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@ Main results: Complete characterizations of quantum logspace from state testing



What is quantum state testing

Task: Quantum state testing (with two-sided error).

Given two quantum devices Qg and Q; that prepare poly(n)-qubit quantum (mixed)
states pg € C¥*N and p; € CV*V, respectively, which may be viewed as “sample
access” to pp and p;. Decide whether dist(pg,p1) < &; or dist(pg,p1) > €.

The classical counterpart and the one-sided error variant are as follows:

> Distribution testing (a.k.a. closeness testing of distributions, see [Canonne’20]):
Given sample accesses to probability distributions Dy and Dy, decide whether
diSt(Do,Dl) <g or diSt(D(),Dl) > &.

> Quantum state certification [Badescu-O’Donnell-Wright'19]:
Given “sample access” to py and p;, decide whether py = p; or dist(po,p1) > €.

Typical goal: Minimize the number of copies (sample complexity) of py and p;.

In this work: Viewing quantum state testing as a computational (promise) problem.



Main result: Space-bounded state certification (one-sided error scenario)

Task 1.1 (Space-bounded quantum state certification). Given two polynomial-size
O(logn)-qubit quantum circuits Qp and Q; that prepare O(logn)-qubit quantum (mixed)
states pp and p;, respectively. Decide whether py = p; or dist(pg,p1) > c.

Classical and quantum distance-like measures that are considered:

Quantum Classical
trace distance total variation distance

£y norm ; o
td(po,p1) := 5 Tr|po — pi| (ak.a. statistical distance)

Hilbert-Schmidt di
£, norm ilbert-Schmidt distance Euclidean distance

HS?(po, p1) 1= 3 Tr(po —p1)?

Theorem 1.2 (Space-bounded quantum state certification is coRQyL-complete).
The following space-bounded quantum state certification problems are
coRQuL-complete. For any a(n) > 1/poly(n), decide whether

© CERTQSD)oq: po = p1 OF td(po,p1) > &(n);
@ CERTQHSog: po = p1 or HS*(po, p1) > ax(n).

Remark. coRQyL captures the power of unitary quantum logspace that always
accepts yes instances, while accepting no instances with probability at most 1/2.



Main result: Space-bounded quantum state testing (two-sided error scenario)

Task 1.3 (Space-bounded quantum state testing). Given two polynomial-size
O(logn)-qubit quantum circuits Qp and Q, that prepare O(logn)-qubit quantum (mixed)
states py and p;, respectively. Decide whether dist(pg,p;) < B or dist(pp,p1) > a.

Theorem 1.4 (Space-bounded quantum state testing is BQL-complete). The
following space-bounded quantum state testing problems are BQL-complete. For any
o, B such that o(n) — B(n) > 1/poly(n) or any g(n) > 1/poly(n), decide whether

© GAPQSD)oq: td(po,p1) > a or td(po,p1) < B;

® GAPQHSoq: HS(po,p1) > o or HS*(po, p1) < B;
©® GAPQED)og: S(po) —S(p1) = g or S(p1) —S(po) = &;
0 GAPQJS|og: QIS,(po,p1) > & or QIS;(po,p1) < B.

Remark. BQL captures the power of quantum computation with O(logn) qubits.



Summary: Time- and space-bounded distribution and state testing

Task 1.5 (Time-bounded quantum state testing). Given two polynomial-size
quantum circuits Qy and Q; that prepare poly(n)-qubit quantum (mixed) states py and
p1, respectively. Decide whether dist(po,p1) < B or dist(po,p1) > c.

Computational hardness of time- and space-bounded distribution and state testing:

£1 norm £, norm Entropy
Classical SZK-complete* BPP-complete SZK-complete
Time-bounded [SV03,GSV98] Folklore [GV99,GSV98]
Quantum QSZK-complete* BQP-complete QSZK-complete
Time-bounded [Wat02,Wat09] [BCWdWO01, RASW23] [BASTS10]
Quantum BQL-complete BQL-complete BQL-complete
Space-bounded This work [BCWdWO01] and this work This work

Takeaways. For space-bounded state testing and certification problems, the
computational hardness of these problems is as easy as just preparing quantum
states, which is independent of the choice of aforementioned distance-like measures.



® Implication: Algorithmic Holevo-Helstrom measurement



Distinguishing quantum states and Holevo-Helstrom bound

Problem 2.1 (Computational Quantum Hypothesis Testing). Given polynomial-size
quantum circuits Qp and Q; acting on n qubits and having r output qubits. Let p, be the
state obtained by performing O, on |0") and tracing out the non-output qubits for

b € {0,1}. Now, consider the following computational task:

> Input: A quantum state p, either py or py, is chosen uniformly at random.

> Output: A bit » indicates that p = pj,.

Holevo-Helstrom bound

Theorem 2.2 [Holevo'73, Helstrom'69] Given a quantum state p, either py or p;, that is
chosen uniformly at random, the maximum success probability to discriminate between

quantum states py and p; is given by %—&- %td(p()?pl).

Optimal two-outcome measurement {I1y,I1; } achieving the max. discrimination prob.:
H0:£+lsgn<sw<Po p')andH1:£—1 sen SV)(pO_pl)
2 2 2 2

It is straightforward to see that td(po,p1) = lTr|p0 —p1| =Tr(Ippo) — Tr(Iopy )-



An approximately explicit implementation of the HH measurement

Theorem 2.3 (Algorithmic Holevo-Helstrom measurement, this work). Let py and p; be
states prepared by n-qubit quantum circuits Qy and Q,, respectively, as defined in
Problem 2.1. An approximate version of the Holevo-Helstrom measurement IT,
denoted as Iy, can be implemented such that

[td(po,p1) — (Tr(Tlopo) — Tr(Tlops))| < 27"
The quantum circuit implementation of Iy, acting on O(n) qubits, requires poly(N)

queries onto the circuits Qy, Q;, one-, and two-qubit gates, where N = 2". Moreover,
the circuit description can be computed in deterministic time poly(N) and space O(n).

Proof Sketch. Instead of implementing {I1,I1, }, it suffices to approx. implement
{11y, 1T, } by the space-efficient QSVT assoc. with the sign function (Theorem 1.4 @):

Iy = §+2P3gn<Pozpl)andH17§,§P5gn(P02p1)'
sgn

Once we have a block-encoding of P;f" (£252L), we can implement Iy:

o —#] ? H b

0)

UHH = UPZ%“(@)
P




® Proof technique: Space-efficient quantum singular value transformation



Quantum singular value transformation in a nutshell

QSVT [Gilyén-Su-Low-Wiebe'19] is a systematic approach to (time-efficiently)
manipulating singular values {c;}; of an Hermitian matrix A using a corresponding
projected unitary encoding A = FIUTI for orthogonal projectors IT and I1.

Quantum singular value transformation, revisited

Given a singular value decomposition A = Y'; 6;| ;) (y;| associated with an s(n)-qubit
projected unitary encoding, we can approximately implement a QSVT
FSYI(A) =X, f(o:) W) (wi| by employing a polynomial P, of degree d = O(4log 1)
satisfying that
> P; well-approximates f on the interval of interest Z: max,cz\z; [Pa(x) — f(x)| < &
where Zs C Z C [—1,1] and typically Zs := (-6, 9).
> Py is bounded: max. e[y [Pa(x)| < 1.

Moreover, all coefficients of P; (namely, pre-processing) can be computed in
deterministic poly(d) time (and thus space). Hence, the transformation Pssv) (A) can be
implemented by a poly(d)-size quantum circuit acts on O(max{logd,s(n)}) qubits.

Remark. Quantum circuit implementation in QSVT is already space-efficient!



Space-efficient quantum singular value transformation

Question 3.1 (Space-efficient QSVT). Can we implement a degree-d QSVT for any
O(logn)-qubit projected unitary encoding with d < poly(n), using only O(logn) space in
both (classical) pre-processing and quantum circuit implementation?

Partial solutions:
> Space-efficient QSVT associated with Chebyshev polynomials (underlying Grover
search) is implicitly established in [Gilyén-Su-Low-Wiebe'19].
> A natural approach is “projecting” the continuous function bounded on [—-1,1], e.g.,
the sign function, to the basis formed by Chebyshev polynomials [Metger-Yuen'23]:
o Classical (deterministic) pre-processing requires O(polylogn) space;
© The approximation error (caused directly by the polynomial approximation) on the interval
of interest increases from ¢ to O(elogd) due to the Chebyshev truncation.

Theorem 3.2 (Space-efficient QSVT, this work). Implement a degree-d QSVT associated
with piecewise-smooth functions for any O(logn) qubit bitstring indexed encoding with d < poly (n)
requires (randomized) O(logn) space for pre-processing and O(logn) qubits in quantum circuit
implementation. The polynomial approximation error on the interval of interest is O(¢).
Moreover, the implementation requires O(d?||¢c||;) uses of U, UT, CuNOT, CzNOT, among with
other gates, where c is the coefficients of averaged Chebyshev truncation, and ||c||; < O(logd).

E.g. Normalized log function Ing (x) := % on the interval Z=[,1] for any > 1/poly(n).
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@ Open problems



Conclusions and open problems

Take-home messages on our work

© Space-bounded quantum state certification problems w.r.t. trace distance and
Hilbert-Schmidt distance are coRQyL-complete (Theorem 1.2).

This is the first family of natural coRQuL-complete problem!

® Space-bounded quantum state testing problems w.r.t. common distance-like
measures (i.e., trace distance, squared Hilbert-Schmidt distance, quantum entropy
difference, quantum Jensen-Shannon divergence) are BQL-complete (Theorem 1.4).

® Holevo-Helstrom measurement can be approx. implemented by the space-efficient
QSVT in quantum poly(N) time and O(n) space (Theorem 2.3), where N =2".
Consequently, QSZK is in QIP(2) with a quantum linear space honest prover.

® Quantum singular value transformation on bitstring indexed encoding can be done
in quantum logspace, with a randomized classical pre-processing (Theorem 3.2). )

Open problems
@ Are there any other applications of space-efficient QSVT?

® (Inspired by Tom Gur) What about the computational complexity for space-bounded
quantum channel testings with respect to different distance-like measures?




Thanks!
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