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What is time-bounded quantum computation?

Basic ingredients in (time-bounded) quantum computation:

▶ Qubit. |ψ⟩= α |0⟩+β |1⟩, where ⟨ψ|ψ⟩= |α|2 + |β |2 = 1, |0⟩=

(
1

0

)
, and |1⟩=

(
0

1

)
.

▶ Quantum state. An n-qubit (pure) state is a vector |Ψ⟩ ∈ C2n
satisfying ⟨Ψ|Ψ⟩= 1.

In general, an n-qubit (mixed) quantum state ρ is a positive semi-definite matrix of dimension 2n ×2n such
that Tr(ρ) = 1.

▶ Quantum gate. Elementary quantum gates Gi (from some universal gateset) are unitary matrices act on
one or two qubits, e.g., Gi ∈ {CNOT,Had,T}:

|0⟩⊗n G1→ G1 |0⟩⊗n G2→ G2G1 |0⟩⊗n → ···
▶ Measurement. Projective measurement in computational basis {|0⟩⟨0| , |1⟩⟨1|}:

|0⟩ U b ∈ {0,1}

Time-bounded quantum computation (BQP):

▶ Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.

▶ The goal is to find a small corner of an exponential-dimension Hilbert space that holds the relevant
information, which can only be extracted through performing measurements.
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Intermediate measurements in (space-bounded) quantum computation

Intermediate measurements implemented by single-qubit pinching channels:

Φ(ρ) := Tr(ρ |0⟩⟨0|) |0⟩⟨0|+Tr(ρ |1⟩⟨1|) |1⟩⟨1| .
 Removes coherence, leaving only
::::::
diagonal

:::::
terms in the post-measurement states.

Principle of deferred measurements
Intermediate measurements are useless in time-bounded quantum computation:

|0⟩ H H ⇒
|0⟩ H H

|0⟩


 Eliminate intermediate measurements by introducing ancillary qubits!

Space-bounded quantum computation (BQL) is introduced in [Watrous’98, Watrous’99]:

▶ Limits computation to O(logn) qubits, but allows poly(n) quantum gates.

▶ A quantum logspace computation operates on a polynomial-dimension Hilbert space, making this model
appear weak and contained in NC.
 Principle of deferred measurements doesn’t apply to quantum logspace in general!
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How powerful is space-bounded quantum computation?

However, BQL has shown notable power and gained recent increased attention:

▶ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma’13, Fefferman-Lin’16] is BQL-complete, fully saturating the
quadratic space advantage over classical suggested by BQL ⊆ DSPACE[log2(n)] [Watrous’99].

▶ Intermediate measurements appear to make BQL stronger than BQUL:

⋄ Using the principle of deferred measurements, O(logn) intermediate measurements can be eliminated
by introducing ancillary qubits.

⋄ Allowing both poly(n) pinching intermediate measurements and even reset operations provide no
advantage for promise problems [Fefferman-Remscrim’21, Girish-Raz-Zhan’21]: BQL = BQUL.
 These new techniques don’t extend to state-synthesizing tasks!

▶ Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version
[Gilyén-Su-Low-Weibe’18, Metger-Yuen’23, Le Gall-L.-Wang’23].

⋄ Another example (GAPQSDlog) showing a space advantage over classical!

⋄ GAPQSDlog is BQL-complete [LLW23], previously only in NC [Watrous’02].

⋆ Corollary (this work): Space-bounded unitary quantum statistical zero-knowledge (QSZKUL) is in BQL.
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What is (classical) interactive proofs?

Classical interactive proof systems

Given a promise problem (Lyes,Lno), there is an interactive proof system P⇌V

that involves at most poly(n) messages exchanged between the prover P and
the verifier V :

⋄ P is typically all-powerful but untrusted;

⋄ V is computationally bounded, and use random bits;

For any x ∈ Lyes ∪Lno, this proof system P⇌V guarantees:

▶ For yes instances, (P⇌V )(x) accepts w.p. at least 2/3;

▶ For no instances, (P⇌V )(x) accepts w.p. at most 1/3.

* The image is generated using OpenAI’s DALL·E model.

Classical interactive proofs were introduced in [Babai’85, Goldwasser-Micali-Rackoff’85]:

1 Asking random questions (i.e., public coins) is as powerful as asking clever questions (i.e., private coins):
IP[k]⊆ AM[k+2] [Goldwasser-Sipser’86].

2 Constantly many messages: IP[O(1)]⊆ AM ⊆ PH [Babai’85, Goldwasser-Sipser’86].

3 Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan’90, Shamir’90].
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What is quantum interactive proofs?

Quantum interactive proof systems
Given a promise problem (Lyes,Lno), there is an interactive proof system P⇌V

that involves at most poly(n) quantum messages exchanged between P and V :

⋄ P is typically all-powerful but untrusted;

⋄ V is bounded and capable of quantum computation;

⋄ P and V may become entangled during the interaction.

For any x ∈ Lyes ∪Lno, this proof system P⇌V guarantees:
▶ For yes instances, (P⇌V )(x) accepts w.p. at least 2/3;

▶ For no instances, (P⇌V )(x) accepts w.p. at most 1/3.

* The image is generated using OpenAI’s DALL·E model.

Quantum interactive proofs were introduced in [Watrous’99, Kitaev-Watrous’00]:

1 “Parallelization”: PSPACE ⊆ QIP ⊆ QIP[3] [Watrous’99, Kitaev-Watrous’00].

2 QIP[3]⊆ PSPACE [Marriott-Watrous’04, Jain-Ji-Upadhyay-Watrous’09].
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What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer’92, Condon’91], where the
verifier operates in logspace but can run in polynomial time.

Public coins weaken the computational power of such proof systems:
▶ Classical interactive proofs with a logspace verifier using private (random) coins:

⋄ With O(logn) private coins, this model (“IPL”) exactly characterizes NP [Condon-Ladner’92].
⋄ With poly(n) private coins, this model exactly characterizes PSPACE [Condon’91].

▶ The model of public-coin space-bounded classical interactive proofs is weaker:

⋄ With poly(n) public coins, this model is contained in P [Condon’89].

⋄ With O(logn) public coins, it contains SAC1 [Fortnow’89], enabling bounded fan-in AND.

⋄ With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum’15].

In this work, the verifier has direct access to messages during interaction, generalizing the space-bounded
quantum Merlin-Arthur proofs (QMAL):

▶ Direct access: A QMAL verifier has direct access to an O(logn)-qubit message, processing it directly in the
verifier’s workspace qubit, similar to QMA.

▶ QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’16, Fefferman-Remscrim’21].
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1st attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPUL)
Consider a 2l-turn space-bounded unitary quantum interactive proof system P⇌V for (Lyes,Lno), where the
verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

▶ The verifier V maps x ∈ Lyes ∪Lno to (V1, · · · ,Vl+1), where each Vj is unitary.

▶ Both M and W are of size O(logn), with M being accessible to both P and V .

▶ Strong uniformity: The description of (V1, · · · ,Vl+1) can be computed by a single deterministic logspace
Turing machine, intuitively implying {Vj}’s repetitiveness.

⋆ QIPUL does not contain “IPL”, particularly the model from [Condon-Ladner’92]:

▶ To show IP ⊆ QIP, the verifier needs to measure the received messages at the beginning of each action, and
treat the outcome as classical messages.
 Soundness against classical messages does not (directly) extend to quantum!
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2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL⋄)
Consider a 2l-turn space-bounded isometric quantum interactive proof system P⇌V for (Lyes,Lno), where V acts
on O(logn) qubits and has direct access to messages:

▶ Each Vj is a unitary quantum circuit with O(logn) pinching intermediate measurements and reset operations.


 QIPL⋄ contains the Condon-Ladner model (“IPL”), but it appears too powerful:

▶ For instance, the prover P can send an n-qubit state using ⌈n/ logn⌉ messages, each consisting of an
O(logn)-qubit state, and the verifier V randomly selects only O(logn) qubits without revealing the choice to P.

▶ QIPL⋄ can verify the local Hamiltonian problem, and thus contains QMA.
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3rd attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL & QIPLHC)
Consider a 2l-turn space-bounded quantum interactive proof system P⇌V for (Lyes,Lno), where V acts on
O(logn) qubits and has direct access to messages:

▶ Each Vj is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with O(logn) pinching
intermediate measurements.

▶ QIPLHC: For yes instances, the distribution of intermediate measurement outcomes u = (u1, · · · ,ul),
condition on acceptance, must be highly concentrated.

⋄ Intuitively, this condition may be interpreted as the prover’s messages being almost classical for yes instances.

▶ Both QIPL and QIPLHC also contain the Condon-Ladner model (“IPL”)!
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Main results on QIPUL and QIPL

Theorem 1. NP = QIPLHC ⊆ QIPL.

▶ QIPLHC is the weakest model that includes space-bounded classical interactive proof systems, particularly
the Condon-Ladner model (“IPL”).

▶ New technique: Directly upper-bounding quantum interactive proof systems with non-unitary verifier,
whereas existing techniques only handle unitary verifier.

Theorem 2. SAC1 ∪BQL ⊆ QIPUL ⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c,s]⊆ P.


 Intermediate measurements enhance the model: QIPUL ⊊ QIPL unless P = NP.

Theorem 3. For any c(n)− s(n)≥ Ω(1), QIPLO(1)[c,s]⊆ NC.

▶ For constant-turn space-bounded quantum proofs, all three models are equivalent!
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Main results: Proof intuitions for upper bounds (unitary verifier)

Theorem 2. SAC1 ∪BQL ⊆ QIPUL
a
⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c,s]

b
⊆ P.

a Parallelization for QIPUL proof systems:

⋄ The original approach in [Kitaev-Watrous’00] fails, since it requires sending all snapshot states in a single
message, which exceeds logarithmic size.

⋄ The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick’07] works, a “dequantized” version of the
above approach, which leverages the reversibility and dimension preservation of the verifier’s actions.

b Adapting the SDP formulation for QIP [Vidick-Watrous’16] to QIPUL proof systems:

⋄ For any constant-round QIPUL proof system, the corresponding SDP admits polynomial-size solutions,
ensuring P containment via standard SDP solvers.
 Parallelization makes QIPUL easy!

Theorem 3. For any c(n)− s(n)≥ Ω(1), QIPLO(1)[c,s]⊆ NC.

⋄ An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous’09].
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Main results: Proof intuitions for upper bounds (non-unitary verifier)

Theorem 1. NP = QIPLHC ⊆ QIPL.

In P⇌V , let ω(V )|u denote the contribution of the branch u = (u1, · · · ,ul) to the maximum acceptance probability
ω(V ) = ∑u ω(V )|u, where uk denotes the intermediate measurement outcome in the verifier’s k-th turn (1 ≤ k ≤ l).

▶ Pinching measurements eliminate coherence between subspaces corresponding to different branches,
allowing ω(V )|u to be approximately optimized in isolation.

▶ Therefore, for any QIPL proof system P⇌V with a fixed branch u, one can write a SDP formulation, which
computes an approximation ω̂(V )|u of ω(V )|u satisfying

ω(V )|u ≤ ω̂(V )|u ≤ ω(V ).

▶ NP containment: Noting that a solution to this SDP formulation can be written as a Cartesian product of a

::::::::
polynomial number of

:::::::::
O(logn)-qubit states (i.e., snapshot states in P⇌V ), we can verify the SDP feasibility

of this solution in NP.
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Main results: Proof intuitions for lower bounds

Theorem 2. SAC1 ∪BQL ⊆ QIPUL ⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c,s]⊆ P.

▶ Key idea: Simulating O(logn)
:::::
public

::::
coins in space-bounded classical interactive proof systems by

performing O(logn) pinching measurements.

▶ The lower bound (SAC1 ⊆ QIPUL) is inspired by space-bounded classical interactive proof systems with
O(logn) public coins for evaluating (uniform) SAC1 circuits [Fortnow’89].

Theorem 1. NP = QIPLHC ⊆ QIPL.

▶ Key idea: Simulating O(logn)
:::::
private

::::
coins in space-bounded classical interactive proof systems by

1 Measuring each O(logn)-qubit message received from the prover in the proof system;
2 Performing O(logn) pinching measurement to generate O(logn) random coins.

▶ The lower bound (NP ⊆ QIPLHC) is inspired by space-bounded classical interactive proof systems with
O(logn) private coins for NP (i.e., 3-SAT) in [Condon-Ladner’95].
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Conclusions and open problems

Take-home messages on our work
1 Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to

space-bounded quantum computation:

QIPUL ⊊ QIPL unless P = NP (this work), while BQUL = BQL [FR21, GRZ21].

2 We define three models of space-bounded quantum interactive proofs:

QIPUL QIPL QIPL⋄

Verifier’s actions unitary almost-unitary isometry

Lower bounds SAC1 ∪BQL
“IPL” with O(logn) public coins

NP(= QIPLHC)
“IPL” with O(logn) private coins

QMA

Upper bounds P PSPACE PSPACE

3 Introducing the zero-knowledge property for QIPUL proof systems, i.e., QSZKUL, eliminates the usual
advantage gained from interaction (QSZKUL = BQL).

Open problems
1 Can QIPUL be more tightly characterized with a stronger lower bound?

2 What is the computational power of the classes QIPL and QIPL⋄?
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Thanks!
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