Space-bounded quantum interactive proof systems

François Le Gall ¹ Yupan Liu ¹ Harumichi Nishimura ¹ Qisheng Wang ^{2,1}

¹Nagoya University

²University of Edinburgh

Available on arXiv:2410.23958.

QIP 2025, Raleigh

- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results
- Open problems

Intermediate measurements in time-bounded quantum computation

Time-bounded quantum computation (BQP):

- Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.
- The goal is to find a small corner of an exponential-dimension Hilbert space that holds the relevant information, which can only be extracted through measurements.

(Pinching) intermediate measurements:

Measurements via single-qubit pinching channels:

$$\Phi(\boldsymbol{\rho}) \coloneqq \operatorname{Tr}(\boldsymbol{\rho} |0\rangle\langle 0|) |0\rangle\langle 0| + \operatorname{Tr}(\boldsymbol{\rho} |1\rangle\langle 1|) |1\rangle\langle 1|$$

Only coherence is removed.

Intermediate measurements are useless (principle of deferred measurements):

Eliminate intermediate measurements by introducing ancillary qubits!

What is **space-bounded** quantum computation?

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:

- Limits computation to $O(\log n)$ qubits, but allows poly(n) quantum gates.
- A quantum logspace computation operates on a *polynomial*-dimension Hilbert space, making this model appear weak and contained in NC.

However, BQL has shown notable power and gained recent increased attention:

- ♦ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma'13, Fefferman-Lin'16] is BQL-complete, fully saturating the quadratic space advantage over classical suggested by BQL ⊆ DSPACE[$\log^2(n)$] [Watrous'99].
- ◊ Intermediate measurements appear to make BQL stronger than BQUL:
 - \triangleright $O(\log n)$ intermediate measurements can be eliminated by introducing ancillary qubits.
 - Allowing both poly(n) pinching intermediate measurements and reset operations provide no advantage for promise problems [Girish-Raz-Zhan'21, Fefferman-Remscrim'21].
- Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version [Gilyén-Su-Low-Weibe'18, Metger-Yuen'23, Le Gall-L.-Wang'23].

What is (classical) interactive proofs?

Classical interactive proof systems

Given a promise problem $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, there is an interactive proof system $P \rightleftharpoons V$ that involves at most poly(n) messages exchanged between the prover P and the verifier V:

- The prover *P* is typically all-powerful but untrusted;
- The verifier V is computationally bounded, and use random bits;

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- For yes instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

The image is generated using OpenAI's DALL E model.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

- Asking random questions (i.e., *public coins*) is as powerful as asking clever questions (i.e., *private coins*): $IP[k] \subseteq AM[k+2]$ [Goldwasser-Sipser'86].
- **2** Constantly many messages: $IP[O(1)] \subseteq IP[2] \subseteq PH$ [Babai'85, Goldwasser-Sipser'86].
- Olynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90].

What is quantum interactive proofs?

Quantum interactive proof systems

Given a promise problem $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, there is an interactive proof system $P \rightleftharpoons V$ that involves at most poly(*n*) quantum messages exchanged between *P* and *V*:

- ◊ The prover *P* is typically all-powerful but untrusted;
- \diamond The verifier V is bounded and capable of quantum computation;
- \diamond *P* and *V* may share *entanglement* during the interaction.

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- For yes instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

* The image is generated using OpenAI's DALL E model.

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:

- **()** "Parallelization": $PSPACE \subseteq QIP \subseteq QIP[3]$ [Watrous'99, Kitaev-Watrous'00].
- $\textcircled{O} \ QIP[3] \subseteq PSPACE \ [Marriott-Watrous'04, Jain-Ji-Upadhyay-Watrous'09].$

What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92, Condon'91], where the verifier operates in *logspace* but can run in *polynomial time*.

Public coins weaken the computational power of such proof systems:

- Classical interactive proofs with a logspace verifier using O(logn) private (random) coins ("IPL") exactly characterizes NP [Condon-Ladner'92].
- > The model of *public-coin* space-bounded classical interactive proofs is weaker:
 - \diamond With poly(*n*) public coins, this model is contained in P [Condon'89].
 - \diamond With $O(\log n)$ public coins, it contains SAC¹ [Fortnow'89], enabling bounded fan-in AND.
 - \diamond With poly(*n*) public coins, it contains P [Goldwasser-Kalai-Rothblum'15].

In this work, the verifier has *direct access* to messages during interaction, generalizing the space-bounded quantum Merlin-Arthur proofs (QMAL):

- Direct access: A QMAL verifier has direct access to an O(log n)-qubit message, processing it directly in the verifier's workspace qubit, similar to QMA.
- QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura'16, Fefferman-Remscrim'21].

2 Definitions of space-bounded quantum interactive proof systems

3 Main results

1st attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPUL)

Consider a 2*l*-turn space-bounded unitary quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where the verifier *V* operates in quantum logspace and has direct access to messages during interaction with the prover *P*:

- ▶ The verifier *V* maps $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$ to (V_1, \dots, V_{l+1}) , where each V_j is unitary.
- Both M and W are of size $O(\log n)$, with M being accessible to both P and V.
- ► Strong uniformity: The description of (V₁, · · · , V_{l+1}) can be computed by a single deterministic logspace Turing machine, intuitively implying {V_i}'s repetitiveness.
- ★ QIP_UL does not contain "IPL", particularly the model from [Condon-Ladner'92]:
 - To show IP ⊆ QIP, the verifier needs to measure the received messages at the beginning of each action, and treat the outcome as classical messages.
 - Soundness against classical messages does not (directly) extend to quantum!

2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL^{\$})

Consider a 2*l*-turn space-bounded isometric quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$, where *V* acts on $O(\log n)$ qubits and has direct access to messages:

Each V_j is a unitary quantum circuit with $O(\log n)$ pinching intermediate measurements and reset operations.

QIPL^o contains the Condon-Ladner model ("IPL"), but it appears too powerful:

- For instance, the prover *P* can send an *n*-qubit state using $\lceil n/\log n \rceil$ messages of $(\log n)$ -qubit states, while the verifier *V* takes only $O(\log n)$ qubits without *P* detecting the choices.
- ▶ QIPL[°] can verify the local Hamiltonian problem, and thus contains QMA.

3rd attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL)

Consider a 2*l*-turn space-bounded quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where *V* acts on $O(\log n)$ qubits and has direct access to messages:

- Each V_j is an *almost-unitary* quantum circuit, meaning that a unitary quantum circuit with O(log n) pinching intermediate measurements.
- The O(log n) bound on pinching intermediate measurements corresponds to the maximum number of measurement outcomes that can be *stored* in logspace.
- QIPL also contains the Condon-Ladner model ("IPL")!

2 Definitions of space-bounded quantum interactive proof systems

3 Main results

Main results on QIPUL and QIPL

<u>Theorem 1.</u> NP \subseteq QIPL \subseteq SBP.

- The complexity class SBP generalizes BPP by considering a constant multiplicative error and is positioned between MA and AM [Böhler-Glaßer-Meister'03].
- Under reasonable derandomization assumptions, AM collapses to NP [Klivans-van Melkebeek'99, Miltersen-Vinodchandran'99], which implies QIPL = NP.

<u>**Theorem 2.**</u> SAC¹ \cup BQL \subseteq QIP_UL $\subseteq \cup_{c(n)-s(n) \ge 1/\text{poly}(n)}$ QIPL_{O(1)}[c, s] \subseteq P.

I Intermediate measurements enhance the model: $QIP_UL \subsetneq QIPL$ unless P = NP.

<u>**Theorem 3.**</u> For any $c(n) - s(n) \ge \Omega(1)$, $\text{QIPL}_{O(1)}[c,s] \subseteq \text{NC}$.

For constant-turn space-bounded quantum proofs, all three models are equivalent!

Main results on QIPUL and QIPL: Proof intuitions

<u>Theorem 1.</u> NP \subseteq QIPL \subseteq SBP.

The lower bound is inspired by space-bounded (private-coin) classical interactive proof systems for NP, particularly 3-SAT, in [Condon-Ladner'95].

★ (Hard!) The upper bound follows from:

- Approximating the size of an exponential-size set S with efficiently verifiable membership (using the same witness) within a constant multiplicative error is in NSBP [Böhler-Glaßer-Meister'03], and hence in SBP [Watson'12]].
- @ Efficient verifiability is ensured by a *family* of SDP formulations of QIPL proof systems:
 - Each intermediate measurement outcome corresponds to a distinct SDP formulation;
 - The *size* of this set *S* corresponds to the *acceptance probability* of the proof system.
- O A constant multiplicative error is guaranteed by sequential error reduction for QIPL.
 - The challenge is to *enforce the prover* to "clean" the workspace.

Main results on QIP_UL and QIPL: Proof intuitions (Cont.)

 $\underline{\text{Theorem 2.}} \text{ SAC}^1 \cup \text{BQL} \subseteq \text{QIP}_{\text{U}}\text{L} \subseteq \cup_{c(n)-s(n) \geq 1/\text{poly}(n)} \text{QIPL}_{O(1)}[c,s] \subseteq \text{P}.$

- The lower bound is inspired by space-bounded classical interactive proof systems with O(log n) public coins for evaluating SAC¹ circuits [Fortnow'89].
- The upper bound follows from:
- **Parallelization** for QIPUL proof systems:
 - The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot states in a single message, which *exceeds* logarithmic size.
 - The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a "dequantized" version of the above approach, which leverages the *reversibility* of the verifier's actions.
- Adapting the SDP formulation for QIP [Vidick-Watrous'16] to QIPUL proof systems:
 - All SDP constraints are matrices of polynomial size, ensuring P containment via standard SDP solvers.

<u>Theorem 3.</u> For any $c(n) - s(n) \ge \Omega(1)$, $\text{QIPL}_{O(1)}[c,s] \subseteq \text{NC}$.

An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].

2 Definitions of space-bounded quantum interactive proof systems

3 Main results

Conclusions and open problems

Take-home messages on our work

Intermediate measurements play a *distinct* role in space-bounded quantum interactive proofs compared to space-bounded quantum computation: QIP_UL⊊QIPL unless P=NP (this work), while BQ_UL=BQL [FR21, GRZ21].

2	We define	three	models of	of space	-bounded	quantum	interactive	proofs:
---	-----------	-------	-----------	----------	----------	---------	-------------	---------

		QIPUL	QIPL	QIPL [◊]	
	Verifier's actions	unitary	almost-unitary	isometry	
	Lower bounds	SAC ¹ \cup BQL "IPL" with $O(\log n)$ public coins	NP "IPL" with O(logn) private coins	QMA	
	Upper bounds	Р	SBP	PSPACE	
Introducing advantage (the zero-knowledge	e property for QIP_UL proof ion (QSZK ₁₁ L = BQL).	systems, i.e., QSZK _U L, elir	minates the usu	

- O Can QIPUL be more tightly characterized with a stronger lower bound?
- ② Can the lower bound of QIPL be improved to MA or StoqMA?
- What is the computational power of space-bounded quantum interactive proofs with a general quantum logspace verifier?

Thanks!