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What is space-bounded quantum computation?

Time-bounded quantum computation (BQP):

▶ Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.

▶ The goal is to find a small corner of a 2poly(n)-dimension Hilbert space that holds
the relevant information, which can only be extracted through measurements.

Space-bounded quantum computation (BQL) is introduced in [Watrous’98, Watrous’99]:

▶ Limits computation to O(logn) qubits, but allows poly(n) quantum gates.

▶ A quantum logspace computation operates on a 2O(logn)-dimension Hilbert space,
making this model appear weak and contained in NC.

However, BQL has shown notable power and gained recent increased attention:

⋄ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma’13, Fefferman-Lin’16] is
BQL-complete, fully saturating the quadratic space advantage over classical
suggested by BQL ⊆ DSPACE[log2(n)] [Watrous’99].

⋄ Intermediate measurements appear to make BQL stronger than BQUL, but provide
no advantage for promise problems [Fefferman-Remscrim’21, Girish-Raz-Zhan’21].

⋄ Quantum singular value transformation, a unifying quantum algorithm framework,
has a logspace version [Gilyén-Su-Low-Weibe’18, Metger-Yuen’23, Le Gall-L.-Wang’23].
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What is (quantum) interactive proofs?

Classical and quantum interactive proof systems
Given a promise problem (Lyes,Lno), there is an interactive proof system P⇌V that
involves at most poly(n) messages exchanged between the prover P and the verifier V :

⋄ P is typically all-powerful but untrusted;

⋄ V is computationally bounded, possibly quantum;

⋄ P and V may share entanglement in a quantum setting.

For any x ∈ Lyes ∪Lno, this proof system P⇌V guarantees:

▶ For yes instances, (P⇌V )(x) accepts w.p. at least 2/3;

▶ For no instances, (P⇌V )(x) accepts w.p. at most 1/3.

*

The image is generated using OpenAI’s DALL·E model.

Classical interactive proofs were introduced in [Babai’85, Goldwasser-Micali-Rackoff’85]:

1 Public-coin (AM[k+2]) matches the power of private-coin (IP[k]) [Goldwasser-Sipser’86].

2 IP=PSPACE [Lund-Fortnow-Karloff-Nisan’90, Shamir’90], but IP[O(1)]⊆ IP[2]⊆PH [B85, GS86].

Quantum interactive proofs were introduced in [Watrous’99, Kitaev-Watrous’00]:

1 “Parallelization”: PSPACE ⊆ QIP ⊆ QIP[3] [Watrous’99, Kitaev-Watrous’00].

2 QIP[3]⊆ QMAM ⊆ PSPACE [Marriott-Watrous’04, Jain-Ji-Upadhyay-Watrous’09].
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What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer’92,

Condon’91], where the verifier operates in logspace but can run in polynomial time.

Public coins weaken the computational power of such proof systems:
▶ Classical interactive proofs with a logspace verifier using O(logn) private (random)

coins (“IPL”) exactly characterizes NP [Condon-Ladner’92].

⋄ Key ingredient: The fingerprinting lemma of multisets [Lipton’90].

▶ The model of public-coin space-bounded classical interactive proofs is weaker:

⋄ With poly(n) public coins, this model is contained in P [Condon’89].
⋄ With O(logn) public coins, it contains SAC1 [Fortnow’89]; while with poly log(n) public coins,

it contains NC [Fortnow-Lund’91].
⋄ With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum’15], connecting to

doubly-efficient interactive proofs, where the prover is also efficient in some sense.

In this work, the verifier has direct access to messages during interaction, generalizing
the space-bounded quantum Merlin-Arthur proofs (QMAL):

▶ Direct access: A QMAL verifier has direct access to an O(logn)-qubit message,
processing it directly in the verifier’s workspace qubit, similar to QMA.

▶ QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’16, Fefferman-Remscrim’21].
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1st attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPUL)
Consider a 2l-turn space-bounded unitary quantum interactive proof system P⇌V for
(Lyes,Lno), where the verifier V operates in quantum logspace and has direct access to
messages during interaction with the prover P:

▶ The verifier V maps x ∈ Lyes ∪Lno to (V1, · · · ,Vl+1), where each Vj is unitary.
▶ Both M and W are of size O(logn), with M being accessible to both P and V .
▶ Strong uniformity: The description of (V1, · · · ,Vl+1) can be computed by a single

deterministic logspace Turing machine, intuitively implying {Vj}’s repetitiveness.


 QIPUL does not contain “IPL”, particularly the model from [Condon-Ladner’92]:
▶ The prover P can somehow reveal private coins through shared entanglement,

meaning soundness against classical messages does not extend to quantum.
▶ To show IP ⊆ QIP, the verifier needs to measure the received messages at the

beginning of each action, and treat the outcome as classical messages.
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2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL⋄)
Consider a 2l-turn space-bounded isometric quantum interactive proof system P⇌V

for (Lyes,Lno), where V acts on O(logn) qubits and has direct access to messages:

▶ Each Vj is an isometric quantum circuit, specifically allowing O(logn) ancillary
gates that introduce an ancillary qubit |0⟩ in the environment register E j.

▶ Each environment register E j is only accessible in the round of Vj belongs.
▶ The qubits in E j cannot be altered after Vj, but entanglement with W can change!


 QIPL⋄ contains the Condon-Ladner model (“IPL”), but it appears too powerful:
▶ For instance, P can send an n-qubit state using ⌈n/ logn⌉ messages of (logn)-qubit

states, while V takes only O(logn) qubits without P detecting the choices.
▶ QIPL⋄ can verify the local Hamiltonian problem, and thus contains QMA:

⋄ A similar observation appeared in [Gharibian-Rudolph’22] on a streaming version of QMAL.
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3rd attempt: Space-bounded quantum interactive proofs (QIPL)

Consider a 2l-turn space-bounded quantum interactive proof system P⇌V for
(Lyes,Lno), where V acts on O(logn) qubits and has direct access to messages:

▶ Each Vj is an almost-unitary quantum circuit, meaning a unitary quantum circuit
with O(logn) intermediate measurements in the computational basis.

⋄ QIPL also contains the Condon-Ladner model (“IPL”).

▶ Applying the principle of deferred measurements to this almost-unitary quantum
circuit Vj transforms it into a special class of isometric quantum circuits, followed
by measuring the register E j, with the outcome denoted by u j.

▶ For yes instances, the distribution of intermediate measurement outcomes
u = (u1, · · · ,ul), condition on acceptance, must be highly concentrated.

⋄ This requirement leads to the NP containment for any QIPL proof system.
⋄ Specifically, let ω(V )|u be the contribution of u to ω(V ), where ω(V ) is the maximum

acceptance probability of P⇌V . There must exists a u∗ such that ω(V )|u∗ ≥ c(n).
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Main results on QIPUL and QIPL

Theorem 1. QIPL = NP.

▶ QIPL is the weakest model that includes space-bounded classical interactive
proofs, ensuring that soundness against classical messages extends to quantum.

▶ The lower bound is inspired by space-bounded (private-coin) classical interactive
proof systems for NP, particularly 3-SAT, in [Condon-Ladner’95].

Theorem 2. SAC1 ∪BQP ⊆ QIPUL ⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c,s]⊆ P.

▶ Intermediate measurements enhance the model: QIPUL ⊊ QIPL unless P = NP.
▶ QIPUL proof systems, regarded as the most natural space-bounded analog to

QIP, do not achieve the aforementioned soundness guarantee.
▶ The lower bound is inspired by space-bounded classical interactive proof systems

with O(logn) public coins for evaluating SAC1 circuits [Fortnow’89].
⋄ It is known that NL ⊆ SAC1 = LOGCFL ⊆ AC1 ⊆ NC2 [Venkateswaran’91].

Theorem 3. For any c(n)− s(n)≥ Ω(1), QIPLO(1)[c,s]⊆ NC.

▶ For constant-turn space-bounded quantum proofs, all three models are equivalent!
▶ An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous’09].
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Main results on space-bounded unitary quantum statistical zero-knowledge
Zero-knowledge property. A QIPUL proof system has the zero-knowledge property if
there is a space-bounded simulator that well approximates the snapshot states (“the
verifier’s view”) in (M,W) after each turn, with respect to the trace distance.

▶ QSZKULHV and QSZKUL are space-bounded variants of quantum statistical
zero-knowledge against an honest and arbitrary verifier, QSZKHV and QSZK,
respectively, introduced in [Watrous’02] and [Watrous’09].

Theorem 4. QSZKUL = QSZKULHV = BQL.

The INDIVPRODQSD[k,α,δ ] problem (INDIVIDUAL PRODUCT STATE DISTINGUISHABILITY)

involves two k-tuples of O(logn)-qubit states, σ1, · · · ,σk and σ ′
1, · · · ,σ ′

k, whose
purifications can be prepared by unitary quantum logspace circuits, satisfying
α(n)− k(n) ·δ (n)≥ 1/poly(n) and 1 ≤ k(n)≤ poly(n), with the following conditions:

⋄ For yes instances, the k-tuples are globally far, i.e., T(σ1⊗·· ·⊗σk,σ ′
1⊗·· ·⊗σ ′

k)≥ α.

⋄ For no instances, the k-tuples are pairwise close, i.e., ∀ j ∈ [k], T(σ j,σ ′
j)≤ δ .

QSZKULHV ⊆ BQL follows since INDIVPRODQSD is QSZKULHV-complete:
▶ The complement of INDIVPRODQSD is QSZKULHV-hard, similar to [Watrous’02].
▶ Since INDIVPRODQSD implies an “existential” version of GAPQSDlog, which is BQL-complete

[Le Gall-L.-Wang’23], it follows that INDIVPRODQSD ∈ QMAL ⊆ BQL.
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Proof techniques: Upper bounds for QIPL and QIPUL
Our approach is inspired by the SDP formulation for QIP [Vidick-Watrous’16].

QIPLO(1) = QIPULO(1) ⊆ P. Consider a 2l-turn QIPLO(1) proof system P⇌V , with
l ≤ O(1). Let ρM jW j and ρM′jW j

, for j ∈ [l], be snapshot states in the registers (M,W) after
the verifier’s and prover’s action in the j-th round in P⇌V , respectively.

In this SDP formulation, we consider the following:

⋄ Variables ⇔ The snapshot states ρM′jW j
for j ∈ [l] after each prover action;

⋄ Objection function ⇔ Maximum acceptance probability ω(V ).

These variables are independent due to the unitary verifier. The SDP constraints are:

1 Verifier is always honest:
ρM jW j =VjρM′j−1W j−1

V †
j for j ∈ {2, · · · , l}, and ρM1W1 =V1

∣∣0̄〉〈0̄
∣∣
MW V †

1 .

2 Prover’s actions do not change the verifier’s private register:
TrM j (ρM jW j ) = TrM′j

(ρM′jW j
) for j ∈ [l].

As any SDP solution holds O(logn) qubits, standard SDP solvers ensure the efficiency.
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Proof techniques: Upper bounds for QIPL and QIPUL (Cont.)
QIPL ⊆ NP. Now the verifier’s actions are almost-unitary quantum circuits.
There is a family of SDP programs depending on the measurement outcome {u}:

⋄ Variables ⇔ The unnormalized snapshot states ρM jW j ⊗
∣∣u j

〉〈
u j
∣∣
E j

for j ∈ [l].
⋄ Objection function ⇔ ω(V )|u, namely the contribution of u to ω(V ).

For a given u = (u1, · · · ,ul), the SDP program includes two types of constraints:

1 Verifier is always honest: Let ρM′0W0
:=

∣∣0̄〉〈0̄
∣∣
MW, then

ρM jW j ⊗
∣∣u j

〉〈
u j
∣∣
E j

=
(
IM jW j ⊗

∣∣u j
〉〈

u j
∣∣
E j

)
VjρM′j−1W j−1

V †
j for j ∈ [1].

2 Prover’s actions do not change the verifier’s private register:
TrM j

(
ρM jW j ⊗

∣∣u j
〉〈

u j
∣∣
E j

)
= TrM′j

(
ρM′jW j

⊗
∣∣u j

〉〈
u j
∣∣
E j

)
for j ∈ [l].

Next, we explain the NP containment:
▶ The classical witness w includes an l-tuple u and a feasible poly-size solution.
▶ The verification procedure involves checking whether (1) the solution encoded in w

satisfies the SDP constraints based on u; and (2) ω(V )|u ≥ c(n).
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Proof techniques: Basic properties for QIPL and QIPUL

Theorem 5 (Properties for QIPL and QIPUL). Let c(n), s(n), and m(n) be functions such
that 0 ≤ s(n)< c(n)≤ 1, c(n)− s(n)≥ 1/poly(n), and 1 ≤ m(n)≤ poly(n). Then, we have:

1 Closure under perfect completeness.

QIPLm[c,s]⊆QIPLm+2
[
1,1− 1

2 (c−s)2] and QIPULm[c,s]⊆QIPULm+2
[
1,1− 1

2 (c−s)2].
2 Error reduction. For any polynomial k(n), there is a polynomial m′(n) such that:

QIPLm[c,s]⊆ QIPLm′
[
1,2−k] and QIPLm[c,s]⊆ QIPLm′

[
1,2−k].

3 Parallelization. QIPUL4m+1[1,s]⊆ QIPUL2m+1[1,(1+
√

s)/2].

Proof Sketch.

▶ Theorem 5 1 is directly adapted from [Vidick-Watrous’16].

▶ Theorem 5 2 uses sequential repetition due to the space constraint, with the key
being to force the prover to “clean” the workspace.

▶ For establishing Theorem 5 3 :

⋄ The original approach in [Kitaev-Watrous’00] fails, since it requires sending all snapshot
states in a single message, which exceeds logarithmic size.

⋄ The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick’07] works, a “dequantized”
version of the above approach, which leverages the reversibility of the verifier’s actions.
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Conclusions and open problems
Take-home messages on our work

1 Intermediate measurements play a distinct role in space-bounded quantum
interactive proofs compared to space-bounded quantum computation:
QIPUL ⊊ QIPL unless P = NP (this work), while BQUL = BQL [FR21, GRZ21].

2 We define three models of space-bounded quantum interactive proofs:

QIPUL QIPL QIPL⋄

Verifier’s actions unitary almost-unitary isometry

Lower bounds SAC1 ∪BQL
“IPL” with O(logn) public coins

NP
“IPL” with O(logn) private coins

QMA

Upper bounds P NP PSPACE

3 Introducing the zero-knowledge property for QIPUL proof systems, i.e., QSZKUL,
eliminates the usual advantage gained from interaction (QSZKUL = BQL).

Open problems
1 Is it possible to obtain a tighter characterization of QIPUL? For example, does

QIPUL contain “IPL” with ω(logn) public coins?

2 What is the computational power of space-bounded quantum interactive proofs
with a general quantum logspace verifier that allows "erasure" gates?
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Thanks!
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