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@ Quantum state testing with respect to the quantum ¢,, distance



What is quantum state testing

Basic ingredients in quantum computation:

>

| 2

Quantum states. An n-qubit quantum state p € CV*V, where N = 2", is an
N-dimensional positive semi-definite (PSD) matrix such that Tr(p) = 1.

Pure states. An n-qubit state is pure if p = |w)(y|, where |y) € CY and (y|y) = 1.

For single-qubit cases, |w) = a|0) + B|1) such that |a|> +|B]> = 1, |0) = <(1]> and [1) = <0>.
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Purification. For any n-qubit quantum state p on #Ha, there exists a 2n-qubit
quantum state |y) on H, ® Hp such that Trg(Jy)(y|) = p.
For instance, let |¢) = %(\00) +[11)), then Tra (|¢) (@) = 2 (|0) (0] + [1)(1]) =1/2.
Quantum gate. Elementary quantum gates G; (from some universal gateset) are
unitary matrices act on one or two qubits, e.g., G; € {CNOT,Had, T}:

100" %G1 10)°" B 626y |0)" — - -
Measurement. Projective measurement in computational basis {|0)(0|,|1)(1|}:

0) be{0,1}

Task: Closeness testing of quantum states

Given two state-preparation circuits Qp and Q; (“quantum devices”) that prepare (the
purification of) n-qubit quantum states py € CV*V and p; € CV*V, respectively. Decide
whether dist(po, p1) > a(n) or dist(po,p1) < b(n).




What is quantum state testing (Cont.)

Task: Closeness testing of quantum states

Given two state-preparation circuits Qp and Q; (“quantum devices”) that prepare (the
purification of) n-qubit quantum states py € CV*¥ and p; € C¥*V, respectively. Decide
whether dist(po, p1) > a(n) or dist(po,p1) < b(n).

» Quantum devices Oy, for b € {0,1} can be given either as a query oracle (black-box
model) or a sequence of poly(n) elementary quantum gates (white-box model).
> The most canonical choices of closeness measures are:
o Trace distance T(po,p1) = 3 Tr(|po — p1]).-

 Total variation distance TV(Dy,D;) = 1 ¥, |Do(x) — D (x)|.

Typical goal. Minimize the “complexity” of p;, (or its corresponding Q;) for b € {0,1}:

Type of query access Complexity measure

Black-box model Query complexity (the number of queries)

White-box model Complexity class




Generalizing the closeness measures via the Schatten o-norm

Generalization. Define the quantum ¢, distance via the Schatten norm:

1 1
Ta(po.p1) = 5 lIp0 —pilla = 5 Tr(lpo —p1 ).

Trace distance (o = 1). The closeness testing problem in this case is hard, with
complexity (polynomially) depending on the rank r of the quantum states:

> The query complexity for estimating T(po, p1) to within additive error ¢ is 5(r/82)
[Wang-Zhang'23] and Q(r1/2) [Bun-Kothari-Thaler'17].

> The promise problem QUANTUM STATE DISTINGUISHABILITY (QSDJa,b]) is

QSZK-complete* [watrous'02, Watrous'05], and it is widely believed that BQP C QSZK.

o The QSZK containment holds only in the polarizing regime a(n)* — b(n) > 1/0(logn),
rather than the natural regime a(n) — b(n) > 1/poly(n).

© The QSZK containment has recently been slightly improved beyond that in [L.’23], while
the result is weaker than the classical case [Berman-Degwekar-Rothblum-Vasudevan'19].



Generalizing the closeness measures via the Schatten a-norm (Cont.)

Even o € {2,4,---}. The closeness testing problem in this case is easy, with complexity
independent of the rank r of the quantum states:

> The query complexity for estimating Tr(pop1) to within additive error € is O(1/¢) via
the SWAP test [Buhrman-Cleve-Watrous-de Wolf'01].

o This directly applies to the case o =2, since Tr((po — p1)?) = Tr(p3) + Tr(p?) — 2Tr(pop1 )-

< In the white-box model, the corresponding closeness testing problem is in BQP.

> Similar techniques [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek'02] can estimate Tr(p;pa - - - px)
for integer k > 1, and solve the case of even integers a.

0dd a = 3. The query complexity of deciding whether Ts(po,p1) = 1 Tr(|po—p1]3)!/* > &
or po = p1 is O(1/€3/2) [Gilyén-Li19], but this does not extend to the estimation task:

> Tapo.p) Ze = Tr((B52)7(2520) ) > {Teflpo —pif] > &

o > 1 in general. For real-valued o > 1, the query complexity for estimating Ty (po,p1)
to within additive error € is poly(r, 1/€) [Wang-Guan-Liu-Zhang-Ying'22], which polynomially
depends on the rank of the states of interests.



Generalizing the closeness measures via the Schatten a-norm (Cont.?)

What about the complexity of estimating the classical /,, distance?
Similarly, define the classical ¢, distance TV(Dy,D)) := %():X |Do(x) — Dy (x)|"‘)1/°‘.

> For real-valued o > 1, the sample complexity of estimating TV (Do, D) to within
additive error € is poly(1/¢), which is independent of the support size of
distributions Dy and D, and fewer samples are needed as « increases [Waggoner'14].

> Intuition: When £ = ©(1), draw poly(n) samples from Dy and D;, and compute the
classical ¢, distance between the resulting empirical distributions.

> Issue: This intuition does not work in the quantum world... ®

Hope: Estimating the trace of quantum state powers is easy for real-valued ¢ > 1.
The query complexity of estimating Tr(p?) for real-valued ¢ > 1 is poly(1/¢) [L.-Wang'24].

> Issue: Since |py — p1| is not a quantum state, this does not apply to T (po.p1). @

Question: What is the complexity of estimating T (po,p1) for real-valued o > 1?



® Main results: Upper bounds, lower bounds, and complexity classes



Main results: Upper bounds

Theorem 1 (Quantum estimator for quantum ¢, distance).

Given quantum query access to the state-preparation circuit Qy and Q, for the n-qubit
state py and py, for any real-valued o > 1, there is a quantum algorithm that estimates
Ty (po,p1) to within additive error €, with query complexity O(I/S‘HHﬁ) = poly(1/e).

> The corresponding closeness testing problem QSDg[a(n),b(n)] decides whether
Ta(po,p1) is at least a(n) or at most b(n), e.g., a(n) =2/5 and b(n) = 1/5.

> As a corollary, for any real-valued a > 1 and all a(n),b(n) € [0, 1] satisfying
a(n) —b(n) > 1/poly(n), QSDg[a(n),b(n)] is in BQP.

& While the prior best result [Wang-Guan-Liu-Zhang-Ying'22] has complexity polynomially
depending on the rank r of py and p;, our work is rank-independent and thus provides
an exponential improvement!



Main results: Complexity classes & lower bounds

Let PUREQSD, be a restricted variant of QSD, where the states of interest are pure:

Theorem 2 (Computational hardness of QSDg,).
The promise problem QSD,, captures the computational power of the respective
complexity classes, depending on the regime of o:

© Easy regimes. For any 1 < a <, PUREQSD,, (with constant precision) is
BQP-hard. Consequently, for real-valued o > 1, QSD, is BQP-complete.
® Hard regimes. For any o € (17 1+ %] QSD,, is QSZK-complete*.
> The QSZK containment of QSD[a,b] holds only in the polarizing regime
a(n)? —b(n) > 1/0(logn).

& A sharp phase transition occurs between the case of o = 1 and real-valued o > 1!

Our reductions used to establish the hardness also leads to quantitative (query &
sample complexity) lower bounds for estimating Ty (po, p1) to within additive error €:

The regime of o l<a<l+ % 1+15<a<1+l  Realvalued a > 1
n n

n

Query complexity Q(r'/?) Q(r'/3) Q(1/€) & poly(1/e)

Sample complexity Q(r/€e?) Q(1/€?) & poly(1/e)

~
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Proof techniques: BQP containment of QSD,, for real-valued o > 1

We begin by reviewing the approach in [wang-zhang23] for estimating the trace distance
(a = 1), which uses the following key identity to decompose T(po,p1):

1 1
T(po,p1) = 7Tr(posgn(p0 p1 )) - iTr(plsgn<pO Gl )> = Tr(Ilpy) — Tr(Ilpy).
The Holevo-Helstrom measurement {I1,7 — I1} and its approx. implementation satisfy:

H:%-ﬁ- Sgn(p() Pl) and H_%+2Psgn(P02p1)

Implementing IT approximately. Using Quantum Singular Value Transformation
[Gilyén-Su-Low-Wiebe'19] With @ “good” polynomial approximation P;*" (x) of the sign function
sgn(x) on the interval [—1,1]\ (-8, ), with degree d = O(§log 1), one can approx.
implement the HH measurement via the Hadamard test [Kitaev'95, Aharonov-Jones-Landau'06]:

0 {7
|0)
[0)
[0)




BQP containment of QSD,, for real-valued o > 1 (Cont.)

Inspired by the identity (o = 1) used in [wang-zhang23], we use the following identity to
decompose the powered quantum ¢, distance Aq(po,p1) = 2% ' Tg(po, p1)%:

1 1 _ 1 _
Ag(po,p1) = ETF(\Po—PHa) = ETF(PO'Sgn(V)|V|a - ETT(PI -sgn(v)|v|*"")
=Tr(Iapo) — Tr(Ilep1),

I 1
where v=py—p; and Iy = §+§Sgn(v)\v

Similar to the case o = 1, we can approximately implement I1, via QSVT and the
Hadamard test, denoted as Iy, using an approximate polynomial approximation P, (x)
of the function sgn(x)|x|®, where B = & — 1 > 0 is a real number.

‘tx—]_

Removing the rank dependence. Unlike the case o = 1, we need a polynomial P;(x)
that uniformly approximate sgn(x)|x|®. The best uniform (polynomial) approximation of
xP was original investigated in [sernstein'38], and the signed version sgn(x)|x|? was listed
in [Totik06] and a non-constructive proof is provided in [Ganzburg'08]:

rr[laxl]‘Pl}l (x) —sgn()|x|B| = (1/d)F, asd* — oo,
xe[—1,

By the Chebyshev truncation and the de La Vallée Poussin partial sum, we can make

the coefficients of P;. (x) efficiently computable with a slightly larger degree d = 2d* — 1:

max

1
—— B
. |P() 3 san()l

<e and rFax]|Pd(x)\§1, where d = 0(1/¢/P).
xe[-1,1



Proof techniques: Lower bounds via a new inequality between T and T,

By carefully analyzing the properties of orthogonal PSD matrices ¢y and ¢; such that
Po—pP1 = Go — G, We establish a new rank-dependent inequality between T and Ty :

Theorem 3 (T vs. Ty). For any quantum states py and py,

1 1
Va € [1,0], 21*5-Ta(po,pl)gT(po,pl)g2(rank(p0)"°‘+rank(p1)1*”‘) 2 -Ta(po,pl).J

> The case of a =2 was previously proven in [Coles'11, Coles-Cerezo-Cincio’19].
> The inequalities in Theorem 3 are sharper than those between the trace norm and

the Schatten norm, such as in [Aubrun-Szarek'17]:
1
Vo€ (1], [[Alla <[|All < rank(4)'" @ |[A] g

Reductions via inequalities in Theorem 3. Consequently, we obtain:

» Reductions from the case o = 1 (e.g., QSD) to the case a > 1 (e.g., QSDy,), with
the relevant o > 1 ranges differing between QSD, and PUREQSDy,,.

> This implies that the computational hardness and lower bounds for QSD,, and
PUREQSD, follow from the prior works on the trace distance (a = 1).
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Conclusions and open problems

Take-home messages on our work

@ For the regime a > 1+ Q(1), estimating the quantum ¢, distance T (po,p1) is
computationally easy and has rank-independent query & sample complexities.

® Fortheregime l <a < 1+%, estimating the quantum ¢, distance T¢/(po,p1) is
computationally hard and the query & sample complexities are rank-dependent.

Discussion and open problems
While T (po,p1) and its powered version Aq(po,p1) are almost interchangeable for
real-valued o > 1, their behavior differs significantly when o = oo:
> T.(po,p1) corresponds to the largest eigenvalue Amax (2524).
o Estimating TV..(Do,D:) to within additive error € uses O(1/¢2) samples [Waggoner'14].
o The pure state version PUREQSD.. is BQP-complete, while we only know that the
general version QSD.. is contained in QMA.
> Aw(po,p1) € {0, %, 1} for any quantum states pg,p1, and it is nonzero if and only if
the states are orthogonal with at least one of them being pure.
> The pure state version PUREPOWEREDQSD.,[1,0] is coNQP-hard, which is a precise
variant of BQP that ensures acceptance for all yes instances.

Question: What is the computational complexity of estimating T..(po, p1)?
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Thanks!
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