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What is quantum state testing

Task: Quantum state testing (with two-sided error).
Given two quantum devices Q0 and Q1 that prepare poly(n)-qubit quantum (mixed)
states ρ0 ∈ CN×N and ρ1 ∈ CN×N , respectively, which may be viewed as “sample
access” to ρ0 and ρ1. Decide whether dist(ρ0,ρ1)≤ ε1 or dist(ρ0,ρ1)≥ ε2.

The classical counterpart and the one-sided error variant are as follows:

▶ Distribution testing (a.k.a. closeness testing of distributions, see [Canonne’20]):
Given sample accesses to probability distributions D0 and D1, decide whether
dist(D0,D1)≤ ε1 or dist(D0,D1)≥ ε2.

▶ Quantum state certification [Bădescu-O’Donnell-Wright’19]:
Given “sample access” to ρ0 and ρ1, decide whether ρ0 = ρ1 or dist(ρ0,ρ1)≥ ε.

Typical goal: Minimize the number of copies (sample complexity ) of ρ0 and ρ1.

In this work: Viewing quantum state testing as a computational (promise) problem.
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Main result: Space-bounded state certification (one-sided error scenario)

Task 1.1 (Space-bounded quantum state certification). Given two polynomial-size
O(logn)-qubit quantum circuits Q0 and Q1 that prepare O(logn)-qubit quantum (mixed)
states ρ0 and ρ1, respectively. Decide whether ρ0 = ρ1 or dist(ρ0,ρ1)≥ α.

Classical and quantum distance-like measures that are considered:

Quantum Classical

ℓ1 norm
trace distance

td(ρ0,ρ1) := 1
2 Tr|ρ0 −ρ1|

total variation distance
(a.k.a. statistical distance)

ℓ2 norm
Hilbert-Schmidt distance

HS2(ρ0,ρ1) := 1
2 Tr(ρ0 −ρ1)

2 Euclidean distance

Theorem 1.2 (Space-bounded quantum state certification is coRQUL-complete).
The following space-bounded quantum state certification problems are
coRQUL-complete. For any α(n)≥ 1/poly(n), decide whether

1 CERTQSDlog: ρ0 = ρ1 or td(ρ0,ρ1)≥ α(n);

2 CERTQHSlog: ρ0 = ρ1 or HS2(ρ0,ρ1)≥ α(n).

Remark. coRQUL captures the power of unitary quantum logspace that always
accepts yes instances, while accepting no instances with probability at most 1/2.
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Main result: Space-bounded quantum state testing (two-sided error scenario)

Task 1.3 (Space-bounded quantum state testing). Given two polynomial-size
O(logn)-qubit quantum circuits Q0 and Q1 that prepare O(logn)-qubit quantum (mixed)
states ρ0 and ρ1, respectively. Decide whether dist(ρ0,ρ1)≤ β or dist(ρ0,ρ1)≥ α.

Theorem 1.4 (Space-bounded quantum state testing is BQL-complete). The
following space-bounded quantum state testing problems are BQL-complete. For any
α,β such that α(n)−β (n)≥ 1/poly(n) or any g(n)≥ 1/poly(n), decide whether

1 GAPQSDlog: td(ρ0,ρ1)≥ α or td(ρ0,ρ1)≤ β ;

2 GAPQHSlog: HS2(ρ0,ρ1)≥ α or HS2(ρ0,ρ1)≤ β ;

3 GAPQEDlog: S(ρ0)−S(ρ1)≥ g or S(ρ1)−S(ρ0)≥ g;

4 GAPQJSlog: QJS2(ρ0,ρ1)≥ α or QJS2(ρ0,ρ1)≤ β .

Remark. BQL captures the power of quantum computation with O(logn) qubits.
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Summary: Time- and space-bounded distribution and state testing

Task 1.5 (Time-bounded quantum state testing). Given two polynomial-size
quantum circuits Q0 and Q1 that prepare poly(n)-qubit quantum (mixed) states ρ0 and
ρ1, respectively. Decide whether dist(ρ0,ρ1)≤ β or dist(ρ0,ρ1)≥ α.

Computational hardness of time- and space-bounded distribution and state testing:

ℓ1 norm ℓ2 norm Entropy

Classical
Time-bounded

SZK-complete*
[SV03,GSV98]

BPP-complete
Folklore

SZK-complete
[GV99,GSV98]

Quantum
Time-bounded

QSZK-complete*
[Wat02,Wat09]

BQP-complete
[BCWdW01, RASW23]

QSZK-complete
[BASTS10]

Quantum
Space-bounded

BQL-complete
This work

BQL-complete
[BCWdW01] and this work

BQL-complete
This work

Takeaways. For space-bounded state testing and certification problems, the
computational hardness of these problems is as easy as just preparing quantum
states, which is independent of the choice of aforementioned distance-like measures.
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Distinguishing quantum states and Holevo-Helstrom bound

Problem 2.1 (Computational Quantum Hypothesis Testing). Given polynomial-size
quantum circuits Q0 and Q1 acting on n qubits and having r output qubits. Let ρb be the
state obtained by performing Qb on |0n⟩ and tracing out the non-output qubits for
b ∈ {0,1}. Now, consider the following computational task:

▶ Input: A quantum state ρ, either ρ0 or ρ1, is chosen uniformly at random.

▶ Output: A bit b indicates that ρ = ρb.

Holevo-Helstrom bound
Theorem 2.2 [Holevo’73, Helstrom’69] Given a quantum state ρ, either ρ0 or ρ1, that is
chosen uniformly at random, the maximum success probability to discriminate between
quantum states ρ0 and ρ1 is given by 1

2 +
1
2 td(ρ0,ρ1).

Optimal two-outcome measurement {Π0,Π1} achieving the max. discrimination prob.:

Π0 =
I
2
+

1
2

sgn(SV)
(ρ0 −ρ1

2

)
and Π1 =

I
2
− 1

2
sgn(SV)

(ρ0 −ρ1

2

)
.

It is straightforward to see that td(ρ0,ρ1) =
1
2 Tr|ρ0 −ρ1|= Tr(Π0ρ0)−Tr(Π0ρ1).
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An approximately explicit implementation of the HH measurement

Theorem 2.3 (Algorithmic Holevo-Helstrom measurement, this work). Let ρ0 and ρ1 be
states prepared by n-qubit quantum circuits Q0 and Q1, respectively, as defined in
Problem 2.1. An approximate version of the Holevo-Helstrom measurement Π0,
denoted as Π̃0, can be implemented such that

|td(ρ0,ρ1)−
(
Tr(Π̃0ρ0)−Tr(Π̃0ρ1)

)
| ≤ 2−n.

The quantum circuit implementation of Π̃0, acting on O(n) qubits, requires poly(N)

queries onto the circuits Q0, Q1, one-, and two-qubit gates, where N = 2n. Moreover,
the circuit description can be computed in deterministic time poly(N) and space O(n).

Proof Sketch. Instead of implementing {Π0,Π1}, it suffices to approx. implement
{Π̂0,Π̂1} by the space-efficient QSVT assoc. with the sign function (Theorem 1.4 1 ):

Π̂0 =
I
2
+

1
2

Psgn
d′

(ρ0 −ρ1

2

)
and Π̂1 =

I
2
− 1

2
Psgn

d′

(ρ0 −ρ1

2

)
.

Once we have a block-encoding of Psgn
d′

( ρ0−ρ1
2

)
, we can implement Π0:

|0⟩ H H b

|0̄⟩
UHH :≈U

Psgn
d′

( ρ0−ρ1
2

)
ρ
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Quantum singular value transformation in a nutshell

QSVT [Gilyén-Su-Low-Wiebe’19] is a systematic approach to (time-efficiently)
manipulating singular values {σi}i of an Hermitian matrix A using a corresponding
projected unitary encoding A = Π̃UΠ for orthogonal projectors Π̃ and Π.

Quantum singular value transformation, revisited
Given a singular value decomposition A = ∑i σi|ψ̃i⟩⟨ψi| associated with an s(n)-qubit
projected unitary encoding, we can approximately implement a QSVT
f (SV)(A) = ∑i f (σi)|ψ̃i⟩⟨ψi| by employing a polynomial Pd of degree d = O

( 1
δ log 1

ε
)

satisfying that

▶ Pd well-approximates f on the interval of interest I: maxx∈I\Iδ
|Pd(x)− f (x)| ≤ ε

where Iδ ⊆ I ⊆ [−1,1] and typically Iδ := (−δ ,δ ).

▶ Pd is bounded: maxx∈[−1,1] |Pd(x)| ≤ 1.

Moreover, all coefficients of Pd (namely, pre-processing) can be computed in
deterministic poly(d) time (and thus space). Hence, the transformation P(SV)

d (A) can be
implemented by a poly(d)-size quantum circuit acts on O(max{logd,s(n)}) qubits.

Remark. Quantum circuit implementation in QSVT is already space-efficient!
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Space-efficient quantum singular value transformation

Question 3.1 (Space-efficient QSVT). Can we implement a degree-d QSVT for any
O(logn)-qubit projected unitary encoding with d ≤ poly(n), using only O(logn) space in
both (classical) pre-processing and quantum circuit implementation?

Partial solutions:
▶ Space-efficient QSVT associated with Chebyshev polynomials (underlying Grover

search) is implicitly established in [Gilyén-Su-Low-Wiebe’19].
▶ A natural approach is “projecting” the continuous function bounded on [−1,1], e.g.,

the sign function, to the basis formed by Chebyshev polynomials [Metger-Yuen’23]:
⋄ Classical (deterministic) pre-processing requires O(poly logn) space;
⋄ The approximation error (caused directly by the polynomial approximation) on the interval

of interest increases from ε to O(ε logd) due to the Chebyshev truncation.

Theorem 3.2 (Space-efficient QSVT, this work). Implement a degree-d QSVT associated
with piecewise-smooth functions for any O(logn) qubit bitstring indexed encoding with d≤poly(n)
requires (randomized) O(logn) space for pre-processing and O(logn) qubits in quantum circuit
implementation. The polynomial approximation error on the interval of interest is O(ε).
Moreover, the implementation requires O(d2∥c∥1) uses of U , U†, CΠNOT, CΠ̃NOT, among with
other gates, where c is the coefficients of averaged Chebyshev truncation, and ∥c∥1 ≤ O(logd).

E.g. Normalized log function lnβ (x) := 2ln(1/x)
2ln(2/β ) on the interval I=[β,1] for any β ≥1/poly(n).
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Conclusions and open problems

Take-home messages on our work
1 Space-bounded quantum state certification problems w.r.t. trace distance and

Hilbert-Schmidt distance are coRQUL-complete (Theorem 1.2).
This is the first family of natural coRQUL-complete problem!

2 Space-bounded quantum state testing problems w.r.t. common distance-like
measures (i.e., trace distance, squared Hilbert-Schmidt distance, quantum entropy

difference, quantum Jensen-Shannon divergence) are BQL-complete (Theorem 1.4).

3 Holevo-Helstrom measurement can be approx. implemented by the space-efficient
QSVT in quantum poly(N) time and O(n) space (Theorem 2.3), where N = 2n.
Consequently, QSZK is in QIP(2) with a quantum linear space honest prover.

4 Quantum singular value transformation on bitstring indexed encoding can be done
in quantum logspace, with a randomized classical pre-processing (Theorem 3.2).

Open problems
1 Are there any other applications of space-efficient QSVT?

2 (Inspired by Tom Gur) What about the computational complexity for space-bounded
quantum channel testings with respect to different distance-like measures?
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Thanks!
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