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Intermediate measurements in time-bounded quantum computation

Time-bounded quantum computation (BQP):

▶ Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.

▶ The goal is to find a small corner of an exponential-dimension Hilbert space that holds the relevant
information, which can only be extracted through measurements.

(Pinching) intermediate measurements:

▶ Measurements via single-qubit pinching channels:

Φ(ρ) := Tr(ρ |0⟩⟨0|) |0⟩⟨0|+Tr(ρ |1⟩⟨1|) |1⟩⟨1|
Only coherence is removed.

▶ Intermediate measurements are useless (principle of deferred measurements):

|0⟩ H H ⇒
|0⟩ H H

|0⟩


 Eliminate intermediate measurements by introducing ancillary qubits!
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What is space-bounded quantum computation?

Space-bounded quantum computation (BQL) is introduced in [Watrous’98, Watrous’99]:

▶ Limits computation to O(logn) qubits, but allows poly(n) quantum gates.

▶ A quantum logspace computation operates on a polynomial-dimension Hilbert space, making this model
appear weak and contained in NC.

However, BQL has shown notable power and gained recent increased attention:

⋄ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma’13, Fefferman-Lin’16] is BQL-complete, fully saturating the
quadratic space advantage over classical suggested by BQL ⊆ DSPACE[log2(n)] [Watrous’99].

⋄ Intermediate measurements appear to make BQL stronger than BQUL:

▶ O(logn) intermediate measurements can be eliminated by introducing ancillary qubits.

▶ Allowing both poly(n) pinching intermediate measurements and reset operations provide no advantage
for promise problems [Girish-Raz-Zhan’21, Fefferman-Remscrim’21].

⋄ Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version
[Gilyén-Su-Low-Weibe’18, Metger-Yuen’23, Le Gall-L.-Wang’23].
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What is (classical) interactive proofs?

Classical interactive proof systems

Given a promise problem (Lyes,Lno), there is an interactive proof system P⇌V

that involves at most poly(n) messages exchanged between the prover P and
the verifier V :

⋄ The prover P is typically all-powerful but untrusted;

⋄ The verifier V is computationally bounded, and use random bits;

For any x ∈ Lyes ∪Lno, this proof system P⇌V guarantees:

▶ For yes instances, (P⇌V )(x) accepts w.p. at least 2/3;

▶ For no instances, (P⇌V )(x) accepts w.p. at most 1/3.
* The image is generated using OpenAI’s DALL·E model.

Classical interactive proofs were introduced in [Babai’85, Goldwasser-Micali-Rackoff’85]:

1 Asking random questions (i.e., public coins) is as powerful as asking clever questions (i.e., private coins):
IP[k]⊆ AM[k+2] [Goldwasser-Sipser’86].

2 Constantly many messages: IP[O(1)]⊆ IP[2]⊆ PH [Babai’85, Goldwasser-Sipser’86].

3 Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan’90, Shamir’90].
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What is quantum interactive proofs?

Quantum interactive proof systems
Given a promise problem (Lyes,Lno), there is an interactive proof system P⇌V

that involves at most poly(n) quantum messages exchanged between P and V :

⋄ The prover P is typically all-powerful but untrusted;

⋄ The verifier V is bounded and capable of quantum computation;

⋄ P and V may share entanglement during the interaction.

For any x ∈ Lyes ∪Lno, this proof system P⇌V guarantees:

▶ For yes instances, (P⇌V )(x) accepts w.p. at least 2/3;

▶ For no instances, (P⇌V )(x) accepts w.p. at most 1/3.
* The image is generated using OpenAI’s DALL·E model.

Quantum interactive proofs were introduced in [Watrous’99, Kitaev-Watrous’00]:

1 “Parallelization”: PSPACE ⊆ QIP ⊆ QIP[3] [Watrous’99, Kitaev-Watrous’00].

2 QIP[3]⊆ PSPACE [Marriott-Watrous’04, Jain-Ji-Upadhyay-Watrous’09].
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What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer’92, Condon’91], where the
verifier operates in logspace but can run in polynomial time.

Public coins weaken the computational power of such proof systems:

▶ Classical interactive proofs with a logspace verifier using O(logn) private (random) coins (“IPL”) exactly
characterizes NP [Condon-Ladner’92].

▶ The model of public-coin space-bounded classical interactive proofs is weaker:

⋄ With poly(n) public coins, this model is contained in P [Condon’89].

⋄ With O(logn) public coins, it contains SAC1 [Fortnow’89], enabling bounded fan-in AND.

⋄ With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum’15].

In this work, the verifier has direct access to messages during interaction, generalizing the space-bounded
quantum Merlin-Arthur proofs (QMAL):

▶ Direct access: A QMAL verifier has direct access to an O(logn)-qubit message, processing it directly in the
verifier’s workspace qubit, similar to QMA.

▶ QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’16, Fefferman-Remscrim’21].
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1st attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPUL)
Consider a 2l-turn space-bounded unitary quantum interactive proof system P⇌V for (Lyes,Lno), where the
verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

▶ The verifier V maps x ∈ Lyes ∪Lno to (V1, · · · ,Vl+1), where each Vj is unitary.

▶ Both M and W are of size O(logn), with M being accessible to both P and V .

▶ Strong uniformity: The description of (V1, · · · ,Vl+1) can be computed by a single deterministic logspace
Turing machine, intuitively implying {Vj}’s repetitiveness.

⋆ QIPUL does not contain “IPL”, particularly the model from [Condon-Ladner’92]:

▶ To show IP ⊆ QIP, the verifier needs to measure the received messages at the beginning of each action, and
treat the outcome as classical messages.
 Soundness against classical messages does not (directly) extend to quantum!
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2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL⋄)
Consider a 2l-turn space-bounded isometric quantum interactive proof system P⇌V for (Lyes,Lno), where V acts
on O(logn) qubits and has direct access to messages:

▶ Each Vj is a unitary quantum circuit with O(logn) pinching intermediate measurements and reset operations.


 QIPL⋄ contains the Condon-Ladner model (“IPL”), but it appears too powerful:

▶ For instance, the prover P can send an n-qubit state using ⌈n/ logn⌉ messages of (logn)-qubit states, while
the verifier V takes only O(logn) qubits without P detecting the choices.

▶ QIPL⋄ can verify the local Hamiltonian problem, and thus contains QMA.
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3rd attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL)
Consider a 2l-turn space-bounded quantum interactive proof system P⇌V for (Lyes,Lno), where V acts on
O(logn) qubits and has direct access to messages:

▶ Each Vj is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with O(logn) pinching
intermediate measurements.

▶ The O(logn) bound on pinching intermediate measurements corresponds to the maximum number of
measurement outcomes that can be stored in logspace.

▶ QIPL also contains the Condon-Ladner model (“IPL”)!
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Main results on QIPUL and QIPL

Theorem 1. NP ⊆ QIPL ⊆ SBP.

▶ The complexity class SBP generalizes BPP by considering a constant multiplicative error and is positioned
between MA and AM [Böhler-Glaßer-Meister’03].

▶ Under reasonable derandomization assumptions, AM collapses to NP [Klivans-van Melkebeek’99,

Miltersen-Vinodchandran’99], which implies QIPL = NP.

Theorem 2. SAC1 ∪BQL ⊆ QIPUL ⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c,s]⊆ P.


 Intermediate measurements enhance the model: QIPUL ⊊ QIPL unless P = NP.

Theorem 3. For any c(n)− s(n)≥ Ω(1), QIPLO(1)[c,s]⊆ NC.

▶ For constant-turn space-bounded quantum proofs, all three models are equivalent!
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Main results on QIPUL and QIPL: Proof intuitions

Theorem 1. NP ⊆ QIPL ⊆ SBP.

▶ The lower bound is inspired by space-bounded (private-coin) classical interactive proof systems for NP,
particularly 3-SAT, in [Condon-Ladner’95].

⋆ (Hard!) The upper bound follows from:

1 Approximating the size of an exponential-size set S with efficiently verifiable membership (using the same
witness) within a constant multiplicative error is in NSBP [Böhler-Glaßer-Meister’03] , and hence in SBP [Watson’12]].

2 Efficient verifiability is ensured by a family of SDP formulations of QIPL proof systems:

⋄ Each intermediate measurement outcome corresponds to a distinct SDP formulation;

⋄ The size of this set S corresponds to the acceptance probability of the proof system.

3 A constant multiplicative error is guaranteed by sequential error reduction for QIPL.

⋄ The challenge is to enforce the prover to “clean” the workspace.
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Main results on QIPUL and QIPL: Proof intuitions (Cont.)

Theorem 2. SAC1 ∪BQL ⊆ QIPUL ⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c,s]⊆ P.

▶ The lower bound is inspired by space-bounded classical interactive proof systems with O(logn) public coins
for evaluating SAC1 circuits [Fortnow’89].

▶ The upper bound follows from:

1 Parallelization for QIPUL proof systems:

⋄ The original approach in [Kitaev-Watrous’00] fails, since it requires sending all snapshot states in a single
message, which exceeds logarithmic size.

⋄ The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick’07] works, a “dequantized” version of the
above approach, which leverages the reversibility of the verifier’s actions.

2 Adapting the SDP formulation for QIP [Vidick-Watrous’16] to QIPUL proof systems:

⋄ All SDP constraints are matrices of polynomial size, ensuring P containment via standard SDP solvers.

Theorem 3. For any c(n)− s(n)≥ Ω(1), QIPLO(1)[c,s]⊆ NC.

▶ An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous’09].
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Conclusions and open problems
Take-home messages on our work

1 Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to
space-bounded quantum computation: QIPUL⊊QIPL unless P=NP (this work), while BQUL=BQL [FR21, GRZ21].

2 We define three models of space-bounded quantum interactive proofs:

QIPUL QIPL QIPL⋄

Verifier’s actions unitary almost-unitary isometry

Lower bounds SAC1 ∪BQL
“IPL” with O(logn) public coins

NP
“IPL” with O(logn) private coins

QMA

Upper bounds P SBP PSPACE

3 Introducing the zero-knowledge property for QIPUL proof systems, i.e., QSZKUL, eliminates the usual
advantage gained from interaction (QSZKUL = BQL).

Open problems
1 Can QIPUL be more tightly characterized with a stronger lower bound?

2 Can the lower bound of QIPL be improved to MA or StoqMA?

3 What is the computational power of space-bounded quantum interactive proofs with a general quantum
logspace verifier?
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Thanks!
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