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What is quantum state testing

Task: Quantum state testing (with two-sided error).
Given two quantum devices Q0 and Q1 that prepare poly(n)-qubit quantum (mixed)
states ρ0 ∈ CN×N and ρ1 ∈ CN×N , respectively, which may be viewed as “sample
access” to ρ0 and ρ1. Decide whether dist(ρ0,ρ1) ≤ ϵ1 or dist(ρ0,ρ1) ≥ ϵ2.

The one-sided error variant and the classical counterpart are as follows:
▶ Quantum state certification [Bădescu-O’Donnell-Wright’19]:

Given “sample access” to ρ0 and ρ1, decide whether ρ0 = ρ1 or dist(ρ0,ρ1) ≥ ϵ.
▶ Distribution testing (a.k.a. closeness testing of distributions, see [Canonne’20]):

Given sample accesses to probability distributions D0 and D1, decide whether
dist(D0,D1) ≤ ϵ1 or dist(D0,D1) ≥ ϵ2.

Typical goal: Minimize the number of copies (sample complexity) of ρ0 and ρ1.

In this work: Viewing quantum state testing as a computational (promise) problem.
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Quantum state testing w.r.t. various distance-like measures
Classical and quantum distance-like measures that are considered:

Quantum Classical

ℓ1 norm trace distance
td(ρ0,ρ1) := 1

2 Tr|ρ0 −ρ1|
total variation distance
(a.k.a. statistical distance)

ℓ2 norm Hilbert-Schmidt distance
HS2(ρ0,ρ1) := 1

2 Tr(ρ0 −ρ1)2 Euclidean distance

Entropy von Neumann entropy
S(ρ) := −Tr(ρ lnρ)

Shannon entropy

Jensen-Shannon
divergence

Quantum Jensen-Shannon divergence
QJS2(ρ0,ρ1) := S2

(
ρ0+ρ1

2

)
− S2(ρ0)+S2(ρ1)

2

where S2(ρ) := −Tr(ρ log2 ρ)

[Majtey-Lamberti-Prato’05, Briët-Harremoës’09]

Jensen-Shannon
divergence

Remark. Quantum Jensen-Shannon divergence can be viewed as a distance version of
the quantum (von Neumann) entropy difference.
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Main result: Space-bounded state certification (one-sided error scenario)

Task 1.1 (Space-bounded quantum state certification). Given two polynomial-size
O(logn)-qubit quantum circuits Q0 and Q1 that prepare O(logn)-qubit quantum
(mixed) states ρ0 and ρ1, respectively, with access to their “source codes”.
Decide whether ρ0 = ρ1 or dist(ρ0,ρ1) ≥ α.

Theorem 1.2 (Space-bounded quantum state certification is coRQUL-complete).
The following space-bounded quantum state certification problems are
coRQUL-complete. For any α(n) ≥ 1/poly(n), decide whether

1 CertQSDlog: ρ0 = ρ1 or td(ρ0,ρ1) ≥ α(n);

2 CertQHSlog: ρ0 = ρ1 or HS2(ρ0,ρ1) ≥ α(n).

Remark. coRQUL is a complexity class with perfect completeness, namely the
acceptance probability pacc = 1 for yes instances whereas pacc ≤ 1/2 for no instances.
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Main result: Space-bounded quantum state testing (two-sided error scenario)

Task 1.3 (Space-bounded quantum state testing). Given two polynomial-size
O(logn)-qubit quantum circuits Q0 and Q1 that prepare O(logn)-qubit quantum
(mixed) states ρ0 and ρ1, respectively, with access to their “source codes”.
Decide whether dist(ρ0,ρ1) ≤ β or dist(ρ0,ρ1) ≥ α.

Theorem 1.4 (Space-bounded quantum state testing is BQL-complete). The
following space-bounded quantum state testing problems are BQL-complete. For any
α,β such that α(n) −β(n) ≥ 1/poly(n) or any g(n) ≥ 1/poly(n), decide whether

1 GapQSDlog: td(ρ0,ρ1) ≥ α or td(ρ0,ρ1) ≤ β;

2 GapQHSlog: HS2(ρ0,ρ1) ≥ α or HS2(ρ0,ρ1) ≤ β;

3 GapQEDlog: S(ρ0) −S(ρ1) ≥ g or S(ρ1) −S(ρ0) ≥ g;

4 GapQJSlog: QJS2(ρ0,ρ1) ≥ α or QJS2(ρ0,ρ1) ≤ β.
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BQL and BQUL: Two-sided error space-bounded quantum computation
BQL (and BQUL if only allow unitary gates), defined in [Watrous’99, Watrous’03],
captures quantum computation that performs by a logspace-uniform O(logn)-qubit
quantum circuit. This class admits the following properties:
▶ Quadratic advantage in space (?): BQL ⊆ DSPACE[log2(n)] [Wat99, Wat03].
▶ Gateset-indep.: Space-efficient Solovay-Kitaev theorem [van Melkebeek-Watson’12].
▶ Error reduction for BQUL [Fefferman-Kobayashi-Lin-Morimae-Nishimura’16].
▶ Intermediate measurements are useless: BQL = BQUL [Fefferman-Remscrim’21].

History of the only family of (natural) BQL-complete problem:
▶ Inverting a well-conditioned matrix is in BQL [Ta-Shma’13], whereas it only has

DSPACE[log2(n)] containment without the help of quantum.
▶ Inverting a well-conditioned matrix is BQUL-complete [Fefferman-Lin’18].
▶ A well-conditioned version of DET∗-complete problems are BQL-complete

[Fefferman-Remscrim’21], such as well-conditioned integer determinant, well-conditioned
matrix powering, well-conditioned iterative matrix product.

Takeaway. This work (Theorem 1.4) presents a new family of natural BQL-complete
problems that emerge from quantum property testing.
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RQUL and coRQUL: One-sided error space-bounded quantum computation
RQUL and coRQUL, defined in [Watrous’01], capture one-sided error quantum
computation that performs by a logspace-uniform O(logn)-qubit quantum circuits.
These classes admit the following properties:
▶ Error reduction for RQUL and coRQUL [Watrous’01].
▶ Gateset-dependence which is because of perfect completeness or soundness.
▶ Undirected graph connectivity (USTCON) is in RQUL∩ coRQUL [Watrous’01],

although USTCON is actually in L [Reingold’08] .

Open problems on RQUL and coRQUL:
▶ A (natural) complete problem for the class RQUL or coRQUL remains unknown.

A “verification” version of well-conditioned iterative matrix product problem is
coRQL-hard [Fefferman-Remscrim’21] while there is no containment (hard direction).

▶ RQUL
?= RQL and coRQUL

?= coRQL.

Takeaway. This work (Theorem 1.2) demonstrates the first family of natural
coRQUL-complete problems that arise from quantum property testing as well.
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Time-bounded quantum state testing: ℓ1 norm scenario
Task 3.1 (Time-bounded quantum state testing). Given two polynomial-size
quantum circuits Q0 and Q1 that prepare poly(n)-qubit quantum (mixed) states ρ0

and ρ1, respectively, with access to their “source codes”.
Decide whether dist(ρ0,ρ1) ≤ β or dist(ρ0,ρ1) ≥ α.

Time-bounded distribution testing. Given two efficiently samplable distributions D0

and D1 (prepared by circuits), decide whether dist(D0,D1) ≤ β or dist(D0,D1) ≥ α.

Computational hardness of these tasks with respect to ℓ1 norm:
▶ Statistical Difference Problem (SDP) is SZK-complete

when constant α2 − β > 0 [Sahai-Vadhan’03, Goldreich-Sahai-Vadhan’98].
▶ Quantum State Distinguishability Problem (QSDP) is QSZK-complete

when constant α2 − β > 0 [Watrous’02, Watrous’09].
▶ Open problem: (α,β)-QSDP is in QSZK when α(n) −β(n) ≥ 1/poly(n).

Recent progress: [Berman-Degwekar-Rothblum-Vasudevan’19] (classical) and [Liu’23] (quantum).

Structural complexity-theoretic results regarding QSZK:
▶ BQP ⊆ QSZK ⊆ QIP(2) ⊆ PSPACE [Watrous’02, Watrous’09].
▶ ∃O s.t. QSZKO ̸⊆ PPO [Bouland-Chen-Holden-Thaler-Vasudevan’19].
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Time-bounded quantum state testing: ℓ2 norm scenario
Proposition 3.2 [BCWdW01, RASW23]. Quantum Hilbert-Schmidt distance problem,
namely time-bounded quantum state testing w.r.t. ℓ2 norm, is BQP-complete.

BQP containment. As all three terms in HS2(ρ0,ρ1) = 1
2 Tr(ρ2

0)+ 1
2 Tr(ρ2

1)−Tr(ρ0ρ1)
can be estimated by the SWAP test [Buhrman-Cleve-Watrous-de Wolf’01], we have a
hybrid algorithm succeeds w.p. 1

2 + 1
2 HS2(ρ0,ρ1):

(1) Toss two random coins r0, r1 ∈ {0,1};
(2) Perform the SWAP test on quantum states according to r0 and r1.

BQP hardness (adapted from [Rethinasamy-Agarwal-Sharma-Wilde’23]). Consider a BQP
circuit Cx, we can construct C′

x := C†
xX

†
OCNOTO→FXOCx with an ancillary qubit on

F such that Pr[C′
x accepts] = ∥(|0̄⟩⟨0̄| ⊗ |0⟩⟨0|F)C′

x(|0̄⟩ ⊗ |0⟩F)∥2
2 = Pr2[Cx accepts].

C′
x

|0̄⟩ Cx

XO X†
O

C†
x

|0⟩F

By defining two pure states ρ0 := |0̄⟩⟨0̄| ⊗ |0⟩⟨0|F and ρ1 := C′
x(|0̄⟩⟨0̄| ⊗ |0⟩⟨0|F)(C′

x)†,
we have Pr[C′

x accepts] = Tr(ρ0ρ1) = 1 − HS2(ρ0,ρ1). □
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Computational hardness of time-bounded testing depends on distance

Computational hardness of Task 3.1: a “dichotomy” theorem
▶ Time-bounded state testing w.r.t. ℓ1 norm or entropy difference (QSZK-complete)

is seemingly much harder than only preparing these states (in BQP).
▶ Time-bounded state testing w.r.t. ℓ2 norm (BQP-complete) is computationally as

easy as just preparing these states (in BQP).

Interestingly, the computational hardness “dichotomy” is linkded to the dependence of
the sample complexity for distribution testing and state testing on the dimension N :

ℓ1 norm ℓ2 norm Entropy

Classical
sample complexity

poly(N,1/ϵ)
[CDVV14]

poly(1/ϵ)
[CDVV14]

poly(N,1/ϵ)
[JVHW15, WY16]

Quantum
sample complexity

poly(N,1/ϵ)
[BOW19]

poly(1/ϵ)
[BOW19]

poly(N,1/ϵ)
[AISW20, OW21]
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Summary: Time-bounded and space-bounded testing
Computational hardness of time- and space-bounded distribution and state testing:

ℓ1 norm ℓ2 norm Entropy

Classical
Time-bounded

SZK-complete*
[SV03,GSV98]

BPP-complete
Folklore

SZK-complete
[GV99,GSV98]

Quantum
Time-bounded

QSZK-complete*
[Wat02,Wat09]

BQP-complete
[BCWdW01, RASW23]

QSZK-complete
[BASTS10]

Classical
Space-bounded

BPL-hard† BPL-complete†

Folklore
BPL-complete†

Implied by [ABIS19]

Quantum
Space-bounded

BQL-complete
This work

BQL-complete
[BCWdW01] and this work

BQL-complete
This work

Remark†. Space-bounded distribution testing can be viewed as a “white-box” version
of streaming distribution testing with i.i.d. samples.

Takeaways. For space-bounded state testing and certification problems, the
computational hardness of these problems is as easy as just preparing quantum states,
which is independent of the choice of aforementioned distance-like measures.
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Quantum singular value transformation in a nutshell
QSVT [Gilyén-Su-Low-Wiebe’19] is a systematic approach to (time-efficiently)
manipulating singular values {σi}i of an Hermitian matrix A using a corresponding
projected unitary encoding A= Π̃UΠ for orthogonal projectors Π̃ and Π.

Quantum singular value transformation, revisited
Given a singular value decomposition A=

∑
i
σi|ψ̃i⟩⟨ψi| associated with an

s(n)-qubit projected unitary encoding, we can approximately implement a QSVT
f (SV)(A) =

∑
i
f(σi)|ψ̃i⟩⟨ψi| by employing a polynomial Pd of degree

d=O
(

1
δ

log 1
ϵ

)
satisfying that

▶ Pd well-approximates f on the interval of interest I:
maxx∈I\Iδ

|Pd(x) −f(x)| ≤ ϵ where Iδ ⊆ I ⊆ [−1,1] and typically Iδ := (−δ,δ).
▶ Pd is bounded: maxx∈[−1,1] |Pd(x)| ≤ 1.

Moreover, all coefficients of Pd (namely, classical pre-processing) can be computed in
deterministic poly(d) time (and thus space). Hence, the transformation P (SV)

d
(A) can

be implemented by a poly(d)-size quantum circuit acts on O(max{logd,s(n)}) qubits.

Remark. Quantum circuit implementation in QSVT is already space-efficient!
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Space-efficient quantum singular value transformation
Question 4.1 (Space-efficient QSVT). Can we implement a degree-d QSVT for any
s(n)-qubit projected unitary encoding with d≤ 2O(s(n)), using only O(s(n)) space in
both classical pre-processing and quantum circuit implementation?

Theorem 4.2 (Space-bounded QSVT, [Metger-Yuen’23]). Implement a degree-d QSVT
associated with sign function or square-root function for any O(logn) qubit
block-encoding with d≤ poly(n) requires O(poly logn) space for classical
pre-processing and O(logn) qubits in quantum circuit implementation.

Remark. Theorem 4.2 can be easily extended to continuous functions bounded on [−1,1].

Theorem 4.3 (Space-efficient QSVT, This work). Implement a degree-d QSVT
associated with piecewise-smooth functions for any O(logn) qubit bitstring indexed
encoding with d≤poly(n) requires (randomized) O(logn) space for classical
pre-processing and O(logn) qubits in quantum circuit implementation.
Moreover, the implementation requires O(d2∥c∥1) uses of U , U†, CΠNOT, CΠ̃NOT,
among with other gates, where c is the coeffs of Chebyshev interpolation polynomial.

E.g. Normalized log function lnβ(x) := 2 ln(1/x)
2 ln(2/β) on the interval I =[β,1] for any β ≥1/poly(n).
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Proof overview: two-sided error scenario
Proof of Theorem 1.4 1 : GapQSDlog ∈ BQL. Inspired by the approach in
[Gilyén-Poremba’22, Wang-Zhang’23], note that sgn(x) ≈ϵ,δ P

sgn
d

(x) and
td(ρ0,ρ1) = 1

2 Tr|ρ0 −ρ1| = 1
2

(
Tr

(
sgn(SV)( ρ0−ρ1

2 )ρ0
)

− Tr
(

sgn(SV)( ρ0−ρ1
2 )

)
ρ1

)
.

We consider the following quantum tester T (Qi,Uρ− ,P
sgn
d

) where ρ− := ρ0−ρ1
2 :

|0⟩ H H

|0̄⟩
U

P
sgn
d

(ρ0−ρ1
2 )

|0̄⟩
Qi

|0̄⟩

Here, Qi prepares a purification of the state ρi for i ∈ {0,1}, and ρ− is block-encoded
in Uρ− . We say that the tester T accepts if the measurement outcome is “0”.

By using the space-efficient QSVT (Theorem 4.3) associated with a bounded approx
polynomial P sgn

d
of sgn, we implement U

P
sgn
d

( ρ0−ρ1
2 )

. Consequently, the “acceptance

probability” of ρi is Pr[T (Qi,Uρ− ,P
sgn
d

) accepts] = 1
2

(
1 + Tr

(
P sgn

d
( ρ0−ρ1

2 )
)
ρi

)
.

Therefore, for i∈{0,1}, it suffices to estimate Tr
(
P sgn

d
( ρ0−ρ1

2 )ρi

)
± ε with high

probability using O(1/ε2) sequential repetitions. □
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Proof overview: one-sided error scenario
Proof of Theorem 1.2 1 : CertQSDlog ∈ coRQUL.
Our construction is mainly based on the previous quantum tester T (Qi,Uρ− ,P

sgn
d

),
then achieving perfect completeness by standard techniques.
 We first notice that our space-efficient QSVT in Theorem 4.3 preserves the parity.
In particular, the QSVT implementation associated with P̂ sgn

d
satisfies P̂ sgn

d
(0) = 0.

This enables us to construct the algorithm A specified below:

⋄ For yes instances (ρ0 = ρ1), we thus have Pr[T (Qi,Uρ− ,P
sgn
d

) accepts] = 1
2 .

Then we obtain an algorithm A accept with certainty via exact amplitude
amplification [Boyer-Brassard-Høyer-Tapp’98, Brassard-Høyer-Mosca-Tapp’02].

⋄ For no instances (td(ρ0,ρ1) ≥ α), we have
|Pr[T (Qi,Uρ− ,P

sgn
d

) accepts] − 1
2 | ≥ Ω(α).

By a direct (still, a bit complicated) calculation, we can make sure the algorithm
A accepts w.p. at most 1 − Ω(α2).

Finally, we conclude a coRQUL containment from A by applying error reduction for
coRQUL, which can be deduced from our space-efficient QSVT (Theorem 4.3). □
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Conclusions and open problems
Take-home messages on our work

1 Space-bounded quantum state certification problems w.r.t. trace distance and
Hilbert-Schmidt distance are coRQUL-complete (Theorem 1.2).
This is the first family of natural coRQUL-complete problem!

2 Space-bounded quantum state testing problems w.r.t. common distance-like
measures (i.e., trace distance, squared Hilbert-Schmidt distance, quantum entropy
difference, quantum Jensen-Shannon divergence) are BQL-complete (Theorem 1.4).

3 Quantum singular value transformation on bitstring indexed encoding can be done
in quantum logspace, with a randomized classical pre-processing (Theorem 4.3).

Open problems
1 Are there any other applications of space-efficient QSVT?

2 Space-efficient QSVT with O(d) queries instead of O(d2∥c∥1) in Theorem 4.3, as
well as make the pre-processing deterministic rather than randomized.
Quantum query complexity lower bound (in time-efficient scenarios) Ω(d) [Montanaro-Shao’24]

3 (Inspired by Tom Gur) Are space-bounded quantum channel testings with respect
to appropriate distance-like measures also in BQL?
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Thanks!



Space-efficient quantum singular value transformation: Proof sketch
Bounded functions. We mainly follow the construction in [MY23]:
Near-minimax approximation by Chebyshev interpolation [Powell’67]

For any continuous function f : [−1,1] → R, if there is a degree-d polynomial Pd satisfying
maxx∈[−1,1] |f(x) − Pd(x)| ≤ ϵ, then we have a Chebyshev interpolation polynomial
P̂d := c0

2 +
∑d

k=1
ckTk, where ck := 2

π

∫ 1

−1
f(x)Tk(x)√

1−x2
dx and Tk is the k-th Chebyshev

polynomial (of the first kind), such that maxx∈[−1,1] |P̂d(x) − f(x)| ≤ O(ϵ logd).

1 Space-efficient QSVT implementation for T (SV)
k

(Π̃UΠ) [GSLW19]

2 For any bounded functions, any coefficient ck is space-efficiently computable by
the standard numerical integral technique. −→ A careful analysis is required!

3 Implement P̂ (SV)
d

(Π̃UΠ) from T
(SV)
k

(Π̃UΠ) by LCU
[Berry-Childs-Cleve-Kothari-Somma’15]
−→ Query complexity O(d2) and the operator norm of P̂d(Π̃UΠ) is at most ∥c∥1

4 Renormalizing the resulting (bitstring indexed) encoding P̂ (SV)
d

(Π̃UΠ)
−→ Query complexity O(d2∥c∥1) where ∥c∥1 ≤ O(d) in general.

Piecewise-smooth functions. We adapt the construction (i.e., a reduction to a linear
combination of bounded functions) in [van Apeldoorn-Gilyén-Gribling-de Wolf’20].
 We thus reduce the main challenge to stochastic matrix powering problem, essential
for the BPL vs. L problem [Saks-Zhou’99, Cohen-Doron-Sberlo-Ta-Shma’23, Putterman-Pyre’23]. □
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