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1 State-synthesizing complexity classes: Definitions

2 Which results can be “translated” into state-synthesizing classes?

3 Which results currently do not have state-synthesizing counterparts?



Definitions: Boolean functions vs. state families
Definition 1.1 (QMA). A promise problem L = (Lyes,Lno) is in QMA[c,s] if there is a
family of poly(n)-size quantum verification circuits {Vx}x∈L where n := |x|, that can
be computed by a deterministic poly(n)-time Turing machine, satisfies the following:

Completeness. If x ∈ Lyes, there is a witness |w⟩ s.t. Pr[Vx accepts w] ≥ c(n).
Soundness. If x ∈ Lno, for any witness |w⟩, Pr[Vx accepts w] ≤ s(n).

m

k

|w⟩
Vx

|0̄⟩

Figure: QMA verification circuit
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Figure: stateQMA verification circuit

Definition 1.2 (stateQMA). A state family {|ψx⟩}x∈L where L ⊆ {0,1}∗ is in
stateQMAδ[c,s], if there is a family of poly(n)-size quantum verification circuits
{Vx}x∈L where n := |x|, that can be computed by a deterministic poly(n)-time TM
and output a resulting state ρx,w when Vx accepts, satisfies the following:

Completeness. If x ∈ L, there is a state |w⟩ s.t. Pr[Vx accepts w] ≥ c(n).
Soundness. For any |w⟩ s.t. td(ρx,w,ψx) ≥ δ(n), Pr[Vx accepts w] ≤ s(n).

* Definition 1.2 is inspired by [Rosenthal-Yuen’22].
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Subtleties in the definitions of state-synthesizing complexity classes

Definition 1.3 (stateBQP). A state family {|ψx⟩}x∈L where L ⊆ {0,1}∗ is in
stateBQPδ[γ] if there is a family of poly(n)-size quantum circuits {Qx}x∈L where
n := |x|, that can be computed by a deterministic poly(n)-time TM and output a
resulting state ρx,w when Qx accepts, satisfies the following:
• The probability that Qx accepts is at least γ(n).
• The resulting state ρx of the circuit Qx satisfying td(ρx,ψx) ≤ δ(n).

It is not hard to see that stateBQPδ[γ] ⊆ stateBQPδ′ [1] where δ′ := γδ+ 1 −γ.

Proposition 1.4 (stateBQP ⊆ stateQMA). stateBQPδ[γ] ⊆ stateQMAδ[γ,γ′] for some
γ′ > 0 such that γ(n) −γ′(n) ≥ 1/poly(n).

First attempt:
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There is no promise gap!

Actual solution:
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|w⟩ s ∈ {0,1}n

Accept if s = 0n. Then γ(n) − γ′(n) ≥ 1/poly(n)

where Pr[Vx accepts w] ≥ γ|⟨w|0n⟩|2 := γ′ > 0.
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Which results can be “translated” into state-synthesizing classes: stateQIP

Definition 2.1 (stateQIP, informally adapted from [Rosenthal-Yuen’22]). A state family
{|ψn⟩}n∈N is in stateQIPδ[c,s] if for any poly(n)-time verifier V , there is a
computationally unbounded (and untrusted) prover P such that V will produce ρn

when V accepts this interactive protocol P⇌V and all protocols P⇌V satisfy:
Completeness. There is a protocol P⇌V s.t. Pr[V accepts P⇌V ] ≥ c(n).
Soundness. For any protocol P⇌V , if Tr(ρn,ψn) ≥ δ(n), then
Pr[V accepts P⇌V ] ≤ s(n).
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Figure: t-message stateQIP protocol
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Which results can be “translated” into state-synthesizing classes: stateQIP (Cont.)

Summary of known results on stateQIP:

Inclusion Reference State-synthesizing counterpart

PSPACE ⊆ QIP
PSPACE ⊆ IP ⊆ QIP

[Lund-Fortnow-Karloff-Nisan’90, Shamir’90]

statePSPACEδ ⊆ stateQIPδ+1/poly

[Rosenthal-Yuen’22]

QIP(3) ⊆ PSPACE
QIP(3) ⊆QMAM ⊆ NC(poly) ⊆PSPACE

[Jain-Ji-Upadhyay-Watrous’09]

Depth-bounded SDP solver

stateQIPδ ⊆ statePSPACEδ+1/poly

[Metger-Yuen’23]
Space-bounded quantum SDP solver

QIP ⊆ QIP(3)

“parallelization”
[Kitaev-Watrous’03]

(also [Kempe-Kobayashi-Matsumoto-Vidick’07])

statePSPACEδ ⊆ stateQIP(6)δ+1/poly

[Rosenthal’23]

Proof Strategies: statePSPACE ⊆ stateQIP
Main techniques: Preparing a state w/ the help of a trusted classical oracle
▶ [Aaronson’16]: poly(n) adaptive queries protocol.
▶ [Rosenthal’23]: poly(n) non-adaptive queries protocol ⇒ a single query suffices!
▶ [Lombardi-Ma-Wright’23]: Synthesizing unitary requires more than one query.
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Bonus: New phenomenon in stateQIP
Question: What is the computational power required to implement the optimal prover
strategies? Could we make the implementation computationally bounded?
▶ [LFKN90, Shamir’90]: PSPACE ⊆ IP[PSPACE,BPP].
▶ There is no known quantum analog in the model of promise problems!
▶ [MY23]: statePSPACE ⊆ stateQIP[unitaryPSPACE,unitaryBQP].

Algorithmic Uhlmann transformation
Uhlmann theorem (1976). Let |ψ⟩AB and |ϕ⟩AB be pure states on registers A,B and
denote their reduced states on register A by ρA and σA, respectively. Then there is a
unitary UB such that F(ρA,σA) = |⟨ϕ|AB(IA ⊗UB)|ψ⟩AB|.

Implementing the Uhlmann transformation UB is in unitaryPSPACE [MY23].

This techniques is further explored in [Bostanci-Efron-Metger-Poremba-Qian-Yuen’23].
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Which results can be “translated” into state-synthesizing classes: stateQMA
1 Witness-preserving error reduction for QMA-like classes:

Class Implication State-synthesizing counterpart

QMA
[Marriott-Watrous’05]

QMAlog ⊆ BQP
Log-size witness is useless

stateQMAlog ⊆ stateBQP
[Delavenne-Le Gall-L.-Miyamoto’23]

QMAUPSPACE
PreciseQMA ⊆ BQUPSPACE

[Fefferman-Lin’18]

statePreciseQMA ⊆ stateUPSPACE
[Delavenne-Le Gall-L.-Miyamoto’23]

QMAUL† QMAUL ⊆ BQUL
[Fefferman-Kobayashi-Lin-Morimae-Nishimura’16]

stateQMAULoff ⊆ stateBQUL
Corollary of [Le Gall-L.-Wang’23]

†QMAUL only allows off-line log-size witness accesses.

2 QCMA achieves perfect completeness:
▶ [Jordan-Kobayashi-Nagaj-Nishimura’11]: QCMA ⊆ QCMA1.
▶ [Delavenne-Le Gall-L.-Miyamoto’23]: stateQCMA ⊆ stateQCMA[1,1 − 1/poly].

3 How QMA witness states relate to stateQMA?
Theorem 2.2 (UQMA witness is in stateQMA, [Delavenne-Le Gall-L.-Miyamoto’23]).
(1) For any (Lyes,Lno) ∈ UQMA, unique-witness state family {|wx⟩}x∈Lyes corresponding to

yes instances is in stateQMA1/poly.
(2) For any (Lyes,Lno) ∈ PreciseUQMA[1−1/exp, ·], the unique-witness state family

{|wx⟩}x∈Lyes corresponding to yes instances is in statePreciseQMA1/exp.
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Which results currently do not have state-synthesizing counterparts?

 Generally lacking of the notion of hardness for state-synthesizing classes! Only some
variant of unitary-synthesizing classes admit the notions of reduction and hardness
[Bostanci-Efron-Metger-Poremba-Qian-Yuen’23].

There are several results that relies on the notion of hardness:
▶ [Fefferman-Lin’18] PSPACE is in PreciseQMA.
▶ [Deshpande-Gorshkov-Fefferman’22] Local Hamiltonian Problem with

exponentially small spectral gap (and promise gap) is PSPACE-hard.
▶ [Jeronimo-Wu’23] NEXP is in QMA+(2), where “+” indicates that witness states

are entrywise non-negative states in both yes and no instances.
See also the follow-up work [Bassirian-Fefferman-Marwaha’23], which shows that NEXP is in
QMA+ with certain regime.

Question: Is there any new phenomenon in state-synthesizing complexity classess?
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Thanks!
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