Space-bounded quantum interactive proof systems

François Le Gall ¹ Yupan Liu ³ Harumichi Nishimura ¹ Qisheng Wang ^{2,1}

¹Nagoya University

²University of Edinburgh

³Nagoya University → École Polytechnique Fédérale de Lausanne

Available on arXiv:2410.23958.

CCC 2025, Toronto

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- Main results
- 4 Open problems

What is **time-bounded** quantum computation?

Basic ingredients in (time-bounded) quantum computation:

- ▶ **Qubit**. $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, where $\langle \psi | \psi \rangle = |\alpha|^2 + |\beta|^2 = 1$, $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- ▶ **Quantum state**. An n-qubit (pure) state is a vector $|\Psi\rangle \in \mathbb{C}^{2^n}$ satisfying $\langle \Psi|\Psi\rangle = 1$. In general, an n-qubit (mixed) quantum state ρ is a positive semi-definite matrix of dimension $2^n \times 2^n$ such that $\operatorname{Tr}(\rho) = 1$.
- ▶ **Quantum gate.** Elementary quantum gates G_i (from some universal gateset) are unitary matrices act on one or two qubits, e.g., $G_i \in \{CNOT, Had, T\}$:

$$|0\rangle^{\otimes n} \stackrel{G_1}{\to} G_1 |0\rangle^{\otimes n} \stackrel{G_2}{\to} G_2 G_1 |0\rangle^{\otimes n} \to \cdots$$

▶ **Measurement**. Projective measurement in computational basis $\{|0\rangle\langle 0|, |1\rangle\langle 1|\}$:

Time-bounded quantum computation (BQP):

- ▶ Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.
- ► The goal is to find *a small corner* of an *exponential*-dimension Hilbert space that holds the relevant information, which can only be extracted through performing measurements.

Intermediate measurements in (space-bounded) quantum computation

<u>Intermediate measurements</u> implemented by *single-qubit pinching channels*:

$$\Phi(\rho) := \operatorname{Tr}(\rho |0\rangle\langle 0|) |0\rangle\langle 0| + \operatorname{Tr}(\rho |1\rangle\langle 1|) |1\rangle\langle 1|.$$

Removes *coherence*, leaving only diagonal terms in the post-measurement states.

Principle of deferred measurements

Intermediate measurements are *useless* in time-bounded quantum computation:

♣ Eliminate intermediate measurements by introducing ancillary qubits!

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:

- Limits computation to $O(\log n)$ qubits, but allows poly(n) quantum gates.
- A quantum logspace computation operates on a *polynomial*-dimension Hilbert space, making this model appear weak and contained in NC.
- Principle of deferred measurements doesn't apply to quantum logspace in general!

How powerful is **space-bounded** quantum computation?

However, BQL has shown *notable* power and gained recent increased attention:

- INVERTING WELL-CONDITIONED MATRICES [Ta-Shma'13, Fefferman-Lin'16] is BQL-complete, fully saturating the *quadratic* space advantage over classical suggested by BQL \subseteq DSPACE[log²(n)] [Watrous'99].
- ▶ Intermediate measurements appear to make BQL stronger than BQUL:
 - \diamond Using the principle of deferred measurements, $O(\log n)$ intermediate measurements can be eliminated by introducing ancillary qubits.
 - ⋄ Allowing both poly(n) pinching intermediate measurements and even reset operations provide no advantage for promise problems [Fefferman-Remscrim'21, Girish-Raz-Zhan'21]: BQL = BQUL.
 - ♣ These new techniques don't extend to state-synthesizing tasks!
- Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version [Gilyén-Su-Low-Weibe'18, Metger-Yuen'23, Le Gall-L.-Wang'23].
 - ♦ Another example (GAPQSD_{log}) showing a space advantage over classical!
 - ♦ GAPQSD_{log} is BQL-complete [LLW23], previously only in NC [Watrous'02].
 - $\bigstar \ \underline{\textbf{Corollary}} \ (\textbf{this work}) : \ Space-bounded \ \textit{unitary} \ quantum \ statistical \ zero-knowledge} \ (QSZK_UL) \ is \ in \ BQL.$

What is (classical) interactive proofs?

Classical interactive proof systems

Given a promise problem $(\mathcal{L}_{\mathrm{yes}}, \mathcal{L}_{\mathrm{no}})$, there is an interactive proof system $P \!\!=\!\! V$ that involves at most $\mathrm{poly}(n)$ messages exchanged between the prover P and the verifier V:

- ⋄ P is typically all-powerful but untrusted;
- $\diamond\ V$ is computationally bounded, and use *random bits*;

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- ▶ For *yes* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

- Asking random questions (i.e., *public coins*) is as powerful as asking clever questions (i.e., *private coins*): $IP[k] \subseteq AM[k+2]$ [Goldwasser-Sipser'86].
- $\textbf{\textit{Oonstantly} many messages: } \textbf{IP}[O(1)] \subseteq \textbf{AM} \subseteq \textbf{PH} \text{ [Babai'85, Goldwasser-Sipser'86]}.$
- Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90].

^{*} The image is generated using OpenAl's DALL-E model.

What is **quantum interactive proofs**?

Quantum interactive proof systems

Given a promise problem $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, there is an interactive proof system P = V that involves at most poly(n) quantum messages exchanged between P and V:

- \diamond P is typically all-powerful but untrusted;
- $\diamond\ V$ is bounded and capable of quantum computation;
- \diamond *P* and *V* may *become entangled* during the interaction.

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- For *yes* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:

- "Parallelization": PSPACE ⊆ QIP ⊆ QIP[3] [Watrous'99, Kitaev-Watrous'00].
- ② QIP[3] ⊆ PSPACE [Marriott-Watrous'04, Jain-Ji-Upadhyay-Watrous'09].

^{*} The image is generated using OpenAl's DALL-E model.

What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92, Condon'91], where the verifier operates in *logspace* but can run in *polynomial time*.

Public coins *weaken* the computational power of such proof systems:

- Classical interactive proofs with a logspace verifier using private (random) coins:
 - ♦ With O(log n) private coins, this model ("IPL") exactly characterizes NP [Condon-Ladner'92].
 - ♦ With poly(n) private coins, this model exactly characterizes PSPACE [Condon'91].
- ▶ The model of *public-coin* space-bounded classical interactive proofs is weaker:
 - ♦ With poly(n) public coins, this model is contained in P [Condon'89].
 - \diamond With $O(\log n)$ public coins, it contains SAC¹ [Fortnow'89], enabling bounded fan-in AND.
 - ♦ With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum'15].

In this work, the verifier has *direct access* to messages during interaction, generalizing the space-bounded quantum Merlin-Arthur proofs (QMAL):

- ▶ Direct access: A QMAL verifier has direct access to an O(log n)-qubit message, processing it directly in the verifier's workspace qubit, similar to QMA.
- QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura'16, Fefferman-Remscrim'21].

- 1 Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results
- 4 Open problems

1st attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded *unitary* quantum interactive proofs (QIP_UL)

Consider a 2l-turn space-bounded unitary quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where the verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

- ▶ The verifier V maps $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$ to (V_1, \dots, V_{l+1}) , where each V_j is unitary.
- ▶ Both M and W are of size $O(\log n)$, with M being accessible to both P and V.
- **Strong uniformity**: The description of (V_1, \dots, V_{l+1}) can be computed by a single deterministic logspace Turing machine, intuitively implying $\{V_j\}$'s *repetitiveness*.
- ★ QIP_UL does not contain "IPL", particularly the model from [Condon-Ladner'92]:
- ▶ To show IP ⊆ QIP, the verifier needs to *measure* the received messages at the beginning of each action, and treat the outcome as classical messages.
- Soundness against classical messages does not (directly) extend to quantum!

2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded *isometric* quantum interactive proofs (QIPL^o)

Consider a 2l-turn space-bounded isometric quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where V acts on $O(\log n)$ qubits and has direct access to messages:

ightharpoonup Each V_j is a unitary quantum circuit with $O(\log n)$ pinching intermediate measurements and reset operations.

♣ QIPL^o contains the Condon-Ladner model ("IPL"), but it appears too powerful:

- For instance, the prover P can send an n-qubit state using $\lceil n/\log n \rceil$ messages, each consisting of an $O(\log n)$ -qubit state, and the verifier V randomly selects only $O(\log n)$ qubits without revealing the choice to P.
- ▶ QIPL^o can verify the local Hamiltonian problem, and thus contains QMA.

3rd attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL & QIPLHC)

Consider a 2l-turn space-bounded quantum interactive proof system P = V for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where V acts on $O(\log n)$ qubits and has direct access to messages:

- Each V_j is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with $O(\log n)$ pinching intermediate measurements.
- ▶ QIPL^{HC}: For *yes* instances, the distribution of intermediate measurement outcomes $u = (u_1, \dots, u_l)$, condition on acceptance, must be *highly concentrated*.
 - Intuitively, this condition may be interpreted as the prover's messages being almost classical for yes instances.
- ▶ Both QIPL and QIPL^{HC} also contain the Condon-Ladner model ("IPL")!

- 1 Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results
- 4 Open problems

Main results on QIP_UL and QIPL

Theorem 1. NP = QIPL^{HC} \subseteq QIPL.

- ▶ QIPL^{HC} is the *weakest* model that includes space-bounded classical interactive proof systems, particularly the Condon-Ladner model ("IPL").
- ▶ **New technique**: *Directly* upper-bounding quantum interactive proof systems with *non-unitary* verifier, whereas existing techniques only handle *unitary* verifier.

$\underline{\textbf{Theorem 2.}} \ \mathsf{SAC}^1 \cup \mathsf{BQL} \subseteq \mathsf{QIP}_\mathsf{U}\mathsf{L} \subseteq \cup_{c(n)-s(n)\geq 1/\mathrm{poly}(n)} \mathsf{QIPL}_{\mathrm{O}(1)}[c,s] \subseteq \mathsf{P}.$

♣ Intermediate measurements enhance the model: $QIP_UL \subseteq QIPL$ unless P = NP.

Theorem 3. For any $c(n) - s(n) \ge \Omega(1)$, $QIPL_{O(1)}[c, s] \subseteq NC$.

► For constant-turn space-bounded quantum proofs, all three models are equivalent!

Main results: Proof intuitions for *upper* bounds (*unitary* verifier)

Theorem 2. SAC¹
$$\cup$$
 BQL \subseteq QIP_UL $\subseteq \cup_{c(n)-s(n)\geq 1/\text{poly}(n)}$ QIPL_{O(1)}[c,s] \subseteq P.

- a Parallelization for QIP_UL proof systems:
 - The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot states in a single message, which exceeds logarithmic size.
 - The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a "dequantized" version of the above approach, which leverages the reversibility and dimension preservation of the verifier's actions.
- **6** Adapting the SDP formulation for QIP [Vidick-Watrous'16] to QIP_UL proof systems:
 - For any constant-round QIP_UL proof system, the corresponding SDP admits polynomial-size solutions, ensuring P containment via standard SDP solvers.
 - Parallelization makes QIP_UL easy!

Theorem 3. For any $c(n) - s(n) \ge \Omega(1)$, $QIPL_{O(1)}[c, s] \subseteq NC$.

♦ An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].

Main results: Proof intuitions for *upper* bounds (*non-unitary* verifier)

Theorem 1. NP = QIPL^{HC} \subseteq QIPL.

In $P \rightleftharpoons V$, let $\omega(V)|^u$ denote the contribution of the branch $u = (u_1, \dots, u_l)$ to the maximum acceptance probability $\omega(V) = \sum_u \omega(V)|^u$, where u_k denotes the intermediate measurement outcome in the verifier's k-th turn $(1 \le k \le l)$.

- Pinching measurements eliminate coherence between subspaces corresponding to different branches, allowing $\omega(V)|^u$ to be approximately optimized *in isolation*.
- ► Therefore, for any QIPL proof system P = V with a **fixed** branch u, one can write a SDP formulation, which computes an approximation $\widehat{\omega}(V)|^u$ of $\omega(V)|^u$ satisfying

$$\omega(V)|^u \leq \widehat{\omega}(V)|^u \leq \omega(V).$$

▶ <u>NP containment</u>: Noting that a solution to this SDP formulation can be written as a *Cartesian* product of a polynomial number of $O(\log n)$ -qubit states (i.e., *snapshot states* in $P \rightleftharpoons V$), we can verify the SDP feasibility of this solution in NP.

Main results: Proof intuitions for *lower* bounds

$\underline{\textbf{Theorem 2.}} \ \mathsf{SAC}^1 \cup \mathsf{BQL} \subseteq \mathsf{QIP}_\mathsf{U}\mathsf{L} \subseteq \cup_{c(n)-s(n)\geq 1/\mathsf{poly}(n)} \mathsf{QIPL}_{\mathrm{O}(1)}[c,s] \subseteq \mathsf{P.}$

- ▶ **Key idea**: Simulating $O(\log n)$ *public* coins in space-bounded classical interactive proof systems by performing $O(\log n)$ pinching measurements.
- ▶ The lower bound (SAC¹ \subseteq QIP_UL) is inspired by space-bounded classical interactive proof systems with $O(\log n)$ public coins for evaluating (uniform) SAC¹ circuits [Fortnow'89].

Theorem 1. NP = QIPL^{HC} \subseteq QIPL.

- **Key idea**: Simulating $O(\log n)$ <u>private coins</u> in space-bounded classical interactive proof systems by
 - lacktriangledown Measuring each $O(\log n)$ -qubit message received from the prover in the proof system;
 - **2** Performing $O(\log n)$ pinching measurement to generate $O(\log n)$ random coins.
- ► The lower bound (NP \subseteq QIPL^{HC}) is inspired by space-bounded classical interactive proof systems with $O(\log n)$ private coins for NP (i.e., 3-SAT) in [Condon-Ladner'95].

- 1 Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results
- 4 Open problems

Conclusions and open problems

Take-home messages on our work

Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to space-bounded quantum computation:

$$QIP_UL \subsetneq QIPL$$
 unless $P = NP$ (this work), while $BQ_UL = BQL$ [FR21, GRZ21].

2 We define three models of space-bounded quantum interactive proofs:

	QIP _U L	QIPL	QIPL°
Verifier's actions	unitary	almost-unitary	isometry
Lower bounds	$SAC^1 \cup BQL$ "IPL" with $O(\log n)$ public coins	$NP(=QIPL^{HC})$ "IPL" with $O(\log n)$ private coins	QMA
Upper bounds	Р	PSPACE	PSPACE

Introducing the zero-knowledge property for QIP_UL proof systems, i.e., QSZK_UL, eliminates the usual advantage gained from interaction (QSZK_UL = BQL).

Open problems

- Ocan QIPUL be more tightly characterized with a stronger lower bound?
- What is the computational power of the classes QIPL and QIPL[°]?

