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@ Space-bounded quantum computation meets interactive proofs



What is time-bounded quantum computation?

Basic ingredients in (time-bounded) quantum computation:
1 0
> Qubit. |y) = a|0)+ B 1), where (y|y) = |a> +|B]* =1, |0) = <O) and |1) = <1>

> Quantum state. An n-qubit (pure) state is a vector |¥) € C?" satisfying (¥|¥) = 1.
In general, an n-qubit (mixed) quantum state p is a positive semi-definite matrix of dimension 2" x 2" such
that Tr(p) = 1.

> Quantum gate. Elementary quantum gates G; (from some universal gateset) are unitary matrices act on
one or two qubits, e.g., G; € {CNOT,Had, T}:

002" % G, 10)°" B G,Gy 0)2" — -

> Measurement. Projective measurement in computational basis {]0)(0|,|1)(1]}:
0) be{0,1}

Time-bounded quantum computation (BQP):

> Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.

> The goal is to find a small corner of an exponential-dimension Hilbert space that holds the relevant
information, which can only be extracted through performing measurements.
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Intermediate measurements in (space-bounded) quantum computation

Intermediate measurements implemented by single-qubit pinching channels:
@(p) = Tr(p [0){0[) [0) (O + Tr(p [1)(1[) [1) (1]
& Removes coherence, leaving only diagonal terms in the post-measurement states.

Principle of deferred measurements

Intermediate measurements are useless in time-bounded quantum computation:

\0)—.—<H H A
0 —{# HAH # A = ..-

|0) N

A

& Eliminate intermediate measurements by introducing ancillary qubits!

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:
> Limits computation to O(logn) qubits, but allows poly(n) quantum gates.

»> A quantum logspace computation operates on a polynomial-dimension Hilbert space, making this model
appear weak and contained in NC.

& Principle of deferred measurements doesn’t apply to quantum logspace in general!
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How powerful is space-bounded quantum computation?

However, BQL has shown notable power and gained recent increased attention:

> INVERTING WELL-CONDITIONED MATRICES [Ta-Shma'13, Fefferman-Lin'16] is BQL-complete, fully saturating the
quadratic space advantage over classical suggested by BQL C DSPACE[log?(n)] [Watrous'99].

> Intermediate measurements appear to make BQL stronger than BQyL:

< Using the principle of deferred measurements, O(logn) intermediate measurements can be eliminated
by introducing ancillary qubits.

< Allowing both poly(n) pinching intermediate measurements and even reset operations provide no
advantage for promise problems [Fefferman-Remscrim'21, Girish-Raz-Zhan'21]: BQL = BQuL.

& These new techniques don't extend to state-synthesizing tasks!
> Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version
[Gilyén-Su-Low-Weibe’18, Metger-Yuen'23, Le Gall-L.-Wang’23].
o Another example (GAPQSD,og) showing a space advantage over classical!
o GAPQSD)qq is BQL-complete [LLW23], previously only in NC [Watrous'02].
% Corollary (this work): Space-bounded unitary quantum statistical zero-knowledge (QSZKyL) is in BQL.
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What is (classical) interactive proofs?

Classical interactive proof systems

§ Given a promise problem (Lyes, Lno), there is an interactive proof system P=V
i that involves at most poly(n) messages exchanged between the prover P and
the verifier V:

o P is typically all-powerful but untrusted;
< V is computationally bounded, and use random bits;

i For any x € Lyes U Ly, this proof system P=V guarantees:
> For yes instances, (P=V)(x) accepts w.p. at least 2/3;
> For no instances, (P=V)(x) accepts w.p. at most 1/3.

* The image is generated using OpenAl’'s DALL-E model.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

© Asking random questions (i.e., public coins) is as powerful as asking clever questions (i.e., private coins):
IPk] € AM[k+2] [Goldwasser-Sipser86].

® Constantly many messages: IP[O(1)] € AM C PH [Babai'85, Goldwasser-Sipser'86].

® Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90].



What is quantum interactive proofs?

Quantum interactive proof systems

§ Given a promise problem (Lyes, L1o), there is an interactive proof system P=V

o P is typically all-powerful but untrusted;

o V is bounded and capable of quantum computation;

o P and V may become entangled during the interaction.
B For any x € Lyes U Ly, this proof system P=V guarantees:
> For yes instances, (P=V)(x) accepts w.p. at least 2/3;
> For no instances, (P=V)(x) accepts w.p. at most 1/3.

* The image is generated using OenAI’s DALL-E model.

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:
© “Parallelization”: PSPACE C QIP C QIP[3] [Watrous'99, Kitaev-Watrous’00].
® QIP[3] C PSPACE [Marriott-Watrous'04, Jain-Ji-Upadhyay-Watrous'09].



What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92, Condon'91], where the
verifier operates in logspace but can run in polynomial time.

Public coins weaken the computational power of such proof systems:

> Classical interactive proofs with a logspace verifier using private (random) coins:

< With O(logn) private coins, this model (“IPL”) exactly characterizes NP [Condon-Ladner'92].
< With poly(n) private coins, this model exactly characterizes PSPACE [Condon'91].

> The model of public-coin space-bounded classical interactive proofs is weaker:
< With poly(n) public coins, this model is contained in P [Condon’g9].
o With O(logn) public coins, it contains SAC' [Fortnow'89], enabling bounded fan-in AND.

o With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum’15].

In this work, the verifier has direct access to messages during interaction, generalizing the space-bounded
quantum Merlin-Arthur proofs (QMAL):

> Direct access: A QMAL verifier has direct access to an O(logn)-qubit message, processing it directly in the
verifier's workspace qubit, similar to QMA.

» QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’'16, Fefferman-Remscrim’21].
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@® Definitions of space-bounded quantum interactive proof systems



18t attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIPyL)

Consider a 2I-turn space-bounded unitary quantum interactive proof system P=V for (Lyes, Lno), Where the
verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

Prover(Q) JE . e ﬁ—_
P, Py
Message(M) E— = = - ——— = = -
V1 ‘/l ‘/lJrl
Verifier(W) EF “e Eﬁ
> The verifier V.maps x € Lyes U Lo t0 (Vi,--+,Vi41), Where each V; is unitary.

»> Both M and W are of size O(logn), with M being accessible to both P and V.

> Strong uniformity: The description of (Vi,---,V,;) can be computed by a single deterministic logspace
Turing machine, intuitively implying {V;}’s repetitiveness.

% QIPyL does not contain “IPL”, particularly the model from [Condon-Ladner'92]:

> To show IP C QIP, the verifier needs to measure the received messages at the beginning of each action, and
treat the outcome as classical messages.

& Soundness against classical messages does not (directly) extend to quantum!



2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL®)

Consider a 2I-turn space-bounded isometric quantum interactive proof system P=V for (Lyes, Lno), Where V acts
on O(logn) qubits and has direct access to messages:

Prover(Q) #—E .. #—#
Py P,
Message(M) S s . . . = s s -
Vi Vi Vs
Verifier(W) Er “e Eﬁ

» Each V; is a unitary quantum circuit with O(logn) pinching intermediate measurements and reset operations.
' £

& QIPL? contains the Condon-Ladner model (“IPL"), but it appears too powerful:

> For instance, the prover P can send an n-qubit state using [n/logn] messages, each consisting of an
O(logn)-qubit state, and the verifier V randomly selects only O(logn) qubits without revealing the choice to P.

> QIPL® can verify the local Hamiltonian problem, and thus contains QMA.
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3" attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL & QIPLHC)

Consider a 2I-turn space-bounded quantum interactive proof system P=V for (Lyes, Ln,), Where V acts on
O(logn) qubits and has direct access to messages:

Prover(Q) JE NN ﬁ—_
P Py
Message(M) EB— = N = = -
|1 \Z Vit
Verifier(W) EF . EﬁF

» Each V; is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with O(logn) pinching
intermediate measurements.

> QIPL"C: For yes instances, the distribution of intermediate measurement outcomes u = (uy,--- ,u;),
condition on acceptance, must be highly concentrated.
o Intuitively, this condition may be interpreted as the prover's messages being almost classical for yes instances.

» Both QIPL and QIPLHC also contain the Condon-Ladner model (“IPL")!
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Main results on QIPyL and QIPL

Theorem 1. NP = QIPLHC C QIPL. J

> QIPLHC is the weakest model that includes space-bounded classical interactive proof systems, particularly
the Condon-Ladner model (“IPL”).

> New technique: Directly upper-bounding quantum interactive proof systems with non-unitary verifier,
whereas existing techniques only handle unitary verifier.

Theorem 2. SAC1 UBQL C leul_ C Uc(n)—s(n)zl/poly(n)QIPLO(l)[Cas] CcP. J

& Intermediate measurements enhance the model: QIPyL C QIPL unless P = NP.

Theorem 3. For any c(n) —s(n) > Q(1), QIPLg)[c,s] € NC. J

> For constant-turn space-bounded quantum proofs, all three models are equivalent!
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Main results: Proof intuitions for upper bounds (unitary verifier)

@ ®
Theorem 2. SAC' UBQL € QIPyL C Uq(s)—s(n)>1 /poly(n) QIPLo(1 [c.5] € P J

©® Parallelization for QIPL proof systems:
< The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot states in a single
message, which exceeds logarithmic size.
o The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a “dequantized” version of the
above approach, which leverages the reversibility and dimension preservation of the verifier's actions.
® Adapting the SDP formulation for QIP [Vidick-Watrous'16] to QIPyL proof systems:

o For any constant-round QIPyL proof system, the corresponding SDP admits polynomial-size solutions,
ensuring P containment via standard SDP solvers.
& Parallelization makes QIPyL easy!

Theorem 3. For any c(n) —s(n) > Q(1), QIPLg)[c,s] € NC. J

< An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].
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Main results: Proof intuitions for upper bounds (non-unitary verifier)

Theorem 1. NP = QIPLHC C QIPL. )

In P=V, let o(V)|* denote the contribution of the branch u = (uy,--- ,u;) to the maximum acceptance probability
o(V)=Y,0()", where u; denotes the intermediate measurement outcome in the verifier's k-th turn (1 <k <1).

> Pinching measurements eliminate coherence between subspaces corresponding to different branches,
allowing w(V)[" to be approximately optimized in isolation.

> Therefore, for any QIPL proof system P=V with a fixed branch u, one can write a SDP formulation, which
computes an approximation @(V)|“ of (V)|* satisfying

oV)[*<o(V)[" <o(V).

> NP containment: Noting that a solution to this SDP formulation can be written as a Cartesian product of a
polynomial number of O(logn)-qubit states (i.e., snapshot states in P=V), we can verify the SDP feasibility
of this solution in NP.
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Main results: Proof intuitions for lower bounds

Theorem 2. SAC' UBQL C QIPyL € Ue(y) ()21 /poly(n) QIPLo(1) [c.5] € P.

> Key idea: Simulating O(logn) public coins in space-bounded classical interactive proof systems by
performing O(logn) pinching measurements.

> The lower bound (SAC! C QIPyL) is inspired by space-bounded classical interactive proof systems with
O(logn) public coins for evaluating (uniform) SAC! circuits [Fortnow’s9].

Theorem 1. NP = QIPLHC C QIPL.

> Key idea: Simulating O(logn) private coins in space-bounded classical interactive proof systems by
©® Measuring each O(logn)-qubit message received from the prover in the proof system;
® Performing O(logn) pinching measurement to generate O(logn) random coins.
> The lower bound (NP C QIPLHC) is inspired by space-bounded classical interactive proof systems with
O(logn) private coins for NP (i.e., 3-SAT) in [Condon-Ladner'95].
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Conclusions and open problems

Take-home messages on our work

@ Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to
space-bounded quantum computation:

QIPyL C QIPL unless P = NP (this work), while BQuL = BQL [FR21, GRZ21].

® We define three models of space-bounded quantum interactive proofs:

QIPyL QIPL QIPL®
Verifier's actions unitary almost-unitary isometry
1 _ HC
Lower bounds SAC"uBQL NP(=QIPL™) QMA

“IPL” with O(logn) public coins  “IPL” with O(logn) private coins

Upper bounds P PSPACE PSPACE

® Introducing the zero-knowledge property for QIPyL proof systems, i.e., QSZKyL, eliminates the usual
advantage gained from interaction (QSZKyL = BQL).

Open problems
©® Can QIPyL be more tightly characterized with a stronger lower bound?

® What is the computational power of the classes QIPL and QIPL®?
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Thanks!
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