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@ Space-bounded quantum computation meets interactive proofs



What is space-bounded quantum computation?

Time-bounded quantum computation (BQP):

> Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.

> The goal is to find a small corner of a 2r°¥(")-dimension Hilbert space that holds
the relevant information, which can only be extracted through measurements.

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:

> Limits computation to O(logn) qubits, but allows poly(n) quantum gates.

> A quantum logspace computation operates on a 2°(°¢”)-dimension Hilbert space,
making this model appear weak and contained in NC.

However, BQL has shown notable power and gained recent increased attention:

© INVERTING WELL-CONDITIONED MATRICES [Ta-Shma’13, Fefferman-Lin'16] is
BQL-complete, fully saturating the quadratic space advantage over classical
suggested by BQL C DSPACE[log?(n)] [Watrous'99).

o Intermediate measurements appear to make BQL stronger than BQyL, but provide
no advantage for promise problems [Fefferman-Remscrim'21, Girish-Raz-Zhan'21].

© Quantum singular value transformation, a unifying quantum algorithm framework,
has a logspace version [Gilyén-Su-Low-Weibe'18, Metger-Yuen'23, Le Gall-L.-Wang'23].
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What is (quantum) interactive proofs?

Classical and quantum interactive proof systems

Given a promise problem (Lyes, £no), there is an interactive proof system P=1V that
involves at most poly(n) messages exchanged between the prover P and the verifier V:

o P is typically all-powerful but untrusted;
o V is computationally bounded, possibly quantum;

o P and V may share entanglement in a quantum setting.
For any x € Lyes U Lo, this proof system P=V guarantees:

> For yes instances, (P=V)(x) accepts w.p. at least 2/3;

- > For no instances, (P=V)(x) accepts w.p. at most 1/3.
The image is generated using OpenAl’'s DALL-E model.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

© Public-coin (AM[k+2]) matches the power of private-coin (IP[k]) [Goldwasser-Sipser'86].
® |IP=PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'ao], but IP[O(1)] C IP[2] CPH [Bss, GSse].

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:

© “Parallelization”: PSPACE C QIP C QIP[3] [watrous'99, Kitaev-Watrous'00].
® QIP[3] € QMAM C PSPACE [Marriott-Watrous'04, Jain-Ji-Upadhyay-Watrous'09].
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What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92,
Condon’91], where the verifier operates in logspace but can run in polynomial time.

Public coins weaken the computational power of such proof systems:

> Classical interactive proofs with a logspace verifier using O(logn) private (random)
coins (“IPL”) exactly characterizes NP [Condon-Ladner'92].

o Key ingredient: The fingerprinting lemma of multisets [Lipton'90].
» The model of public-coin space-bounded classical interactive proofs is weaker:

< With poly(n) public coins, this model is contained in P [Condon'89].

o With O(logn) public coins, it contains SAC' [Fortnow'89]; while with poly log(r) public coins,
it contains NC [Fortnow-Lund'91].

o With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum’15], connecting to
doubly-efficient interactive proofs, where the prover is also efficient in some sense.

In this work, the verifier has direct access to messages during interaction, generalizing
the space-bounded quantum Merlin-Arthur proofs (QMAL):

> Direct access: A QMAL verifier has direct access to an O(logn)-qubit message,
processing it directly in the verifier's workspace qubit, similar to QMA.

> QMAL =BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’16, Fefferman-Remscrim’21].
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® Definitions of space-bounded quantum interactive proof systems



18t attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPL)

Consider a 2/-turn space-bounded unitary quantum interactive proof system P=V for
(Lyes, Lno), Where the verifier V operates in quantum logspace and has direct access to
messages during interaction with the prover P:

Prover(Q) I .
Py
Message(M) —_— -
\%]
Verifier(W) c.

> The verifier V.maps x € Lyes U Lo t0 (Vi,--+,Vi41), Where each V; is unitary.

> Both M and W are of size O(logn), with M being accessible to both P and V.

> Strong uniformity: The description of (V,---,V,;;) can be computed by a single
deterministic logspace Turing machine, intuitively implying {V;}’s repetitiveness.

& QIPyL does not contain “IPL”, particularly the model from [Condon-Ladner92]:

> The prover P can somehow reveal private coins through shared entanglement,
meaning soundness against classical messages does not extend to quantum.

> To show IP C QIP, the verifier needs to measure the received messages at the
beginning of each action, and treat the outcome as classical messages.
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2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL®)

Consider a 2/-turn space-bounded isometric quantum interactive proof system P=V
for (Lyes, Lno), Where V acts on O(logn) qubits and has direct access to messages:

Prover(Q)

Py

Message(M)

Verifier(W) == Wi

E;

» Each V; is an isometric quantum circuit, specifically allowing O(logn) ancillary
gates that introduce an ancillary qubit |0) in the environment register E;.

» Each environment register E; is only accessible in the round of V; belongs.

> The qubits in E; cannot be altered after V;, but entanglement with W can change! )

& QIPL® contains the Condon-Ladner model (“IPL”), but it appears too powerful:
> For instance, P can send an n-qubit state using [n/logn] messages of (logn)-qubit

states, while V takes only O(logn) qubits without P detecting the choices.
> QIPL® can verify the local Hamiltonian problem, and thus contains QMA:
o A similar observation appeared in [Gharibian-Rudolph’22] on a streaming version of QMAL.
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3 attempt: Space-bounded quantum interactive proofs (QIPL)

Consider a 2I-turn space-bounded quantum interactive proof system P=V for
(Lyes; Lno), Where V acts on O(logn) qubits and has direct access to messages:

PrOVCr(Q) s =" ..
P, P
Message(M) == = — JE— —
Verifier(W) == Vi — 1V Vi ==
E E, —Erp

» Each V; is an almost-unitary quantum circuit, meaning a unitary quantum circuit
with O(logn) intermediate measurements in the computational basis.
o QIPL also contains the Condon-Ladner model (“IPL”).
> Applying the principle of deferred measurements to this almost-unitary quantum
circuit V; transforms it into a special class of isometric quantum circuits, followed
by measuring the register E;, with the outcome denoted by u;.
> For yes instances, the distribution of intermediate measurement outcomes
u= (u,---,u;), condition on acceptance, must be highly concentrated.
o This requirement leads to the NP containment for any QIPL proof system.
o Specifically, let o(V)|* be the contribution of u to w(V), where w(V) is the maximum
acceptance probability of P=V. There must exists a u* such that w(v)\”* > c(n).



® Main results on QIPyL, QIPL, and QSZK L



Main results on QIPyL and QIPL

Theorem 1. QIPL = NP. )

> QIPL is the weakest model that includes space-bounded classical interactive
proofs, ensuring that soundness against classical messages extends to quantum.

> The lower bound is inspired by space-bounded (private-coin) classical interactive
proof systems for NP, particularly 3-SAT, in [Condon-Ladner'95].

Theorem 2. SAC' UBQP C QIPyL € Uy () (> 1 /poty(m QIPLo1) e,5] € P

> Intermediate measurements enhance the model: QIPyL C QIPL unless P = NP.

> QIPyL proof systems, regarded as the most natural space-bounded analog to
QIP, do not achieve the aforementioned soundness guarantee.

> The lower bound is inspired by space-bounded classical interactive proof systems

with O(logn) public coins for evaluating SAC! circuits [Fortnow'89).
o ltis known that NL C SAC' = LOGCFL C AC' C NC? [Venkateswaran'91].

Theorem 3. For any c(n) —s(n) > Q(1), QIPLy[c,s] € NC.

)

> For constant-turn space-bounded quantum proofs, all three models are equivalent!
> An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].
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Main results on space-bounded unitary quantum statistical zero-knowledge
Zero-knowledge property. A QIPL proof system has the zero-knowledge property if
there is a space-bounded simulator that well approximates the snapshot states (“the
verifier's view”) in (M, W) after each turn, with respect to the trace distance.

> QSZKyLyy and QSZKyL are space-bounded variants of quantum statistical
zero-knowledge against an honest and arbitrary verifier, QSZKyy and QSZK,
respectively, introduced in [Watrous'02] and [Watrous'09].

Theorem 4. QSZKL = QSZKylLyy = BQL. )

The INDIVPRODQSD|k, @, §] problem (INDIVIDUAL PRODUCT STATE DISTINGUISHABILITY)
involves two k-tuples of O(logn)-qubit states, oi,---, 0 and o7, - , 6/, whose
purifications can be prepared by unitary quantum logspace circuits, satisfying
o(n) —k(n)-8(n) > 1/poly(n) and 1 < k(n) < poly(n), with the following conditions:
o For yes instances, the k-tuples are globally far, i.e., T(01®- - -Q@ 0y, 6] ®---®0}) > a.
o For no instances, the k-tuples are pairwise close, i.e., Vj € [k], T(c;,0}) < 6.

QSZKyLuyy € BQL follows since INDIVPRODQSD is QSZKyLpy-complete:
» The complement of INDIVPRODQSD is QSZKyLpy-hard, similar to [Watrous’02].

> Since INDIVPRODQSD implies an “existential” version of GAPQSD)q4, which is BQL-complete
[Le Gall-L.-Wang'23], it follows that INDIVPRODQSD € QMAL C BQL.
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@ Proof techniques: Upper bounds and properties for QIPyL and QIPL



Proof techniques: Upper bounds for QIPL and QIPyL
Our approach is inspired by the SDP formulation for QIP [Vidick-Watrous'16].
QIPLg(1) = QIPyLg(;) € P. Consider a 2/-turn QIPLg(y proof system P=V, with
1<0(1). Let puu; and P for j € [I], be snapshot states in the registers (M, W) after
the verifier's and prover’s action in the j-th round in P=V, respectively.

Qo Q Qi1 Q
Prover(Q) — E . ;
Mo w | P d My w | B
Message(M) == — _—... == —
W, | 1 W | v W
Verifier(W) == E— . —— ’

In this SDP formulation, we consider the following:
o Variables <& The snapshot states PM;.w,. for j € [I] after each prover action;
< Objection function < Maximum acceptance probability o (V).
These variables are independent due to the unitary verifier. The SDP constraints are:
@ Verifier is always honest:
Pu; = jPM;,lw,,,V; for j € {2,---,1}, and puyw, = V1 [0) (0] Vi -
® Prover’s actions do not change the verifier's private register:
Trw; (Pwju;) = TrM’j (PM}wj) for j e [1].
As any SDP solution holds O(logn) qubits, standard SDP solvers ensure the efficiency.
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Proof techniques: Upper bounds for QIPL and QIPyL (Cont.)

QIPL C NP. Now the verifier’s actions are almost-unitary quantum circuits.

There is a family of SDP programs depending on the measurement outcome {u}:
o Variables ¢ The unnormalized snapshot states pu,u; ® |u,-><u,—|Ej for j e [i].
© Objection function < o(V)[*, namely the contribution of u to w(V).

Qo Q1 Qi1 Q
Prover(Q)—: E e .
Mo My A M) M M i M A
Message(M) == =i .. == =i ; -
W, W W W R
Veriﬁer(W) iL Vi —] e % Vi :, Vit B
E E —Ein
For a given u = (uy,--- ,u;), the SDP program includes two types of constraints:

O Verifier is always honest: Let pyy, = [0)(0] trlen
PMJW/®‘“J'><”1'|E, = (1M1W1®‘“j><”i|E, )Vij;;]W_;,l vj for jel].

® Prover’s actions do not change the verifier's private register:
Try, (pMjW/®}”j><“f|Ej )= TrM} (PM’jw,®‘“j><”j|Ej ) for j e [1].

Next, we explain the NP containment:

> The classical witness w includes an [-tuple « and a feasible poly-size solution.

> The verification procedure involves checking whether (1) the solution encoded in w
satisfies the SDP constraints based on u; and (2) o(V)[* > ¢(n).
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Proof techniques: Basic properties for QIPL and QIPyL

Theorem 5 (Properties for QIPL and QIPyL). Let ¢(n), s(n), and m(n) be functions such
that 0 < s(n) < c(n) <1, ¢(n) —s(n) > 1/poly(n), and 1 < m(n) < poly(n). Then, we have:
© Closure under perfect completeness.
QIPL,,[c,s] € QIPL,.2[1,1- 1 (c—5)?] and QIPyL,,[e,s] C QIPyL,, 5 [1,1 - L(c—s)?].

@® Error reduction. For any polynomial k(n), there is a polynomial m'(n) such that:
QIPL,[c,s] CQIPL,, [172”‘] and QIPL,,[c,s] CQIPL,, [1,2”‘}.

@® Parallelization. QIPyL,,, [1,s] C QIPyL,, . [1,(14+/s)/2].

Proof Sketch.
» Theorem 5 @ is directly adapted from [Vidick-Watrous'16].
» Theorem 5 @ uses sequential repetition due to the space constraint, with the key
being to force the prover to “clean” the workspace.
> For establishing Theorem 5 @:

o The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot
states in a single message, which exceeds logarithmic size.

< The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a “dequantized”
version of the above approach, which leverages the reversibility of the verifier’s actions.
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Conclusions and open problems
Take-home messages on our work

© Intermediate measurements play a distinct role in space-bounded quantum
interactive proofs compared to space-bounded quantum computation:
QIPyL € QIPL unless P = NP (this work), while BQyL = BQL [FR21, GRz21].

® We define three models of space-bounded quantum interactive proofs:

QIPyL QIPL QIPL®
Verifier's actions unitary almost-unitary isometry
1
Lower bounds _SAC v BQL_ ! ) NP ) ! QMA
“IPL” with O(logn) public coins “IPL” with O(logn) private coins
Upper bounds P NP PSPACE

® Introducing the zero-knowledge property for QIPyL proof systems, i.e., QSZKyL,
eliminates the usual advantage gained from interaction (QSZKyL = BQL).

Open problems
@ Is it possible to obtain a tighter characterization of QIPyL? For example, does
QIPyL contain “IPL” with @(logn) public coins?
® What is the computational power of space-bounded quantum interactive proofs
with a general quantum logspace verifier that allows "erasure" gates?
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Thanks!
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