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Outline

Part I: Complexity Zoo

e Decision problem and language
e Circuit model (logic gate and quantum gate)
e Complexity classes: P and BQP

e More complexity classes: NP, QMA and #P

e Reduction

Part II: Local Hamiltonian Problem

e Local Hamiltonian and LHP

e How hard is the local Hamiltonian?

e An approach to show a class of LHP in NP(P)
e 1D gapped LHP is in P

o Is 2D gapped LHP in NP?



Preliminary

Decision problem f:{0,1}* — {0,1}

Counting problem f:{0,1}* - N

Language L = {s € {0,1}* = U2, {0,1}* : f(s) = 1}
Problem size(input size) # input bits

Time # gates in circuit

decide the language = solving decision problem

e.g. Factoring
Input: n,k € N
Output:
e Yes if n has factor < k;
e No, otherwise.

Notice that the problem size(input size) is log(n).



Circuit Model: logic & quantum gates

Logic gate
Boolean function on 1 or 2 bits.

G1 : {0, 1} — {O, 1}
G : {0, 1}X2 — {O, 1}

e.g.
l,z=9y=1
AND(z,y) = '
0, otherwise
0,z =1
NOT (z) =
1,z =0
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Quautum gate

Unitary operator on 1 or 2 qubits:
U : (C2 — (CQ
Uy:C*®C? - C?®C?
(where UTU = 1)
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Circuit Model: Quantum Circuit

Quantum circuit
finite sequence of quantum gates.

Input |¢) is ”computational basis” state, i.e. |¢) = ®;|x;), |x;) € {|0), |1)}.

Output outcome of measuring qubits in computational basis.

i.e. measure {II9) TI(Y) on each qubit, where Tr(I1(9p).

e.g. Universal set

( Hadamard H = \% (i _11> — %(H))(O\ + [0)(1] + [1){0] — |1)(1])

Clifford gate




Complexity classes: P and BQP

Uniform circuit family Sequence of circuits C),, on n-bit is uniform if
3 Turing Machine which on input n, outputs description of C,, in poly-time.

P (Polynomial time) Class of decision problems solvable with uniform family
of poly-sized circuit.

e.g. * Frustration-free 2-LHP € P [Bravyi ’06]
e Determinant € P

BQP (Bounded-error quantum poly. time, so-called ”quantum P”")

3 poly-sized uniform quantum circuit U s.t.
(

> —, Yes instance

Pr(U outputs 717) = <

< —, No instance

W[ Wl N

\
where Pr(U outputs 717) = Tr[Hgl) R L., Ulz){z|UT] = (x\UTHg) ®
I5...,U|x) and the output is given by the first qubit.

€.g2. e Factoring € BQP [Shor "94]

o All equivalent quantum computing model is BQP-complete,
such as topological(Jones polynomial), adabatic, - -



Examples: k-fold Forrelation

k-told Forrelation

Given boolean functions f1,---, fx : {0,1}" — {0,1}", its k-fold forrelation
is the following quality:-
1 X 12 202 T 1T X
Qp o= IRV Z (_1)f1( 1)(_1) (_1)f( )...(_1) - k:(_l)fk( k)

x1,,x€{0,1}
Input k£ Boolean circuits C4,--- ,C%, which compute the Boolean functions
f; +{0,1}™ — {0,1}"™.

Promise either ®¢ .. ¢ < L

3
100 or (I)fl,...7fk 2 5

Output decide whether @y, ... 5 > 3.

e r; - 2 is dot product. 0) | H H ~ H 46&
o HOM|0)E" = 27m/2 Y~ |11)
r1€{0,1}n 0)>— H Uf1 Hi —eee_ Ufk H
® HY" fi(z1) ) le) =27" ) (=1)" fi(z1)|z2)
; ;; 0)>— H H — H {ﬁ

k-fold Forrelation(k — poly(n)) is BQP-complete [Aaronaon&Ambainis '14]



Complexity classes: NP and QMA

NP (non-deterministic poly. time) Class of decision problems for which
Jdpolynomial time verifier V' s.t. if answer for input x is

e Yes: dJ polynomial-sized ”witness” w s.t. V(x,w) = 1.
e No: V witness w, V(z,w) = 0.

Merlin ¥  convince S Arthur®

e all-powerful e poly-time computation
e untrustworthy

QMA (quantum Merlin-Arthur, so-called ”quantum NP”) d poly-sized
uniform quantum verifier circuit U s.t. if answer on (classical) input x is:

e Yes: d poly.-sized quantum witness |w) € Croly(n) g t.
Pr(U outputs ”1” on input |z)|w)) > 2.
e No: V states |w), Pr(U outputs ”1” on input |z)|w)) < s.
e.g.
e 1D gapped LHP € NP (P) e Factoring € QMA
e Factoring € NP o k-LHP(k > 2) is QMA-complete
o k-SAT(k > 3) is NP-completee 1D LHP on qudits (d > 8) is QMA-complete



[.ocal Hamiltonian and LHP

”k-local” (quantum information) = ”k-body” (physics)

k-local Hamiltonian Given H = ) . h) € (C4H)®", we say that H is a k-
local Hamiltonian (or H is k-local) if ¥ i, h(¥) is k-local, each interaction
involving at most k particles, where h = hs ® I,/ and S C n].

e h acts non-trivially on subset s of the particles, |s| = k if k-local.
e In general, no requirement that local interactions are geometrically local.

k-local Hamiltonian problem
Input: k-local Hamiltonian H on n-qudits with m local terms.

Promise: where \g(H) < a or A\g(H) > b with b —a > m.
Output: Yes if \g(H) < a; No if \g(H) > b.

e Input is classical description of H, i.e. d?* elements for each m terms.

e w.lo.g. Input size m < CF = O(n*) = poly(n) . So matrix entries are
restricted to poly(n) digit of precision.



Local Hamiltonian: Examples

Transverse Ising model 2-local (d = 2), gapped, frustrated

N-1
1 X z
Nignr ZSS+1+hZS]
where h = 1.1 and gap A =~ 0.07.

H —

2D AKLT model on square lattice 2-local (d =5), gapped, frustration-free

s= 1 1

@]

Toric code 4-local (d = 2) or 3-local (d = 4),
commute, frustration-free

-3 Aw) - 3 BOY)

veV peP

where vertex operators A = X ®4
and plaquette operators B = Z®4.




Complexity class: #P

#P (the number of P) A function f : {0,1}" — N € #P if 9 polynomial
p: N — N and a poly-sized uniform classical verifier V' s.t. Vo € {0,1}":

f@) = {y € {0,130 V(2 w) = 1}

where w is poly-sized witness.

e Permanent is #P-complete.

perm(A) = Z HAi,a(i) det(A) = Z sgn(o) HAi,a(i)
i=1

cesS,, c=1 oeS,

e.g.

e Partition function of classical Ising model is #P-complete.
Consider n sites system with configuration defined by o € {0,1} on each
site. Energy of a configuration o is given by

H (o) :—ZVZ-J-JZ-JJ' —BZO’k
i)j k

where V;; 1s interaction energie,s and B is magnetic field intensity.
And the partition function of the system:
Z= Y exp(—BH(0))
oce{0,1}
where 3 is the inverse temperature.



Reduction

How to compare difficulty of different computational problems?

Poly-time reduction (Karp reduction) A reduces to B if 4 map A — B
with instance a — instance b s.t. b has answer Yes iff a has answer Yes.

Also the map A — B can be computed by poly-size circuit.
Note A reduces to B as A < B.

Hardness Problem B is NP-hard if VA € NP, A < B.
Completeness Problem A is NP-complete if A € NP-hard and A € NP.

e "hardest problems in NP”: if you can solve one, you can solve all NP
problems.

e It can be used as the definition of complexity classes, such as all equivalent
models of quantum computation.

C.8 o NP-complete: 3-SAT
e QMA-complete: k-LHP(k > 2), 1D LHP on qudit (d > 8)
e #P-complete: Permanent, classical Ising model’s partition function

e #P-hard: exactly contract PEPS [Schuch& Wolf& Verstraete& Cirac "06]



Complexity Zoo

Separate or Collapse? P C NP C QMA C #P
P C BQP C QMA C #P

e Separate P C BQP € NP ¢ QMA C #P

e Collapse P = BQP = NP = QMA = #P

NP-hard
BQP-complete

QMA-rcomplete #P:icomplete

MPS/MERA Factoring 3-SAT k-fold Forrelation k[ HP Permanent PEPS  Decide gapped
or gapless

€aSY p_complete NR-complete

How to interpret these relations?
P C BQP, NP C QMA classical = special case of quantum

P= NP $1,000,000
p= BQP Are quantum computers useful?
BQP = QMA quantum ” P-v.s.-NP”

NP = BQP Are quantum computers such powerful?



How hard is the local Hamiltonian?

Quantum Cook-Levin theorem
Kitaev "99]k-LHP is QMA-complete (k > 5).

[Kempe&Kitaev&Regev '05] 2-LHP is QMA-complete.

e Even for 1D system in general, 1D LHP on qudit(d > 8) is QMA-complete.

e Even for frustration-free systems, 3-LHP is QMA;-complete (with perfect
completeness).

Sometimes it 1s easier...

Commute (for local terms in Hamiltonian)
e |[Bravyi&Vyalyi ’06] 2-CLH on qudit is in NP
e |[Aharonov&Eldar ’13] 3-CLH on qubit is in NP
e |Schuch ’11] 4-CLH on the square lattice is in NP

e Higher dimension of lattice or higher physical dimension 7

Gapped (Hamiltonian with spectral gap > 0)
¢ |[Landau&Vazirani& Vidick '15] 1D gapped LHP is in P
e 2D gapped LHP is in NP (?7)
e It connects to area law and tensor network.



An approach to show a class of LHP is in NP

g.s. |€2) admits on efficient classical description
= a class of LHP is inside NP(P)

1. |€2.) is described by poly(N) classical bits.

2. (Q:]A|Q.) can be efficiently approximated up to ||A|l/poly(N) for every
local observable A.

3. (2| A|Q2e) — (QA[)] < [|A]l/poly(N)
1Q2.) as a classical witness for LHP, since

(QUH[Q) =) (Qhx|Q) = Y (Qe|hx|Qe) = (Q|H|L).

Nt/

local operator



1D gapped LHP is inside P(NP)

1D area law S(0) < const

[Hastings '07]

Efﬁcient.description Truncate Schmidt coefficients after poly(NV)
approximated UP to get a 1/poly(N )-approximation of |2)

to ||Al|/poly(N = polynomial MPS [Vidal "03]
o oO-
Finding Efficiently calculate ,ll ,I-IQ _t ! i
ground states the expectation value : 5 —
DMRG [White "92] Guarantee by MPS itself i i j7f O i
iTEBD [Vidal 03 [Vidal *03] b—o—4& . bo04bo

DP[LVV '15] (P)



Is 2D gapped LHP inside NP?

Area law is not enough
[Ge&Eisert '15] 7 2D a;rea 1aW PrOOf 1S m1881ng
Since PEPS contraction Finding
is #P-hard in general, ground states
PEPS is not enough
[Schuch&Wolf& Verstraete&Cirac '06] Eﬁc:lent descrlptlon IPEPS or.
. []ordan&Orus&V1dal&Verstraete&Cirac '08]
decay of approximated up to
correlations | Al /poly(N) for PEPS
Strong PEPS conjecture [Schwarz&Buerschaperé&Eisert '16]
For all local observables Ox and any constant ¢ > 0,there exists
an injective PEPS w with bond dimension D = O(poly(N), e 1)

. such that its parent Hamiltonian H, has a constant spectral
Efficiently calculate gap A, > 0and |Tr(O,p) — Tr(O,w)| < e

the expectation value

Quasi-poly time algorithm [Schwarz&Buerschaper&Eisert '16]

Consider the local patch with correlation length log(/N) (N = # spins) for

translation-invariant system. Quasi-polynomial time algorithm (Dd)o(ld),
where D is the bond dimension, d is the phsycial dimension and correlation

length [ = O(log(N)).
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