality is due to ln(1 + x) ≥ x/2 for all x ∈ [0, 1]. Then, we obtain
l = O

(
ln k
lnλ

)
= O

(
β ln k
α−β

)
and further conclude that

m ≤ 1
4 ·
( 2
α

)l
= exp

(
O

(
β ln k
α− β

· ln
( 2
α

)))
.

Proof of Lemma 7.26. Our proof strategy closely mirrors the approach used in Lemma 7.25,
but with different parameters λ, l,m, and some intermediate steps are omitted for brevity.

We set λ := min{α2/β, 2} ∈ (1, 2], and choose l := ⌈logλ(16k)⌉. By applying the
no-instance error reduction for QTDP (Lemma 7.28) to the input (Q0, Q1, l), we obtain
the circuits (Q′

0, Q
′
1) and the corresponding states (ρ′

0, ρ
′
1), satisfying:

QTD(ρ0, ρ1) ≥ α =⇒ QTD(ρ′
0, ρ

′
1) ≥ αl;

QTD(ρ0, ρ1) ≤ β =⇒ QTD(ρ′
0, ρ

′
1) ≤ βl.

Next, let m := λl/(8α2l) ≤ 1/(8βl). Applying the yes-instance error reduction for
QTDP (Lemma 7.30) to the input (Q′

0, Q
′
1,m), where the resulting circuits and states

are denoted by (Q′′
0, Q

′′
1) and (ρ′′

0, ρ
′′
1), respectively, yields the following:

QTD(ρ0, ρ1) ≥ α =⇒ QTD(ρ′′
0, ρ

′′
1) ≥ 1− exp(−α2lm/2) ≥ 1− e−k;

QTD(ρ0, ρ1) ≤ β =⇒ QTD(ρ′′
0, ρ

′′
1) ≤

√
2mβl/2 ≤ 1/2.

Lastly, applying the no-instance error reduction for QTDP (Lemma 7.28) again to
the input (Q′′

0, Q
′′
1, k) results in the circuits (Q̃0, Q̃1) and the corresponding states (ρ̃0, ρ̃1),

where it holds that:
QTD(ρ0, ρ1) ≥ α =⇒ QTD(ρ̃0, ρ̃1) ≥ (1− e−k)k ≥ 1− ke−k ≥ 1− 2−k;
QTD(ρ0, ρ1) ≤ β =⇒ QTD(ρ̃0, ρ̃1) ≤ 2−k.

The time complexity analysis follows similarly to the proof of Lemma 7.25. Since
λ ∈ (1, 2], we obtain ln λ ≥ Ω

(
α2−β
β

)
, and thus l = O

(
ln k
lnλ

)
= O

(
β ln k
α2−β

)
. Consequently,

we conclude that m ≤ (2/α2)l/8 ≤ exp
(
O
(
β ln k
α2−β · ln(2/α2)

))
.
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7.3.4 QSZK-hardness of QJSP, QEDP, measQTDP, and QTDP

QJSP is QSZK-hard. We begin by establishing the QSZK-hardness of the Quantum
Jensen-Shannon Divergence Problem (QJSP):

Lemma 7.31 (QJSP is QSZK-hard). Let α(n) and β(n) be efficiently computable func-
tions, there exists a constant ϵ ∈ (0, 1/2) such that

QJSP[α, β] is QSZK-hard,

when α(n) ≤ 1− 2−n1/2−ϵ and β(n) ≥ 2−n1/2−ϵ for large enough n.

Following the approach for showing that JSP is SZK-hard [BDRV19, Lemma 4.3],
we prove Lemma 7.31 by utilizing inequalities between the trace distance and QJSbit
(combining Lemma 3.25 and Lemma 3.26), which mirror the inequalities between the
total variation distance and the Jensen-Shannon divergence [FvdG99, Top00].

Proof of Lemma 7.31. By Lemma 3.37, it suffices to reduce QSDP
[
1−2−n1/2−ϵ/2

, 2−n1/2−ϵ/2
]

to QJSP[α, β], where α and β will be specified later. Consider quantum circuits Q0 and
Q1 acting on n qubits, which is a QSDP instance. We can obtain ρi for i ∈ {0, 1} by
performing Qi on |0n⟩ and tracing out the non-output qubits. This yields the following:

• If T(ρ0, ρ1) ≥ 1− 2−n1/2−ϵ/2 , then Lemma 3.25 indicates that

QJSbit(ρ0, ρ1) ≥ 1− Hbit

(
1− T(ρ0, ρ1)

2

)
≥ 1− Hbit

(
2−n1/2−ϵ/2−1

)
≥ 1− 2 · 2−(n1/2−ϵ/2+1)/2

≥ α(n),
where the third inequality owes to Hbit(x) ≤ 2

√
x for all x ∈ [0, 1]. Then we

choose a constant n(ϵ) such that the last inequality holds. Specifically, there exists
a constant n(ϵ) such that 1− 2 · 2−(n1/2−ϵ/2+1)/2 ≥ 1− 2−n1/2−ϵ for all n ≥ n(ϵ).

• If T(ρ0, ρ1) ≤ 2−n1/2−ϵ/2 , then according to Lemma 3.26, we have

QJSbit(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 2−n1/2−ϵ/2 ≤ β(n).

Here, the last inequality holds for any n ≥ n(ϵ) since β(n) ≥ 2−n1/2−ϵ/2 .

Therefore, by utilizing the same quantum circuits Q0 and Q1 and their corresponding
states ρ0 and ρ1, we establish a Karp reduction from QSDP

[
1− 2−n1/2−ϵ/2

, 2−n1/2−ϵ/2
]

to
QJSP[α, β] for n ≥ n(ϵ).

A simple QSZK-hardness proof for QEDP. Furthermore, we can establish a new
and simple reduction from QSDP to QEDP via QJSP by combining Lemma 7.22 and
Lemma 7.31. This reduction leads to a simple QSZK-hardness proof for QEDP, as stated
in Corollary 7.21. Now we present the detailed proof:

Proof of Corollary 7.21. Using Lemma 7.31, we obtain that QJSP[α, β] is QSZK-hard
when α(n) ≤ 1 − 2−n1/2−ϵ and β(n) ≥ 2−n1/2−ϵ for some ϵ ∈ (0, 1/2) and n ≥ n(ϵ). The

171



hard instances for QSDP (simultaneously hard for QJSP), as specified in Lemma 7.31,
consist of quantum circuits Q0 and Q1, acting on n qubits, that prepare a purification of
r(n)-qubit states ρ0 and ρ1, respectively.

Subsequently, by using Lemma 7.22, we construct quantum circuits Q′
0 and Q′

1 acting
on m′(n′) = n′ + 2 qubits, where n′ := n+ 1, preparing a purification of n′-qubit states

ρ′
0 = (p|0⟩⟨0|+ (1− p)|1⟩⟨1|)⊗ (1

2ρ0 + 1
2ρ1),

ρ′
1 = 1

2 |0⟩⟨0| ⊗ ρ0 + 1
2 |1⟩⟨1| ⊗ ρ1.

Here, the parameter p satisfies Hbit(p) = 1− ln 2
2 (α + β).

According to Lemma 7.22, QEDP[g(n)] is QSZK-hard as long as

g(n′) = ln 2
2 (α(n′ − 1)− β(n′ − 1)) ≤ ln 2

2
(
1− 2−(n′−1)1/2−ϵ+1

)
.

As a consequence, QSDP is Karp reducible to QEDP by mapping (Q0, Q1) to
(Q′

0, Q
′
1). To finish the proof, we redefine n := n′, replacing n′ with n in the QSZK-

hardness condition for QEDP.

measQTDP and QTDP are QSZK-hard Next, we prove the QSZK-hardness of both
the Measured Quantum Triangular Discrimination Problem (measQTDP)
and the Quantum Triangular Discrimination Problem (QTDP):

Lemma 7.32 (measQTDP and QTDP are QSZK-hard). Let α(n) and β(n) be effi-
ciently computable functions, there exists a constant ϵ ∈ (0, 1/2) such that

measQTDP[α, β] and QTDP[α, β] are QSZK-hard,

when α(n) ≤ 1− 2−n1/2−ϵ and β(n) ≥ 2−n1/2−ϵ for large enough n.

The proof parallels the approach to demonstrate that TDP is SZK-hard [BDRV19,
Lemma 4.4]. We employ the inequalities between the trace distance and QTDmeas, as
presented in Theorem 7.7, analogous to the inequalities between the counterpart classical
distances in [Top00].

Proof of Lemma 7.32. Since the inequalities between the trace distance and QTD coin-
cides with those of QTDmeas, we focus on proving that measQTDP is QSZK-hard in the
desired regime. The proof can then be straightforwardly extended to the QTDP case.

By leveraging Lemma 3.37, it suffices to reduce QSDP
[
1 − 2−n1/2−ϵ/2

, 2−n1/2−ϵ/2
]

to
measQTDP[α, β], where α and β will be specified later. Consider quantum circuits Q0
and Q1 acting on n qubits, which is a QSDP instance. We can obtain ρi for i ∈ {0, 1} by
performing Qi on |0n⟩ and tracing out the non-output qubits. This yields the following:

• If T(ρ0, ρ1) ≥ 1− 2−n1/2−ϵ/2 , then Lemma 7.13 indicates that

QTDmeas(ρ0, ρ1) ≥ T(ρ0, ρ1)2 ≥
(
1− 2−n1/2−ϵ/2)2

≥ 1− 2−n1/2−ϵ/2+1 ≥ α(n).

We can choose a constant n(ϵ) such that 1 − 2−n1/2−ϵ/2+1 ≥ 1 − 2−n1/2−ϵ for all
n ≥ n(ϵ).
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• If T(ρ0, ρ1) ≤ 2−n1/2−ϵ/2 , then according to Lemma 7.10 and Lemma 7.6, we have

QTDmeas(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 2−n1/2−ϵ/2 ≤ β(n).

Here, the last inequality holds for any n ≥ n(ϵ) because β(n) ≥ 2−n1/2−ϵ/2 .

Therefore, by employing the same quantum circuitsQ0 andQ1 and their corresponding
states ρ0 and ρ1, we establish a Karp reduction from QSDP

[
1− 2−n1/2−ϵ/2

, 2−n1/2−ϵ/2
]

to
measQTDP[α, β] for n ≥ n(ϵ).

7.4 Easy regimes for the class QSZK

We begin with the main results in this section:

Theorem 7.33 (Easy regimes for QSZK). For any efficiently computable functions α
and β, we have the following easy regimes for QSZK in terms of QSDP:

(1) QSDP[α, β] is in PP when 1− 2−n/2−1 ≤ α(n) ≤ 1 and 0 ≤ β(n) ≤ 2−n/2−1.

(2) QSDP[1, 0] is in NQP.

Theorem 7.33 aligns with classical counterparts regarding SZK. Particularly, Theo-
rem 7.33(1) is a quantum analog of [BCH+19, Theorem 7.1], stating that SDP with some
inverse-exponential errors is in PP. Meanwhile, Theorem 7.33(2) parallels a folklore result
that SDP without error is in NP, as NQP can be viewed as a quantum analog of NP.

Furthermore, Theorem 7.33(1) suggests that achieving a dimension-preserving po-
larization for the Quantum State Distinguishability Problem (QSDP) demands
non-black-box techniques due to the existing oracle separation [BCH+19]. This is because
the existence of such a polarization would imply, by Theorem 7.33(1), that QSZK ⊆ PP.

7.4.1 QSDP without error is in NQP

As a prelude to Theorem 7.33(1), we will first establish Theorem 7.33(2). Specifically,
through a crucial observation concerning T(ρ0, ρ1) and Tr(ρ0ρ1), we can devise a unitary
quantum algorithm A using the SWAP test. The acceptance probability of A is at least
slightly higher than 1/2 for yes instances, while exactly 1/2 for no instances. We then
apply exact amplitude amplification (Lemma 2.17) on A to construct another algorithm
A′ that achieves one-sided error.

Proof of Theorem 7.33(2). For any states ρ0 and ρ1, we can observe the following:

• For yes instances where T(ρ0, ρ1) = 0, we have ρ0 = ρ1 due to the trace distance
being a metric. This equality leads to Tr(ρ0ρ1) ≥ 2−n, with equality achieved when
both ρ0 and ρ1 correspond to the maximally mixed state 2−nIn, where In denotes
the identity matrix on n qubits.

• For no instances where T(ρ0, ρ1) = 1, we know that ρ0 and ρ1 have orthogonal
supports because of the triangle inequality, leading to Tr(ρ0ρ1) = 0.

Unitary construction using the SWAP test. We utilize the SWAP test [BCWdW01]
to test the closeness of quantum (mixed) states ρ0 and ρ1. Our approach involves a single-

173



qubit quantum register C, along with quantum registers A = (A0,A1) and S = (S0, S1),
all initialized to the state |0⟩. Subsequently, we apply state-preparation circuits Qi on
registers Ai and Si for i ∈ {0, 1}. Then, we perform the SWAP test on registers C, S0,
and S1, where C serves as the control qubit. Leveraging Proposition 9 in [KMY09], we
obtain the following unitary (i.e., algorithm A):

U |0⟩C|0̄⟩A,S = √p|0⟩C|ψ0⟩A,S +
√

1− p|1⟩C|ψ1⟩A,S where p = 1
2

(
1 + Tr(ρ0ρ1)

)
. (7.12)

Next, we introduce another single-qubit register F, initialized to zero, leading to:
(H ⊗ U)|0⟩F|0⟩C|0̄⟩A,S

=
∑

k0∈{0,1}

√
p

2 |0⟩F|k0⟩C|ψ0⟩A,S +
∑

k1∈{0,1}

√
1− p

2 |1⟩F|k1⟩C|ψ1⟩A,S

:=
√
p

2 |0⟩F|0⟩C|ψ0⟩A,S +
√

1− p

2 |⊥⟩F,C,A,S.

(7.13)

Making the error one-sided through exact amplitude amplification. Now we
devise a one-sided error algorithm A′ by utilizing A as a building block. Let us consider
the Grover operator

G := −(H ⊗ U)(I − 2|0̄⟩⟨0̄|F,C,A,S)(H ⊗ U †)(I − 2Π0).
Here, Π0 is the projector onto the subspace spanned by {|0⟩F|0⟩C|ϕ⟩A,S} over all |ϕ⟩. By
utilizing the exact amplitude amplification (Lemma 2.17), it holds that
G(H ⊗ U)|0⟩F|0⟩C|0̄⟩A,S = sin(3θ)|0⟩F|0⟩C|ψ0⟩A,S + cos(3θ)|⊥⟩F,C,A,S, where θ ∈ [0, π/4].

According to Equation (7.13), p satisfies sin(θ)2 = p/2. Let xF and xC be the mea-
surement outcomes of the registers F and C, respectively, after a single iteration of G.
The resulting algorithm A′ rejects if xF = xC = 0; otherwise, it accepts. Therefore, the
acceptance probability of A′ is pacc = 1−Pr[xF = xC = 0] where Pr[xF = xC = 0] satisfies:

Pr[xF = xC = 0] = sin2(3θ)
= sin6 θ − 6 cos2 θ sin4 θ + 9 cos4 θ sin2 θ

= 2p3 − 6p2 + 9
2p

(7.14)

Finally, we complete the analysis of A′ as follows:

• For yes instances, we can plug Tr(ρ0ρ1) ≥ 2−n into Equation (7.12), which implies
p ≥ 1

2 + 2−n−1. Noting that 2p3− p2 + 9
2p ≤ 1− (p− 1

2)2 for any 0 ≤ p ≤ 1, together
with Equation (7.14), we obtain pacc ≥ (p− 1

2)2 ≥ 2−2n−2.

• For no instances, we can set Tr(ρ0ρ1) = 0 in Equation (7.12), resulting in p = 1/2
and θ = π/6. Following Equation (7.14), we know that A′ rejects with certainty,
equivalently pacc = 0.

We thus conclude that A′ is an NQP algorithm as desired.

As mentioned earlier, Theorem 7.33(2) has a classical counterpart, namely SDP[1, 0]
is in NP. The proof of this folklore result is outlined below. Let p0 and p1 be two proba-
bility distributions. The collision distance between p0 and p1 is defined as Col(p0, p1) :=∑
x p0(x)p1(x). Then, it follows that
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• If TV(p0, p1) = 1, we obtain Col(p0, p1) = 0.

• If TV(p0, p1) = 0, we have Col(p0, p1) ≥ 1/|supp (p0) ∩ supp (p1) |, with equality
occurring when p0 and p1 are uniform on supp (p0) ∩ supp (p1).

This observation suffices for establishing the NP containment of SDP[1, 0]. Specifi-
cally, noting that there exists x ∈ supp (p0)∪supp (p1) for TV(p0, p1) = 0, then the prover
could provide the corresponding w0 and w1 as a witness such that C0(w0) = C1(w1) = x.
Additionally, such a witness does not exist for no instances, i.e., TV(p0, p1) = 1.

7.4.2 QSDP with some inverse-exponential errors is in PP

The crucial insight for comprehending the PP containment of QSDP with tinily errors
is given by the expression

HS2(ρ0, ρ1) = 1
2Tr(ρ0 − ρ1)2 = 1

2
(
Tr(ρ2

0) + Tr(ρ2
1)
)
− Tr(ρ0ρ1).

It is noteworthy that by employing the SWAP test [BCWdW01] for mixed states,
such as [KMY09, Proposition 9], one can estimate these three terms: Tr(ρ2

0), Tr(ρ2
1),

and Tr(ρ0ρ1). This estimation enables the development of a hybrid algorithm. Subse-
quently, we proceed to establish Theorem 7.33(1), which can be viewed as the quantum
counterpart of [BCH+19, Theorem 7.1].

Proof of Theorem 7.33(1). Consider two n-qubit quantum states, denoted as ρ0 and ρ1,
defined in a finite-dimensional Hilbert space H according to Definition 3.33. Following
Lemma 3.20, it holds that:

HS(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤
√

dimH · HS(ρ0, ρ1). (7.15)

We present a hybrid classical-quantum algorithm A as follows. First, we toss two
random coins that the outcomes denoted as r1 and r2. Subsequently, we apply the SWAP
test on the corresponding states in the following manner:

• If the first coin lands on heads (r1 = 1), we perform the SWAP test on ρ0 and ρ1.
We accept if the final measurement outcome is 0.

• If the first coin lands on tails (r1 = 0), we perform the SWAP test on two copies of
ρr2 . We accept if the final measurement outcome is 1.

Let p(o)
SWAP(ρ0, ρ1) be the probability of the SWAP test on ρ0 and ρ1 where the final

measurement outcome o. We then obtain the acceptance probability of our algorithm A:

1
2p

(0)
SWAP(ρ0, ρ1) + 1

2
∑

i∈{0,1}

p
(1)
SWAP(ρi, ρi)

2 = 1 + Tr(ρ0ρ1)
4 +

∑
i∈{0,1}

1− Tr(ρ2
i )

8

= 1
2 −

HS2(ρ0, ρ1)
4 .

(7.16)

It suffices to show that algorithm A is indeed a PP containment distinguishing yes in-
stances from no instances within an inverse-exponential gap. Combining Equation (7.15)
and Equation (7.16), we then analyze the acceptance probability:
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• For yes instances, noting that T(ρ0, ρ1) ≤ 2−n/2−1, it holds that:

p
(Y)
A (ρ0, ρ1) = 1

2 −
1
4HS(ρ0, ρ1)2 ≥ 1

2 −
1
4T2(ρ0, ρ1) ≥

1
2 − 2−n−4.

• For no instances, noticing that T(ρ0, ρ1) ≥ 1− 2−n/2−1, it holds that:

p
(N)
A (ρ0, ρ1) = 1

2 −
1
4HS(ρ0, ρ1)2

≤ 1
2 −

1
4 ·

T(ρ0, ρ1)2

dimH
≤ 1

2 − 2−n−2 ·
(
1− 2− n

2 −1
)2
.

Since PreciseBQP ⊆ PP (e.g., Lemma 3.3 in [GSS+22]), we then complete the proof
by showing that the gap p

(Y)
A (ρ0, ρ1)− p(N)

A (ρ0, ρ1) is exponentially small as desired:

p
(Y)
A (ρ0, ρ1)− p(N)

A (ρ0, ρ1) = 2−2n−4 + 2−n−2 ·
(3

4 − 2−n/2
)
≥ 2−2n−4,

where the last inequality holds for n ≥ 1.
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Chapter 8

Conclusions

In this dissertation, we investigated quantum state testing problems from complexity-
theoretic perspectives, with a primary focus on the closeness testing of quantum states.
Specifically, our work addressed the following questions:

(i) What is the computational hardness of approximating the von Neumann entropy?

(ii) Does the dichotomy-like behavior, which is observed in the time-bounded state test-
ing with respect to the trace distance (ℓ1 norm) and the Hilbert-Schmidt distance
(ℓ2 norm), also arise in quantum state testing under other resource constraints?

(iii) How can the QSZK containment regime for the time-bounded state testing problem
with respect to the trace distance (QSD) be improved?

We formulated these questions into more specific problems, as listed in Sections 1.1
and 1.2, and were able to provide very satisfying answers to most of them. We now briefly
review our results and suggest future research directions.

A dichotomy theorem on approximating von Neumann entropy

In the context of (white-box) quantum state testing problems, briefly outlined in Sec-
tion 3.3, the trace distance [Wat02] and the von Neumann entropy [BASTS10] emerge as
the most important closeness measures considered in time-bounded state testing. While
a dichotomy theorem on approximating the von Neumann entropy is established (Theo-
rem 4.2), this brings up a parallel question concerning the trace distance:

Open Problem 8.1. What computational power is required to approximate the trace
distance in time-bounded state testing problems, particularly with respect to closeness
measures that are looser than the ℓ1-norm (trace distance) but tighter than the ℓ2-norm
(Hilbert-Schmidt distance)?

Our first main theorem (Theorem 4.1) in Chapter 4 provides an efficiently computable
lower bound for the von Neumann entropy S(ρ). This naturally raises the question:

Open Problem 8.2. Is there an efficiently computable upper bound for S(ρ), perhaps
based on some relaxed notion of the von Neumann entropy?
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The quantum Tsallis entropy Sq(ρ) in the regime 1 < q < 2 exhibits distinct behavior
compared to both S(ρ) and S2(ρ) = 1−Tr(ρ2), which was believed to be computationally
challenging for quantum computers until our work, leading to another open problem:

Open Problem 8.3. Are there further applications of estimating the quantum Tsallis
entropy Sq(ρ) in the regime 1 < q < 2?

Furthermore, there are two open problems arise regarding quantitative bounds for the
easy regime and (NI)QSZK containments for the hard regime:

Open Problem 8.4. Can the query and sample bounds in Table 4.2 be improved, espe-
cially for the regime q ≥ 1 + Ω(1)?

Open Problem 8.5. Is it possible to establish that TsallisQEDq (or TsallisQEAq)
is contained in QSZK (or NIQSZK) for the regime 1 < q ≤ 1+ 1

n−1 , which has been shown
to be QSZK-hard (or NIQSZK-hard) as stated in Theorem 4.2(2)?

For the hard regime (Open Problem 8.5), it is noteworthy that the QSZK containment
of QED (q = 1) cannot be directly extended to TsallisQEDq for the regime 1 < q ≤
1 + 1

n−1 , since Sq(ρ) only provides a lower bound of S(ρ), while TsallisQEDq in this
regime appears to be easier than QED.1

Finally, it is worth exploring generalizations of the von Neumann entropy that are
tighter than the quantum Tsallis entropy Sq(ρ) for q > 1. Two promising candidates are
Sq(ρ) for 0 < q < 1 and the quantum Rényi entropy, defined as SRα (ρ) := ln Tr(ρα)

1−α , which
prompts the following questions:

Open Problem 8.6. What are the containment and hardness of estimating the quantum
Tsallis entropy Sq(ρ) in the regime 0 < q < 1?

Open Problem 8.7. Since the corresponding time-bounded state testing problem with re-
spect to the quantum Rényi entropy SRα (ρ), denoted as RényiQEAα is intuitively QSZK-
hard for the regime 1 < α ≤ 1 + 1

n−1 , as per Theorem 4.2(2), can computational hardness
results be established for estimating SRα (ρ) with α > 0?

Space-bounded quantum state testing via space-efficient quantum singular
value transformation

Since space-efficient quantum singular value transformation (QSVT) offers a unified
framework for designing quantum logspace algorithms, it suggests a new direction to find
applications of space-bounded quantum computation.

1However, a partial regime QSZK containment of time-bounded state testing with respect to the
quantum Jensen-Tsallis divergence (QJTq) for 1 < q ≤ 1+ 1

n−1 can be derived by applying the inequalities
between the trace distance and QJTq. This type of reduction, though, cannot be directly extended to
Sq(ρ0)− Sq(ρ1), and thus, a partial regime QSZK containment of TsallisQEDq does not immediately
follow. This is because QJTq(ρ0, ρ1) does not exhibit a linear dependence on Sq(ρ0) − Sq(ρ1) for the
regime 1 < q ≤ 1 + 1

n−1 in general (see, e.g., Equation (4.45)), unlike the case of q = 1.
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Space-efficient QSVT. An intriguing candidate is solving positive semi-definite pro-
gramming (SDP) programs with constant precision [JY11, AZLO16]. A major challenge
in achieving a BQL containment of this problem is that iteratively applying the space-
efficient QSVT super-constantly many times may lead to a bitstring indexed encoding
requiring ω(log n) ancillary qubits, raising the question:

Open Problem 8.8. Is it possible to have an approximation scheme (possibly under
certain conditions) that introduces merely O(1) additional ancillary qubits in the bitstring
indexed encoding per iteration, such that applying space-efficient QSVT O(log n) times
results in a bitstring indexed encoding with at most O(log n) ancillary qubits?

Recently, a query complexity lower bound Ω(d) for matrix functions [MS23] implies
that time-efficient QSVT [GSLW19] is time-optimal. This raises the question of how to
improve the efficiency of the space-efficient QSVT:

Open Problem 8.9. Can the query complexity of U and U † in space-efficient QSVT for
smooth functions be improved from O(d2) to O(d)?

Such an improvement would make QSVT optimal for both (quantum) time and space:
Notably, the pre-processing – finding an appropriate polynomial approximation – in
QSVT techniques, which is not necessarily classical in general, usually involves finding
the sequence of z-axis rotation angles. Our approach, however, uses averaged Chebyshev
truncation and the LCU technique. A general solution thus seems to involve developing
a space-efficient (quantum) angle-finding algorithm.

Space-bounded testings beyond quantum states. Furthermore, as quantum dis-
tances investigated in this work are all instances of a quantum analog of symmetric
f -divergence, there is a natural question on other closeness measures of quantum states
or even testing the closeness of quantum channels:

Open Problem 8.10. Is it possible to establish that space-bounded quantum state testing
problems with respect to other quantum distance-like measures are BQL-complete?

Open Problem 8.11 (Inspired by Tom Gur). What is the computational complexity of
time- or space-bounded quantum channel testing problems with respect to various closeness
measures?

The QSZK containment of QSD beyond the polarizing regime

We developed a quantum counterpart to the classical work [BDRV19], improving the
QSZK containment of the time-bounded state testing problem with respect to the trace
distance (QSD). However, not all results in [BDRV19] extend to the quantum setting.
This difference stems from the distinct behaviors exhibited by quantum analogs of the
triangular discrimination compared to their classical equivalent.

QSZK and QSD. Nevertheless, fully characterizing the computational hardness of the
promise problem QSD or the complexity class QSZK remains a significant challenge.
The best known upper bound for QSD[α, β] when α(n)− β(n) ≥ 1/poly(n), denoted as
GapQSD, is PSPACE. This result is implicitly shown in [Wat02], see also Theorem 6.2(1)
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for an alternative proof. However, the best known upper bound for QSZK is QIP(2) with
a quantum linear-space honest prover (Theorem 6.27), while the prior best upper bound
was QIP(2) [Wat02, Wat09b, JUW09], which is contained in PSPACE. This leads to an
intriguing question:
Open Problem 8.12. Can the upper bound for GapQSD be improved?

A more ambitious question concerns achieving a tighter characterization of the class
QSZK. The best known upper bound for its classical counterpart, SZK, is AM∩ coAM, as
established in [For87, AH91].
Open Problem 8.13. Can the classical or quantum upper bound for QSZK be improved?

The set lower bound protocol [GS86] plays a crucial role in proving that SZK is in
AM∩coAM. A natural approach to improving the quantum upper bound, such as variants
of QIP(2) introduced in [KLN19], would involve developing a quantum analog of the set
lower bound protocol. A more challenging question is how to improve the classical upper
bound beyond PSPACE, given the lack of techniques for establishing containments in
terms of complexity classes between PP and PSPACE, such as the counting hierarchy.

Quantum analogs of the triangular discrimination. In addition to general ques-
tions on QSZK and GapQSD, as we defined two quantum analogs of the triangular
discrimination, a natural question is finding more applications of them:
Open Problem 8.14. Is there any other application of the (measured) quantum trian-
gular discrimination besides its usage related to the class QSZK?

For instance, Yehudayoff [Yeh20] utilized triangular discrimination to obtain a sharper
communication complexity lower bound of the point chasing problem. Can we expect
a similar implication in the quantum world? Moreover, we note that QTDmeas is a
symmetric version of the measured Bures χ2-divergence and the latter is used for the
nonzero testing of quantum mutual information [FO23]. Might QTDmeas also play a role
in quantum property testing?

Lastly, two questions arise regarding the tightening of the characterization of quantum
triangular discrimination introduced in Chapter 7. First, numerical simulations suggest
that the inequalities in Theorem 7.4(2) are not tight, leading to the natural question:
Open Problem 8.15. Is it possible to prove that for any quantum states ρ0 and ρ1, the
following inequalities hold:

ln(2) ·QTD2(ρ0, ρ1) ≤ QJS(ρ0, ρ1) ≤ ln(2) ·QTD(ρ0, ρ1)?

The bounds in Open Problem 8.15 can be saturated by choosing states ρ0 and ρ1 with
orthogonal support, which suffices to make QJSbit(ρ0, ρ1) and QTD(ρ0, ρ1) equal to 1.

Second, since the square root of triangular discrimination is a metric [LC86], it raises
an interesting question whether a similar property holds in the quantum case:
Open Problem 8.16. Is it possible to prove that the square root of quantum triangular
discrimination, denoted as

√
QTD, is a distance metric? Specifically, for any quantum

states ρ0, ρ1, and ρ2, can it be shown that the following inequality holds:√
QTD(ρ0, ρ1) +

√
QTD(ρ1, ρ2) ≥

√
QTD(ρ0, ρ2)?
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