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What is quantum state testing

Task: Closeness testing of quantum states
Given two state-preparation circuits Q0 and Q1 (“quantum devices”) that prepare (the
purification of) n-qubit quantum states ρ0 ∈ CN×N and ρ1 ∈ CN×N , respectively. Decide
whether dist(ρ0,ρ1)≥ a(n) or dist(ρ0,ρ1)≤ b(n).

▶ Classical counterpart (distribution testing) involves probability distributions D0 and
D1 that are samplable via respective Boolean circuits C0 and C1. The task is to
decide whether dist(D0,D1)≥ a(n) or dist(D0,D1)≤ b(n).

▶ Quantum devices Qb for b ∈ {0,1} can be given either as a query oracle (black-box
model) or a sequence of poly(n) elementary quantum gates (white-box model).

Typical goal. Minimize the “complexity” of ρb (or its corresponding Qb) for b ∈ {0,1}:

Type of query access Complexity measure

Black-box model Query complexity (the number of queries)

White-box model Complexity class
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Generalizing the closeness measures via the Schatten α-norm
The most canonical choices of closeness measures are:

⋄ Trace distance T(ρ0,ρ1) =
1
2 Tr(|ρ0 −ρ1|).

⋄ Total variation distance TV(D0,D1) =
1
2 ∑x |D0(x)−D1(x)|.

Generalization. Define the quantum ℓα distance via the Schatten norm:

Tα (ρ0,ρ1) :=
1
2
∥ρ0 −ρ1∥α =

1
2

Tr(|ρ0 −ρ1|α )1/α .

Trace distance (α = 1). The closeness testing problem in this case is hard, with
complexity (polynomially) depending on the rank r of the quantum states:

▶ The query complexity for estimating T(ρ0,ρ1) to within additive error ε is Õ(r/ε2)

[Wang-Zhang’23] and Ω̃(r1/2) [Bun-Kothari-Thaler’17].

▶ The promise problem QUANTUM STATE DISTINGUISHABILITY (QSD[a,b]) is
QSZK-complete∗ [Watrous’02, Watrous’05], and it is widely believed that BQP ⊊ QSZK.

⋄ The QSZK containment holds only in the polarizing regime a(n)2 −b(n)> 1/O(logn),
rather than the natural regime a(n)−b(n)≥ 1/poly(n).

⋄ The QSZK containment has recently been slightly improved beyond that in [L.’23], while
the result is weaker than the classical case [Berman-Degwekar-Rothblum-Vasudevan’19].
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Generalizing the closeness measures via the Schatten α-norm (Cont.)

Even α ∈ {2,4, · · ·}. The closeness testing problem in this case is easy, with complexity
independent of the rank r of the quantum states:
▶ The query complexity for estimating Tr(ρ0ρ1) to within additive error ε is O(1/ε) via

the SWAP test [Buhrman-Cleve-Watrous-de Wolf’01].

⋄ This directly applies to the case α = 2, since Tr
(
(ρ0 −ρ1)

2
)
= Tr(ρ2

0 )+Tr(ρ2
1 )−2Tr(ρ0ρ1).

⋄ In the white-box model, the corresponding closeness testing problem is in BQP.

▶ Similar techniques [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek’02] can estimate Tr(ρ1ρ2 · · ·ρk)

for integer k > 1, and solve the case of even integers α.

Odd α = 3. The query complexity of deciding whether T3(ρ0,ρ1) =
1
2 Tr(|ρ0−ρ1|3)1/3 ≥ ε

or ρ0 = ρ1 is O(1/ε3/2) [Gilyén-Li’19], but this does not extend to the estimation task:

▶ T3(ρ0,ρ1)≥ ε ⇒ Tr
(( ρ0−ρ1

2

)2( ρ0+ρ1
2

))
≥ 1

8 Tr
[
|ρ0 −ρ1|3

]
≥ ε3.

α > 1 in general. For real-valued α > 1, the query complexity for estimating Tα (ρ0,ρ1)

to within additive error ε is poly(r,1/ε) [Wang-Guan-Liu-Zhang-Ying’22], which polynomially
depends on the rank of the states of interests.
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Generalizing the closeness measures via the Schatten α-norm (Cont.2)

What about the complexity of estimating the classical ℓα distance?
Similarly, define the classical ℓα distance TVα (D0,D1) := 1

2 (∑x |D0(x)−D1(x)|α )1/α .

▶ For real-valued α > 1, the sample complexity of estimating TVα (D0,D1) to within
additive error ε is poly(1/ε), which is independent of the support size of
distributions D0 and D1, and fewer samples are needed as α increases [Waggoner’14].

▶ Intuition: When ε = Θ(1), draw poly(n) samples from D0 and D1, and compute the
classical ℓα distance between the resulting empirical distributions.

▶ Issue: This intuition does not work in the quantum world... /

Hope: Estimating the trace of quantum state powers is easy for real-valued q > 1.
The query complexity of estimating Tr(ρq) for real-valued q > 1 is poly(1/ε) [L.-Wang’24].

▶ Issue: Since |ρ0 −ρ1| is not a quantum state, this does not apply to Tα (ρ0,ρ1). /
Question: What is the complexity of estimating Tα (ρ0,ρ1) for real-valued α > 1?
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Main results: Upper bounds

Theorem 1 (Quantum estimator for quantum ℓα distance).
Given quantum query access to the state-preparation circuit Q0 and Q1 for the n-qubit
state ρ0 and ρ1, for any real-valued α > 1, there is a quantum algorithm that estimates
Tα (ρ0,ρ1) to within additive error ε, with query complexity O(1/εα+1+ 1

α−1 ) = poly(1/ε).

▶ The corresponding closeness testing problem QSDα [a(n),b(n)] decides whether
Tα (ρ0,ρ1) is at least a(n) or at most b(n), e.g., a(n) = 2/5 and b(n) = 1/5.

▶ As a corollary, for any real-valued α > 1 and all a(n),b(n) ∈ [0,1] satisfying
a(n)−b(n)≥ 1/poly(n), QSDα [a(n),b(n)] is in BQP.

▶ Using the (multi-)samplizer [Wang-Zhang’23,Wang-Zhang’24], which enables a
quantum query-to-sample simulation, the sample complexity used to estimate
Tα (ρ0,ρ1) is Õ(1/ε3α+2+ 2

α−1 ) = poly(1/ε).


While the prior best result [Wang-Guan-Liu-Zhang-Ying’22] has complexity polynomially
depending on the rank r of ρ0 and ρ1, our work is rank-independent and thus provides
an exponential improvement!
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Main results: Complexity classes & lower bounds

Let PUREQSDα be a restricted variant of QSDα , where the states of interest are pure:

Theorem 2 (Computational hardness of QSDα ).
The promise problem QSDα captures the computational power of the respective
complexity classes, depending on the regime of α:

1 Easy regimes. For any 1 ≤ α ≤ ∞, PUREQSDα (with constant precision) is
BQP-hard. Consequently, for real-valued α > 1, QSDα is BQP-complete.

2 Hard regimes. For any α ∈
(
1,1+ 1

n

]
, QSDα is QSZK-complete∗.

▶ The QSZK containment of QSDα [a,b] holds only in the polarizing regime
a(n)2 −b(n)≥ 1/O(logn).


 A sharp phase transition occurs between the case of α = 1 and real-valued α > 1!

Our reductions used to establish the hardness also leads to quantitative (query &
sample complexity) lower bounds for estimating Tα (ρ0,ρ1) to within additive error ε:

The regime of α 1 < α ≤ 1+ 1
n1+δ 1+ 1

n1+δ < α ≤ 1+ 1
n Real-valued α > 1

Query complexity Ω̃(r1/2) Ω(r1/3) Ω(1/ε)

Sample complexity Ω(r/ε2) Ω(1/ε2)
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Proof techniques: BQP containment of QSDα for real-valued α > 1
We begin by reviewing the approach in [Wang-Zhang’23] for estimating the trace distance
(α = 1), which uses the following key identity to decompose T(ρ0,ρ1):

T(ρ0,ρ1) =
1
2

Tr
(

ρ0sgn
(ρ0 −ρ1

2

))
− 1

2
Tr
(

ρ1sgn
(ρ0 −ρ1

2

))
= Tr(Πρ0)−Tr(Πρ1).

The Holevo-Helstrom measurement {Π, I −Π} and its approx. implementation satisfy:

Π =
I
2
+

1
2

sgn
(ρ0 −ρ1

2

)
and Π̃ =

I
2
+

1
2

Psgn
d

(ρ0 −ρ1

2

)
.

Implementing Π approximately. Using Quantum Singular Value Transformation
[Gilyén-Su-Low-Wiebe’19] with a “good” polynomial approximation Psgn

d (x) of the sign function
sgn(x) on the interval [−1,1]\ (−δ ,δ ), with degree d = O

( 1
δ log 1

ε
)
, one can approx.

implement the HH measurement via the Hadamard test [Kitaev’95, Aharonov-Jones-Landau’06]:

|0⟩ H H∣∣0̄〉
UΠ̃∣∣0̄〉

Qb∣∣0̄〉
▶ Algorithmic HH measurement [Le Gall-L.-Wang’23]: Using the space-efficient

QSVT, for any n-qubit quantum states ρ0 and ρ1, Π̃ can be implemented in poly(N)

time and O(n) space, where N = 2n is the dimension of the states.
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BQP containment of QSDα for real-valued α > 1 (Cont.)
Inspired by the identity (α = 1) used in [Wang-Zhang’23], we use the following identity to
decompose the powered quantum ℓα distance Λα (ρ0,ρ1) = 2α−1Tα (ρ0,ρ1)

α :

Λα (ρ0,ρ1) :=
1
2

Tr(|ρ0 −ρ1|α ) =
1
2

Tr
(
ρ0 · sgn(ν)|ν |α−1)− 1

2
Tr
(
ρ1 · sgn(ν)|ν |α−1)

= Tr(Πα ρ0)−Tr(Πα ρ1),

where ν = ρ0 −ρ1 and Πα :=
I
2
+

1
2

sgn(ν)|ν |α−1.

Similar to the case α = 1, we can approximately implement Πα via QSVT and the
Hadamard test, denoted as Π̃α , using an approximate polynomial approximation Pd(x)

of the function sgn(x)|x|β , where β = α −1 > 0 is a real number.

Removing the rank dependence. Unlike the case α = 1, we need a polynomial Pd(x)

that uniformly approximate sgn(x)|x|β . The best uniform (polynomial) approximation of
xβ was original investigated in [Bernstein’38], and the signed version sgn(x)|x|β was listed
in [Totik’06] and a non-constructive proof is provided in [Ganzburg’08]:

max
x∈[−1,1]

∣∣∣P∗
d∗ (x)− sgn(x)|x|β

∣∣∣→ (1/d∗)β , as d∗ → ∞.

By the Chebyshev truncation and the de La Vallée Poussin partial sum, we can make
the coefficients of P∗

d∗ (x) efficiently computable with a slightly larger degree d = 2d∗−1:

max
x∈[−1,1]

∣∣∣∣Pd(x)−
1
2

sgn(x)|x|β
∣∣∣∣≤ ε and max

x∈[−1,1]
|Pd(x)| ≤ 1, where d = O(1/ε1/β ).
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Proof techniques: Lower bounds via a new inequality between T and Tα

By carefully analyzing the properties of orthogonal PSD matrices ς0 and ς1 such that
ρ0 −ρ1 = ς0 − ς1, we establish a new rank-dependent inequality between T and Tα :

Theorem 3 (T vs. Tα ). For any quantum states ρ0 and ρ1,

∀α ∈ [1,∞], 21− 1
α ·Tα (ρ0,ρ1)≤ T(ρ0,ρ1)≤ 2

(
rank(ρ0)

1−α + rank(ρ1)
1−α)− 1

α ·Tα (ρ0,ρ1).

▶ The case of α = 2 was previously proven in [Coles’11, Coles-Cerezo-Cincio’19].

▶ The inequalities in Theorem 3 are sharper than those between the trace norm and
the Schatten norm, such as in [Aubrun-Szarek’17]:

∀α ∈ [1,∞], ∥A∥α ≤ ∥A∥1 ≤ rank(A)1− 1
α ∥A∥α .

▶ For pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|, the following identity holds:

∀α ∈ [1,∞], 21− 1
α ·Tα (|ψ0⟩⟨ψ0| , |ψ1⟩⟨ψ1|) = T(|ψ0⟩⟨ψ0| , |ψ1⟩⟨ψ1|).

Reductions via inequalities in Theorem 3. Consequently, we obtain:

▶ Reductions from the case α = 1 (e.g., QSD) to the case α > 1 (e.g., QSDα ), with
the relevant α > 1 ranges differing between QSDα and PUREQSDα .

▶ This implies that the computational hardness and lower bounds for QSDα and
PUREQSDα follow from the prior works on the trace distance (α = 1).
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Proof techniques: QSZK containment of QSDα for 1 < α < 1+ 1
n

Directly combining the inequalities in Theorem 3 and the QSZK containment of QSD in
[Watrous’02, Watrous’05] implies a QSZK containment of QSDα [a,b] under a parameter
regime a(n)2/2−b(n)≥ 1/O(logn), which is even worse than the polarizing regime. /
Lemma 4 (A partial polarization lemma for Tα ). Given a QSDα instance
(Q0,Q1,a,b,k), there exists a deterministic procedure that outputs new quantum circuits
Q̃0 and Q̃1 that prepare the states ρ̃0 and ρ̃1. The resulting states satisfy the following:

∀α ∈
[
1,1+

1
n

]
, Tα (ρ0,ρ1)≥ a =⇒ Tα (ρ̃0, ρ̃1)≥ (1− e−k)/2,

Tα (ρ0,ρ1)≤ b =⇒ Tα (ρ̃0, ρ̃1)≤ 1/16.

When k ≤ O(1) or a2 −b ≥ Ω(1), the time complexity of the procedure is polynomial in
the size of Q0 and Q1, k, and exp

( b log(1/a2)

a2−b

)
.

▶ The polarization lemma for T makes T(ρ̃0, ρ̃1) either at least 1−2−k or at most 2−k:
⋄ The difference is because the direct product lemma for 1 < α < 1+ 1

n is weaker than α = 1;

⋄ I.e., Tα (ρ⊗l
0 ,ρ⊗l

1 )≥ 1
2 −

1
2 exp

(
− l

2 ·Tα (ρ0,ρ1)
2
)

vs. T(ρ⊗l
0 ,ρ⊗l

1 )≥ 1− exp(− l
2 ·T(ρ0,ρ1)

2).

▶ The QSZK containment of QSDα for 1 < α ≤ 1+ 1
n is the following:

1 Apply the partial polarization lemma for Tα (Lemma 4) to the QSDα instance;

2 Combine with the inequalities in Theorem 3 to produce a QSD instance;

3 Use the QSZK containment of QSD in [Watrous’02, Watrous’05].
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Conclusions and open problems

Take-home messages on our work
1 For the regime α ≥ 1+Ω(1), estimating the quantum ℓα distance Tα (ρ0,ρ1) is

computationally easy and has rank-independent query & sample complexities.

2 For the regime 1 < α ≤ 1+ 1
n , estimating the quantum ℓα distance Tα (ρ0,ρ1) is

computationally hard and the query & sample complexities are rank-dependent.

Discussion and open problems
While Tα (ρ0,ρ1) and its powered version Λα (ρ0,ρ1) are almost interchangeable for
real-valued α > 1, their behavior differs significantly when α = ∞:
▶ T∞(ρ0,ρ1) corresponds to the largest eigenvalue λmax

( ρ0−ρ1
2

)
.

⋄ Estimating TV∞(D0,D1) to within additive error ε uses O(1/ε2) samples [Waggoner’14].
⋄ The pure state version PUREQSD∞ is BQP-complete, while we only know that the

general version QSD∞ is contained in QMA.

▶ Λ∞(ρ0,ρ1) ∈
{

0, 1
2 ,1

}
for any quantum states ρ0,ρ1, and it is nonzero if and only if

the states are orthogonal with at least one of them being pure.
▶ The pure state version PUREPOWEREDQSD∞[1,0] is coNQP-hard, which is a precise

variant of BQP that ensures acceptance for all yes instances.

Question: What is the computational complexity of estimating T∞(ρ0,ρ1)?
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Thanks!
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