Space-bounded quantum interactive proof systems

François Le Gall ¹ Yupan Liu ¹ Harumichi Nishimura ¹ Qisheng Wang ^{2,1}

¹Nagoya University

²University of Edinburgh

Available on arXiv soon.

CS Theory Student Seminar, Columbia University, October 2024

Space-bounded quantum computation meets interactive proofs

- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- Proof techniques: Upper bounds and properties for QIPUL and QIPL
- **6** Open problems

What is **space-bounded** quantum computation?

Time-bounded quantum computation (BQP):

- Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.
- The goal is to find a small corner of a 2^{poly(n)}-dimension Hilbert space that holds the relevant information, which can only be extracted through measurements.

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:

- Limits computation to $O(\log n)$ qubits, but allows poly(n) quantum gates.
- A quantum logspace computation operates on a 2^{O(log n)}-dimension Hilbert space, making this model appear weak and contained in NC.

However, BQL has shown notable power and gained recent increased attention:

- ◇ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma'13, Fefferman-Lin'16] is BQL-complete, fully saturating the *quadratic* space advantage over classical suggested by BQL ⊆ DSPACE[log²(n)] [Watrous'99].
- Intermediate measurements appear to make BQL stronger than BQ_UL, but provide no advantage for promise problems [Fefferman-Remscrim'21, Girish-Raz-Zhan'21].
- Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version [Gilyén-Su-Low-Weibe'18, Metger-Yuen'23, Le Gall-L.-Wang'23].

What is (quantum) interactive proofs?

Classical and quantum interactive proof systems

Given a promise problem $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$, there is an interactive proof system $P \rightleftharpoons V$ that involves at most poly(n) messages exchanged between the prover P and the verifier V:

- ◊ *P* is typically all-powerful but untrusted;
- V is computationally bounded, possibly quantum;
- \diamond *P* and *V* may share entanglement in a quantum setting.

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- For yes instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

The image is generated using OpenAI's DALL E model.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

- **1** Public-coin (AM[k+2]) matches the power of private-coin (IP[k]) [Goldwasser-Sipser'86].
- ② IP=PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90], but IP[O(1)] ⊆ IP[2] ⊆ PH [B85, GS86].

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:

- **()** "Parallelization": $PSPACE \subseteq QIP \subseteq QIP[3]$ [Watrous'99, Kitaev-Watrous'00].
- $@ QIP[3] \subseteq QMAM \subseteq PSPACE \ [Marriott-Watrous'04, Jain-Ji-Upadhyay-Watrous'09].$

What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92, Condon'91], where the verifier operates in *logspace* but can run in *polynomial time*.

Public coins weaken the computational power of such proof systems:

- Classical interactive proofs with a logspace verifier using O(log n) private (random) coins ("IPL") exactly characterizes NP [Condon-Ladner'92].
 - Key ingredient: The fingerprinting lemma of multisets [Lipton'90].
- > The model of *public-coin* space-bounded classical interactive proofs is weaker:
 - \diamond With poly(*n*) public coins, this model is contained in P [Condon'89].
 - \diamond With $O(\log n)$ public coins, it contains SAC¹ [Fortnow'89]; while with $poly \log(n)$ public coins, it contains NC [Fortnow-Lund'91].
 - With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum'15], connecting to doubly-efficient interactive proofs, where the prover is also efficient in some sense.

In this work, the verifier has *direct access* to messages during interaction, generalizing the space-bounded quantum Merlin-Arthur proofs (QMAL):

- Direct access: A QMAL verifier has *direct access* to an O(log n)-qubit message, processing it directly in the verifier's workspace qubit, similar to QMA.
- QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura'16, Fefferman-Remscrim'21].

Space-bounded quantum computation meets interactive proofs

- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- Proof techniques: Upper bounds and properties for QIPUL and QIPL
- **6** Open problems

1st attempt: Space-bounded UNITARY quantum interactive proofs Space-bounded *unitary* quantum interactive proofs (QIP_UL) Consider a 2*l*-turn space-bounded unitary quantum interactive proof system $P \rightleftharpoons V$ for ($\mathcal{L}_{yes}, \mathcal{L}_{no}$), where the verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

- ► The verifier *V* maps $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$ to (V_1, \dots, V_{l+1}) , where each V_j is unitary.
- ▶ Both M and W are of size $O(\log n)$, with M being accessible to both P and V.
- ► Strong uniformity: The description of (V₁, · · · , V_{l+1}) can be computed by a single deterministic logspace Turing machine, intuitively implying {V_i}'s repetitiveness.

QIPUL does not contain "IPL", particularly the model from [Condon-Ladner'92]:

- The prover P can somehow reveal private coins through shared entanglement, meaning soundness against classical messages does not extend to quantum.
- ► To show IP ⊆ QIP, the verifier needs to *measure* the received messages at the beginning of each action, and treat the outcome as classical messages.

2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL^{\$})

Consider a 2*l*-turn space-bounded isometric quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$, where *V* acts on $O(\log n)$ qubits and has direct access to messages:

- ► Each V_j is an *isometric* quantum circuit, specifically allowing O(log n) ancillary gates that introduce an ancillary qubit |0⟩ in the environment register E_j.
- Each environment register E_j is only accessible in the round of V_j belongs.
- The qubits in E_j cannot be altered after V_j , but entanglement with W can change!
- QIPL^o contains the Condon-Ladner model ("IPL"), but it appears too powerful:
 - ► For instance, P can send an n-qubit state using [n/logn] messages of (logn)-qubit states, while V takes only O(logn) qubits without P detecting the choices.
 - QIPL^o can verify the local Hamiltonian problem, and thus contains QMA:
 A similar observation appeared in [Gharibian-Rudolph'22] on a streaming version of QMAL.

3rd attempt: Space-bounded quantum interactive proofs (QIPL)

Consider a 2*l*-turn space-bounded quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{ves}, \mathcal{L}_{no})$, where *V* acts on $O(\log n)$ qubits and has direct access to messages:

Each V_j is an *almost-unitary* quantum circuit, meaning a unitary quantum circuit with O(log n) intermediate measurements in the computational basis.

♦ QIPL also contains the Condon-Ladner model ("IPL").

- Applying the *principle of deferred measurements* to this almost-unitary quantum circuit V_j transforms it into a special class of isometric quantum circuits, followed by *measuring* the register E_j, with the outcome denoted by u_j.
- For *yes* instances, the distribution of intermediate measurement outcomes $u = (u_1, \dots, u_l)$, condition on acceptance, must be *highly concentrated*.
 - $\diamond~$ This requirement leads to the NP containment for any QIPL proof system.
 - Specifically, let $\omega(V)|^u$ be the contribution of u to $\omega(V)$, where $\omega(V)$ is the maximum acceptance probability of $P \rightleftharpoons V$. There must exists a u^* such that $\omega(V)|^{u^*} \ge c(n)$.

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- Proof techniques: Upper bounds and properties for QIPUL and QIPL
- **6** Open problems

Main results on QIPUL and QIPL

Theorem 1. QIPL = NP.

- QIPL is the *weakest* model that includes space-bounded classical interactive proofs, ensuring that soundness against classical messages extends to quantum.
- The lower bound is inspired by space-bounded (private-coin) classical interactive proof systems for NP, particularly 3-SAT, in [Condon-Ladner'95].

<u>**Theorem 2.**</u> SAC¹ \cup BQP \subseteq QIP_UL $\subseteq \cup_{c(n)-s(n) \ge 1/\text{poly}(n)}$ QIPL_{O(1)}[c, s] \subseteq P.

- ▶ Intermediate measurements enhance the model: $QIP_UL \subsetneq QIPL$ unless P = NP.
- QIP_UL proof systems, regarded as the most natural space-bounded analog to QIP, do not achieve the aforementioned soundness guarantee.
- The lower bound is inspired by space-bounded classical interactive proof systems with O(log n) public coins for evaluating SAC¹ circuits [Fortnow'89].
 - \diamond It is known that NL ⊆ SAC¹ = LOGCFL ⊆ AC¹ ⊆ NC² [Venkateswaran'91].

<u>Theorem 3.</u> For any $c(n) - s(n) \ge \Omega(1)$, $\text{QIPL}_{O(1)}[c,s] \subseteq \text{NC}$.

- For constant-turn space-bounded quantum proofs, all three models are equivalent!
- An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].

Main results on space-bounded unitary quantum statistical zero-knowledge

Zero-knowledge property. A QIP_UL proof system has *the zero-knowledge property* if there is a *space-bounded* simulator that well approximates the snapshot states ("the verifier's view") in (M, W) after each turn, with respect to the trace distance.

QSZK_UL_{HV} and QSZK_UL are space-bounded variants of quantum statistical zero-knowledge against an honest and arbitrary verifier, QSZK_{HV} and QSZK, respectively, introduced in [Watrous'02] and [Watrous'09].

<u>**Theorem 4.**</u> $QSZK_UL = QSZK_UL_{HV} = BQL.$

 $\label{eq:constraint} \begin{array}{l} \hline \textbf{The INDIVPRODQSD}[k,\alpha,\delta] \ \textbf{problem} \ (\textbf{INDIVIDUAL PRODUCT STATE DISTINGUISHABILITY}) \\ \hline \textbf{involves two k-tuples of $O(\log n)$-qubit states, σ_1,\cdots,σ_k and $\sigma_1',\cdots,\sigma_k'$, whose purifications can be prepared by unitary quantum logspace circuits, satisfying $\alpha(n)-k(n)\cdot\delta(n)\geq 1/\text{poly}(n)$ and $1\leq k(n)\leq \text{poly}(n)$, with the following conditions: } \end{array}$

- \diamond For *yes* instances, the *k*-tuples are *globally far*, i.e., T($\sigma_1 \otimes \cdots \otimes \sigma_k, \sigma'_1 \otimes \cdots \otimes \sigma'_k$) ≥ *α*.
- ♦ For *no* instances, the *k*-tuples are *pairwise close*, i.e., $\forall j \in [k]$, $T(\sigma_j, \sigma'_j) \leq \delta$.

 $QSZK_UL_{HV} \subseteq BQL$ follows since INDIVPRODQSD is $QSZK_UL_{HV}$ -complete:

- The complement of INDIVPRODQSD is QSZK_UL_{HV}-hard, similar to [Watrous'02].
- Since INDIVPRODQSD implies an "existential" version of GAPQSD_{log}, which is BQL-complete [Le Gall-L.-Wang'23], it follows that INDIVPRODQSD ∈ QMAL ⊆ BQL.

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- Proof techniques: Upper bounds and properties for QIPUL and QIPL
- **6** Open problems

Proof techniques: Upper bounds for QIPL and QIP_UL

Our approach is inspired by the SDP formulation for QIP [Vidick-Watrous'16].

 $\frac{\mathsf{QIPL}_{\mathsf{O}(1)} = \mathsf{QIP}_{\mathsf{U}}\mathsf{L}_{\mathsf{O}(1)} \subseteq \mathsf{P}. \text{ Consider a } 2l\text{-turn }\mathsf{QIPL}_{\mathsf{O}(1)} \text{ proof system } P \rightleftharpoons V, \text{ with } \overline{l \leq O(1). \text{ Let } \rho_{\mathtt{M}_j \mathtt{W}_j}} \text{ and } \rho_{\mathtt{M}_j' \mathtt{W}_j}, \text{ for } j \in [l], \text{ be snapshot states in the registers } (\mathsf{M}, \mathsf{W}) \text{ after the verifier's and prover's action in the } j\text{-th round in } P \rightleftharpoons V, \text{ respectively.}}$

In this SDP formulation, we consider the following:

- ♦ Variables \Leftrightarrow The snapshot states $\rho_{\texttt{M}',\texttt{W}_i}$ for $j \in [l]$ after each prover action;
- ◊ Objection function ⇔ Maximum acceptance probability ω(V).

These variables are independent due to the unitary verifier. The SDP constraints are:

Verifier is always honest:

$$\rho_{\mathtt{M}_{j} \mathtt{W}_{j}} = V_{j} \rho_{\mathtt{M}'_{j-1} \mathtt{W}_{j-1}} V_{j}^{\dagger} \text{ for } j \in \{2, \cdots, l\}, \text{ and } \rho_{\mathtt{M}_{1} \mathtt{W}_{1}} = V_{1} \left| \bar{0} \right\rangle \left\langle \bar{0} \right|_{\mathsf{MW}} V_{1}^{\dagger}.$$

Prover's actions do not change the verifier's private register:

 $\operatorname{Tr}_{\operatorname{M}_{j}}(\rho_{\operatorname{M}_{j}\operatorname{W}_{j}}) = \operatorname{Tr}_{\operatorname{M}'_{i}}(\rho_{\operatorname{M}'_{i}\operatorname{W}_{j}}) \text{ for } j \in [l].$

As any SDP solution holds $O(\log n)$ qubits, standard SDP solvers ensure the efficiency.

Proof techniques: Upper bounds for QIPL and QIPUL (Cont.)

<u>QIPL</u> \subseteq NP. Now the verifier's actions are *almost-unitary* quantum circuits. There is a family of SDP programs depending on the measurement outcome {*u*}:

- ♦ Variables \Leftrightarrow The *unnormalized* snapshot states $\rho_{M_jW_j} \otimes |u_j\rangle \langle u_j|_{\mathsf{E}_i}$ for $j \in [l]$.
- ♦ Objection function $\Leftrightarrow \omega(V)|^u$, namely the contribution of *u* to $\omega(V)$.

For a given $u = (u_1, \dots, u_l)$, the SDP program includes two types of constraints:

- Verifier is always honest: Let $\rho_{\mathsf{M}'_0\mathsf{W}_0} := |\bar{0}\rangle \langle \bar{0}|_{\mathsf{MW}}$, then $\rho_{\mathsf{M}_j\mathsf{W}_j} \otimes |u_j\rangle \langle u_j|_{\mathsf{E}_i} = (I_{\mathsf{M}_j\mathsf{W}_j} \otimes |u_j\rangle \langle u_j|_{\mathsf{E}_i}) V_j \rho_{\mathsf{M}'_{i-1}\mathsf{W}_i} V_j^{\dagger}$ for $j \in [1]$.
- $\mathcal{P}_{M_jW_j} \otimes |u_j / \langle u_j|_{E_j} \langle \mathcal{P}_{M_jW_j} \otimes |u_j / \langle u_j|_{E_j} \rangle \mathcal{P}_{M_{j-1}W_{j-1}} \mathcal{V}_j$ for $j \in [1]$ 2 Prover's actions do not change the verifier's private register:

$$\mathrm{Tr}_{\mathtt{M}_{j}}\left(\rho_{\mathtt{M}_{j}\mathtt{W}_{j}}\otimes\left|u_{j}\right\rangle\left\langle u_{j}\right|_{\mathsf{E}_{j}}\right)=\mathrm{Tr}_{\mathtt{M}_{j}'}\left(\rho_{\mathtt{M}_{j}'\mathtt{W}_{j}}\otimes\left|u_{j}\right\rangle\left\langle u_{j}\right|_{\mathsf{E}_{j}}\right)\text{ for }j\in[l].$$

Next, we explain the NP containment:

- ▶ The classical witness w includes an *l*-tuple u and a feasible poly-size solution.
- ► The verification procedure involves checking whether (1) the solution encoded in *w* satisfies the SDP constraints based on *u*; and (2) $\omega(V)|^u \ge c(n)$.

Proof techniques: Basic properties for QIPL and QIPUL

Theorem 5 (Properties for QIPL and QIP_UL). Let c(n), s(n), and m(n) be functions such that $0 \le s(n) < c(n) \le 1$, $c(n) - s(n) \ge 1/\text{poly}(n)$, and $1 \le m(n) \le \text{poly}(n)$. Then, we have:

Closure under perfect completeness.

 $\mathsf{QIPL}_m[c,s] \subseteq \mathsf{QIPL}_{m+2}\big[1, 1 - \frac{1}{2}(c-s)^2\big] \text{ and } \mathsf{QIP}_\mathsf{U}\mathsf{L}_m[c,s] \subseteq \mathsf{QIP}_\mathsf{U}\mathsf{L}_{m+2}\big[1, 1 - \frac{1}{2}(c-s)^2\big].$

2 *Error reduction*. For any polynomial k(n), there is a polynomial m'(n) such that: $\text{QIPL}_m[c,s] \subseteq \text{QIPL}_{m'}[1,2^{-k}]$ and $\text{QIPL}_m[c,s] \subseteq \text{QIPL}_{m'}[1,2^{-k}]$.

③ *Parallelization*. $QIP_UL_{4m+1}[1,s] \subseteq QIP_UL_{2m+1}[1,(1+\sqrt{s})/2].$

Proof Sketch.

- Theorem 5 1 is directly adapted from [Vidick-Watrous'16].
- Theorem 5 ② uses sequential repetition due to the space constraint, with the key being to force the prover to "clean" the workspace.
- For establishing Theorem 5 (3):
 - The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot states in a single message, which exceeds logarithmic size.
 - The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a "dequantized" version of the above approach, which leverages the reversibility of the verifier's actions.

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- Proof techniques: Upper bounds and properties for QIPUL and QIPL
- **5** Open problems

Conclusions and open problems

Take-home messages on our work

- Intermediate measurements play a *distinct* role in space-bounded quantum interactive proofs compared to space-bounded quantum computation: QIP_UL ⊊ QIPL unless P = NP (this work), while BQ_UL = BQL [FR21, GRZ21].
- Ø We define three models of space-bounded quantum interactive proofs:

	QIP _U L	QIPL	QIPL [◊]
Verifier's actions	unitary	almost-unitary	isometry
Lower bounds	SAC ¹ \cup BQL "IPL" with $O(\log n)$ public coins	NP "IPL" with O(logn) private coins	QMA
Upper bounds	Р	NP	PSPACE

Introducing the zero-knowledge property for QIP_UL proof systems, i.e., QSZK_UL, eliminates the usual advantage gained from interaction (QSZK_UL = BQL).

Open problems

- Is it possible to obtain a tighter characterization of QIP_UL? For example, does QIP_UL contain "IPL" with ω(log n) public coins?
- What is the computational power of space-bounded quantum interactive proofs with a general quantum logspace verifier that allows "erasure" gates?

Thanks!