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@ Space-bounded quantum computation meets interactive proofs



Intermediate measurements in time-bounded quantum computation

Time-bounded quantum computation (BQP):

> Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.

> The goal is to find a small corner of an exponential-dimension Hilbert space that holds the relevant
information, which can only be extracted through measurements.

(Pinching) intermediate measurements:

> Measurements via single-qubit pinching channels:

D(p) = Tr(p |0)(0]) [0) (O] +Tr(p [1){1]) [1){1]
Only coherence is removed.

> Intermediate measurements are useless (principle of deferred measurements):
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& Eliminate intermediate measurements by introducing ancillary qubits!

12



What is space-bounded quantum computation?

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:
> Limits computation to O(logn) qubits, but allows poly(n) quantum gates.

> A quantum logspace computation operates on a polynomial-dimension Hilbert space, making this model
appear weak and contained in NC.

However, BQL has shown notable power and gained recent increased attention:
o INVERTING WELL-CONDITIONED MATRICES [Ta-Shma’'13, Fefferman-Lin’16] is BQL-complete, fully saturating the
quadratic space advantage over classical suggested by BQL C DSPACE[log?(n)] [Watrous'99].
o Intermediate measurements appear to make BQL stronger than BQL:
> O(logn) intermediate measurements can be eliminated by introducing ancillary qubits.
> Allowing both poly(n) pinching intermediate measurements and reset operations provide no advantage
for promise problems [Girish-Raz-Zhan'21, Fefferman-Remscrim’21].
< Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version
[Gilyén-Su-Low-Weibe’18, Metger-Yuen'23, Le Gall-L.-Wang’23].
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What is (classical) interactive proofs?

Classical interactive proof systems

§ Given a promise problem (Lyes, Lno), there is an interactive proof system P=V
i that involves at most poly(n) messages exchanged between the prover P and
the verifier V:

< The prover P is typically all-powerful but untrusted;

< The verifier V is computationally bounded, and use random bits;
For any x € Lyes U Ly, this proof system P=V guarantees:

> For yes instances, (P=V)(x) accepts w.p. at least 2/3;

__ G > For no instances, (P=V)(x) accepts w.p. at most 1/3.
* The image is generated using OpenAl’'s DALL-E model.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

© Asking random questions (i.e., public coins) is as powerful as asking clever questions (i.e., private coins):
IPk] € AM[k+2] [Goldwasser-Sipser'86].

® Constantly many messages: IP[O(1)] C IP[2] C PH [Babai'85, Goldwasser-Sipser'86].

® Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90].



What is quantum interactive proofs?

Quantum interactive proof systems

§ Given a promise problem (Lyes, L1o), there is an interactive proof system P=V

& For any x € Lyes U Lo, this proof system P=V guarantees:
> For yes instances, (P=V)(x) accepts w.p. at least 2/3;

= » For no instances, (P=V)(x) accepts w.p. at most 1/3.
* The image is generated using OenAI’s DALL-E model.

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:
© “Parallelization”: PSPACE C QIP C QIP[3] [watrous'99, Kitaev-Watrous'00].

® QIP[3] C PSPACE [Marriott-Watrous'04, Jain-Ji-Upadhyay-Watrous'09)].



What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92, Condon’91], where the
verifier operates in logspace but can run in polynomial time.

Public coins weaken the computational power of such proof systems:

> Classical interactive proofs with a logspace verifier using O(logn) private (random) coins (“IPL") exactly
characterizes NP [Condon-Ladner'92].

> The model of public-coin space-bounded classical interactive proofs is weaker:
< With poly(n) public coins, this model is contained in P [Condon'89].
< With O(logn) public coins, it contains SAC! [Fortnow'sal, enabling bounded fan-in AND.

< With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum’15].

In this work, the verifier has direct access to messages during interaction, generalizing the space-bounded
quantum Merlin-Arthur proofs (QMAL):

> Direct access: A QMAL verifier has direct access to an O(logn)-qubit message, processing it directly in the
verifier's workspace qubit, similar to QMA.

> QMAL =BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’16, Fefferman-Remscrim’'21].



@® Definitions of space-bounded quantum interactive proof systems



18t attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPyL)

Consider a 2I-turn space-bounded unitary quantum interactive proof system P=V for (Lyes, Lno), Where the
verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

Prover(Q) JE . e ﬁ—_
P, Py
Message(M) E— = = - ——— = = -
V1 ‘/l ‘/lJrl
Verifier(W) EF “e Eﬁ
> The verifier V.maps x € Lyes U Lo t0 (Vi,--+,Vi41), Where each V; is unitary.

»> Both M and W are of size O(logn), with M being accessible to both P and V.

> Strong uniformity: The description of (Vi,---,V,;) can be computed by a single deterministic logspace
Turing machine, intuitively implying {V;}’s repetitiveness.

% QIPyL does not contain “IPL”, particularly the model from [Condon-Ladner'92]:

> To show IP C QIP, the verifier needs to measure the received messages at the beginning of each action, and
treat the outcome as classical messages.

& Soundness against classical messages does not (directly) extend to quantum!



2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL®)

Consider a 2I-turn space-bounded isometric quantum interactive proof system P=V for (Lyes, Lno), Where V acts
on O(logn) qubits and has direct access to messages:

Prover(Q) #—E .. #—#
Py P,
Message(M) S s . . . = s s -
Vi Vi Vs
Verifier(W) Er “e Eﬁ

» Each V; is a unitary quantum circuit with O(logn) pinching intermediate measurements and reset operations.
' £

& QIPL? contains the Condon-Ladner model (“IPL"), but it appears too powerful:

> For instance, the prover P can send an n-qubit state using [n/logn| messages of (logn)-qubit states, while
the verifier V takes only O(logn) qubits without P detecting the choices.

> QIPL® can verify the local Hamiltonian problem, and thus contains QMA.



3" attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL)

Consider a 2I-turn space-bounded quantum interactive proof system P=V for (Lyes, Ln,), Where V acts on
O(logn) qubits and has direct access to messages:

Prover(Q) JE NN ﬁ—_
P B
Message(M) EB— = P ¢ « =— = = -
|1 Vi Vi1
Verifier(W) EF . EﬁF

» Each V; is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with O(logn) pinching
intermediate measurements.

> The O(logn) bound on pinching intermediate measurements corresponds to the maximum number of
measurement outcomes that can be stored in logspace.

> QIPL also contains the Condon-Ladner model (“IPL”)!



@ Space-bounded quantum computation meets interactive proofs
@ Definitions of space-bounded quantum interactive proof systems
® Main results

@ Open problems



Main results on QIPyL and QIPL

Theorem 1. NP C QIPL C SBP.

> The complexity class SBP generalizes BPP by considering a constant multiplicative error and is positioned
between MA and AM [Béhler-GlaBer-Meister'03].

» Under reasonable derandomization assumptions, AM collapses to NP [Klivans-van Melkebeek'99,
Miltersen-Vinodchandran’99], which implies QIPL = NP.

Theorem 2. SAC' UBQL C QIPYL € Ue () ()21 /poly(n) QIPLo(1) [c. 5] € P.

& Intermediate measurements enhance the model: QIPyL € QIPL unless P = NP.

Theorem 3. For any c(n) —s(n) > Q(1), QIPLg[c,s] € NC.

> For constant-turn space-bounded quantum proofs, all three models are equivalent!
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Main results on QIPyL and QIPL: Proof intuitions

Theorem 1. NP C QIPL C SBP.

> The lower bound is inspired by space-bounded (private-coin) classical interactive proof systems for NP,
particularly 3-SAT, in [Condon-Ladner'95].

% (Hard!) The upper bound follows from:

© Approximating the size of an exponential-size set S with efficiently verifiable membership (using the same

witness) within a constant multiplicative error is in NSBP [Bohler-GlaBer-Meister03] , and hence in SBP [watson'12]].

© Efficient verifiability is ensured by a family of SDP formulations of QIPL proof systems:
o Each intermediate measurement outcome corresponds to a distinct SDP formulation;

o The size of this set S corresponds to the acceptance probability of the proof system.
® A constant multiplicative error is guaranteed by sequential error reduction for QIPL.

< The challenge is to enforce the prover to “clean” the workspace.
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Main results on QIPyL and QIPL: Proof intuitions (Cont.)

Theorem 2. SAC' UBQL C QIPYL € Uy(y) (=1 poty(n) QIPLo( e8] € P. |

> The lower bound is inspired by space-bounded classical interactive proof systems with O(logn) public coins
for evaluating SAC' circuits [Fortnow'89].

»> The upper bound follows from:

© Parallelization for QIPL proof systems:

< The original approach in [Kitaev-watrous'00] fails, since it requires sending all snapshot states in a single
message, which exceeds logarithmic size.

< The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick 07] works, a “dequantized” version of the
above approach, which leverages the reversibility of the verifier’s actions.
® Adapting the SDP formulation for QIP [Vidick-Watrous'16] to QIPyL proof systems:

o All SDP constraints are matrices of polynomial size, ensuring P containment via standard SDP solvers.

Theorem 3. For any c(n) —s(n) > Q(1), QIPLq)[c,s] € NC. J

> An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].
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Conclusions and open problems
Take-home messages on our work

© Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to
space-bounded quantum computation: QIPyLZ QIPL unless P=NP (this work), while BQyL=BQL [FR21, GRz21].

® We define three models of space-bounded quantum interactive proofs:

QIPyL QIPL QIPL®
Verifier's actions unitary almost-unitary isometry
1
Lower bounds ,SAC Y BQL, , . NP , . QMA
“IPL” with O(logn) public coins “IPL” with O(logn) private coins
Upper bounds P SBP PSPACE

® Introducing the zero-knowledge property for QIPyL proof systems, i.e., QSZKyL, eliminates the usual
advantage gained from interaction (QSZKyL = BQL).

Open problems
©® Can QIPyL be more tightly characterized with a stronger lower bound?
® Can the lower bound of QIPL be improved to MA or StogMA?

® What is the computational power of space-bounded quantum interactive proofs with a general quantum
logspace verifier?
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Thanks!
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