Space-bounded quantum state testing via space-efficient quantum singular value transformation

François Le Gall, Yupan Liu, Qisheng Wang

Nagoya University

Available at arXiv:2308.05079

Shenzhen-Nagoya Workshop on Quantum Science, September 2024

- Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- Open problems

What is quantum state testing

Task: Quantum state testing (with two-sided error).

Given two quantum devices Q_0 and Q_1 that prepare poly(n)-qubit quantum (mixed) states $\rho_0 \in \mathbb{C}^{N \times N}$ and $\rho_1 \in \mathbb{C}^{N \times N}$, respectively, which may be viewed as "sample access" to ρ_0 and ρ_1 . Decide whether $dist(\rho_0, \rho_1) \leq \varepsilon_1$ or $dist(\rho_0, \rho_1) \geq \varepsilon_2$.

The classical counterpart and the one-sided error variant are as follows:

- ▶ Distribution testing (a.k.a. closeness testing of distributions, see [Canonne'20]): Given sample accesses to probability distributions D₀ and D₁, decide whether dist(D₀,D₁) ≤ ε₁ or dist(D₀,D₁) ≥ ε₂.
- Quantum state certification [Bădescu-O'Donnell-Wright'19]: Given "sample access" to ρ₀ and ρ₁, decide whether ρ₀ = ρ₁ or dist(ρ₀, ρ₁) ≥ ε.

Typical goal: Minimize the number of copies (*sample complexity*) of ρ_0 and ρ_1 . In this work: Viewing quantum state testing as a computational (promise) problem.

Main result: Space-bounded state certification (one-sided error scenario)

Task 1.1 (Space-bounded quantum state certification). Given two *polynomial-size* $O(\log n)$ -qubit quantum circuits Q_0 and Q_1 that prepare $O(\log n)$ -qubit quantum (mixed) states ρ_0 and ρ_1 , respectively. Decide whether $\rho_0 = \rho_1$ or $\operatorname{dist}(\rho_0, \rho_1) \ge \alpha$.

	Quantum	Classical	
ℓ_1 norm	trace distance $\operatorname{td}(ho_0, ho_1):=rac{1}{2}\mathrm{Tr} ho_0- ho_1 $	total variation distance (a.k.a. statistical distance)	
ℓ_2 norm	Hilbert-Schmidt distance $HS^2(\rho_0,\rho_1):= \frac{1}{2}Tr(\rho_0-\rho_1)^2$	Euclidean distance	

Classical and quantum distance-like measures that are considered:

Theorem 1.2 (Space-bounded quantum state certification is coRQUL-complete).

The following space-bounded quantum state certification problems are coRQ_UL-complete. For any $\alpha(n) \ge 1/\text{poly}(n)$, decide whether

1
$$\overline{\text{CERTQSD}}_{\text{log}}$$
: $\rho_0 = \rho_1$ or $\operatorname{td}(\rho_0, \rho_1) \ge \alpha(n)$;

2
$$\overline{\text{CERTQHS}}_{\text{log}}$$
: $\rho_0 = \rho_1$ or $\text{HS}^2(\rho_0, \rho_1) \ge \alpha(n)$.

<u>Remark</u>. coRQ_UL captures the power of *unitary* quantum logspace that *always* accepts *yes* instances, while accepting *no* instances with probability at most 1/2.

Main result: Space-bounded quantum state testing (two-sided error scenario)

Task 1.3 (Space-bounded quantum state testing). Given two *polynomial-size* $O(\log n)$ -qubit quantum circuits Q_0 and Q_1 that prepare $O(\log n)$ -qubit quantum (mixed) states ρ_0 and ρ_1 , respectively. Decide whether $dist(\rho_0, \rho_1) \le \beta$ or $dist(\rho_0, \rho_1) \ge \alpha$.

Theorem 1.4 (Space-bounded quantum state testing is BQL-complete). The following space-bounded quantum state testing problems are BQL-complete. For any α, β such that $\alpha(n) - \beta(n) \ge 1/\text{poly}(n)$ or any $g(n) \ge 1/\text{poly}(n)$, decide whether

• GAPQSD_{log}:
$$td(\rho_0, \rho_1) \ge \alpha$$
 or $td(\rho_0, \rho_1) \le \beta$;

2 GAPQHS_{log}: HS²(
$$\rho_0, \rho_1$$
) $\geq \alpha$ or HS²(ρ_0, ρ_1) $\leq \beta$;

3 GAPQED_{log}:
$$S(\rho_0) - S(\rho_1) \ge g$$
 or $S(\rho_1) - S(\rho_0) \ge g$;

<u>Remark</u>. BQL captures the power of quantum computation with $O(\log n)$ qubits.

Summary: Time- and space-bounded distribution and state testing

Task 1.5 (Time-bounded quantum state testing). Given two *polynomial-size* quantum circuits Q_0 and Q_1 that prepare poly(n)-qubit quantum (mixed) states ρ_0 and ρ_1 , respectively. Decide whether $dist(\rho_0, \rho_1) \le \beta$ or $dist(\rho_0, \rho_1) \ge \alpha$.

	$\ell_1 \text{ norm}$	$\ell_2 \text{ norm}$	Entropy
Classical	SZK-complete*	BPP-complete	SZK-complete
Time-bounded	[SV03,GSV98]	Folklore	[GV99,GSV98]
Quantum	QSZK-complete*	BQP-complete	QSZK-complete
Time-bounded	[Wat02,Wat09]	[BCWdW01, RASW23]	[BASTS10]
Quantum	BQL-complete	BQL-complete	BQL-complete
Space-bounded	This work	[BCWdW01] and this work	This work

Computational hardness of time- and space-bounded distribution and state testing:

Takeaways. For space-bounded state testing and certification problems, the computational hardness of these problems is *as easy as* just preparing quantum states, which is *independent of the choice* of aforementioned distance-like measures.

- 2 Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- Open problems

Distinguishing quantum states and Holevo-Helstrom bound

Problem 2.1 (Computational Quantum Hypothesis Testing). Given polynomial-size quantum circuits Q_0 and Q_1 acting on *n* qubits and having *r* output qubits. Let ρ_b be the state obtained by performing Q_b on $|0^n\rangle$ and tracing out the non-output qubits for $b \in \{0, 1\}$. Now, consider the following computational task:

- **Input:** A quantum state ρ , either ρ_0 or ρ_1 , is chosen uniformly at random.
- **Output:** A bit *b* indicates that $\rho = \rho_b$.

Holevo-Helstrom bound

Theorem 2.2 [Holevo'73, Helstrom'69] Given a quantum state ρ , either ρ_0 or ρ_1 , that is chosen uniformly at random, the maximum success probability to discriminate between quantum states ρ_0 and ρ_1 is given by $\frac{1}{2} + \frac{1}{2} td(\rho_0, \rho_1)$.

Optimal two-outcome measurement $\{\Pi_0, \Pi_1\}$ achieving the max. discrimination prob.:

$$\Pi_0 = \frac{I}{2} + \frac{1}{2} \text{sgn}^{(SV)} \left(\frac{\rho_0 - \rho_1}{2} \right) \text{ and } \Pi_1 = \frac{I}{2} - \frac{1}{2} \text{sgn}^{(SV)} \left(\frac{\rho_0 - \rho_1}{2} \right).$$

It is straightforward to see that $td(\rho_0,\rho_1) = \frac{1}{2}Tr|\rho_0 - \rho_1| = Tr(\Pi_0\rho_0) - Tr(\Pi_0\rho_1)$.

An approximately explicit implementation of the HH measurement

Theorem 2.3 (Algorithmic Holevo-Helstrom measurement, this work). Let ρ_0 and ρ_1 be states prepared by *n*-qubit quantum circuits Q_0 and Q_1 , respectively, as defined in Problem 2.1. An approximate version of the Holevo-Helstrom measurement Π_0 , denoted as $\tilde{\Pi}_0$, can be implemented such that

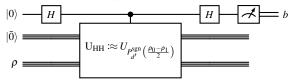
 $|\operatorname{td}(\rho_0,\rho_1) - (\operatorname{Tr}(\tilde{\Pi}_0\rho_0) - \operatorname{Tr}(\tilde{\Pi}_0\rho_1))| \le 2^{-n}.$

The quantum circuit implementation of $\tilde{\Pi}_0$, acting on O(n) qubits, requires poly(N) queries onto the circuits Q_0 , Q_1 , one-, and two-qubit gates, where $N = 2^n$. Moreover, the circuit description can be computed in deterministic time poly(N) and space O(n).

Proof Sketch. Instead of implementing $\{\Pi_0, \Pi_1\}$, it suffices to approx. implement $\{\hat{\Pi}_0, \hat{\Pi}_1\}$ by the space-efficient QSVT assoc. with the sign function (Theorem 1.4 **(**):

$$\hat{\Pi}_0 = \frac{I}{2} + \frac{1}{2} P_{d'}^{\text{sgn}} \left(\frac{\rho_0 - \rho_1}{2} \right) \text{ and } \hat{\Pi}_1 = \frac{I}{2} - \frac{1}{2} P_{d'}^{\text{sgn}} \left(\frac{\rho_0 - \rho_1}{2} \right).$$

Once we have a block-encoding of $P_{d'}^{\text{sgn}}(\frac{\rho_0-\rho_1}{2})$, we can implement Π_0 :



- Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- Open problems

Quantum singular value transformation in a nutshell

QSVT [Gilyén-Su-Low-Wiebe'19] is a systematic approach to (time-efficiently) manipulating singular values $\{\sigma_i\}_i$ of an Hermitian matrix A using a corresponding projected unitary encoding $A = \Pi U \Pi$ for orthogonal projectors Π and Π .

Quantum singular value transformation, revisited

Given a singular value decomposition $A = \sum_i \sigma_i |\tilde{\psi}_i\rangle \langle \psi_i|$ associated with an s(n)-qubit projected unitary encoding, we can approximately implement a QSVT $f^{(SV)}(A) = \sum_i f(\sigma_i) |\tilde{\psi}_i\rangle \langle \psi_i|$ by employing a polynomial P_d of degree $d = O(\frac{1}{\delta} \log \frac{1}{\varepsilon})$ satisfying that

- P_d well-approximates f on the interval of interest I: max_{x∈I\I_δ} |P_d(x) − f(x)| ≤ ε where I_δ ⊆ I ⊆ [−1, 1] and typically I_δ := (−δ, δ).
- ▶ P_d is bounded: $\max_{x \in [-1,1]} |P_d(x)| \le 1$.

Moreover, all coefficients of P_d (namely, *pre-processing*) can be computed in deterministic poly(d) time (and thus space). Hence, the transformation $P_d^{(SV)}(A)$ can be implemented by a poly(d)-size quantum circuit acts on $O(\max\{\log d, s(n)\})$ qubits.

Remark. Quantum circuit implementation in QSVT is already space-efficient!

Space-efficient quantum singular value transformation

Question 3.1 (Space-efficient QSVT). Can we implement a degree-*d* QSVT for any $O(\log n)$ -qubit projected unitary encoding with $d \le poly(n)$, using only $O(\log n)$ space in both (classical) pre-processing and quantum circuit implementation?

Partial solutions:

- Space-efficient QSVT associated with Chebyshev polynomials (underlying Grover search) is implicitly established in [Gilyén-Su-Low-Wiebe'19].
- A natural approach is "projecting" the continuous function bounded on [-1,1], e.g., the sign function, to the basis formed by Chebyshev polynomials [Metger-Yuen'23]:
 - Classical (deterministic) pre-processing requires O(polylogn) space;
 - The approximation error (caused directly by the polynomial approximation) on the interval of interest increases from ε to $O(\varepsilon \log d)$ due to the Chebyshev truncation.

Theorem 3.2 (Space-*efficient* QSVT, this work). Implement a degree-*d* QSVT associated with *piecewise-smooth functions* for any $O(\log n)$ qubit *bitstring indexed encoding* with $d \leq poly(n)$ requires (randomized) $O(\log n)$ space for pre-processing and $O(\log n)$ qubits in quantum circuit implementation. The polynomial approximation error on the interval of interest is $O(\varepsilon)$. Moreover, the implementation requires $O(d^2 \|\mathbf{c}\|_1)$ uses of $U, U^{\dagger}, C_{\Pi} \text{NOT}, C_{\Pi} \text{NOT}$, among with other gates, where c is the coefficients of *averaged* Chebyshev truncation, and $\|\mathbf{c}\|_1 \leq O(\log d)$.

E.g. Normalized log function $\ln_{\beta}(x) := \frac{2\ln(1/x)}{2\ln(2/\beta)}$ on the interval $\mathcal{I} = [\beta, 1]$ for any $\beta \ge 1/\text{poly}(n)$.

- Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- Open problems

Conclusions and open problems

Take-home messages on our work

- Space-bounded quantum state certification problems w.r.t. trace distance and Hilbert-Schmidt distance are coRQ_UL-complete (Theorem 1.2). This is the *first* family of natural coRQ_UL-complete problem!
- Space-bounded quantum state testing problems w.r.t. common distance-like measures (i.e., trace distance, squared Hilbert-Schmidt distance, quantum entropy difference, quantum Jensen-Shannon divergence) are BQL-complete (Theorem 1.4).
- Observe Helstrom measurement can be approx. implemented by the space-efficient QSVT in quantum poly(N) time and O(n) space (Theorem 2.3), where $N = 2^n$. Consequently, QSZK is in QIP(2) with a quantum linear space honest prover.
- Quantum singular value transformation on bitstring indexed encoding can be done in *quantum logspace*, with a *randomized* classical pre-processing (Theorem 3.2).

Open problems

- 1 Are there any other applications of space-efficient QSVT?
- (Inspired by Tom Gur) What about the computational complexity for space-bounded quantum *channel* testings with respect to different distance-like measures?

Thanks!