A complexity theory for synthesizing quantum states: stateQMA and beyond

Yupan Liu

Nagoya University

Mostly based on the joint work with Hugo Delavenne, François Le Gall, and Masayuki Miyamoto (available at arXiv:2303.01877)

Nov 20, 2023

1 State-synthesizing complexity classes: Definitions

2 Which results can be "translated" into state-synthesizing classes?

3 Which results currently do not have state-synthesizing counterparts?

Definitions: Boolean functions vs. state families

Definition 1.1 (QMA). A promise problem $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no})$ is in QMA[c, s] if there is a family of poly(n)-size quantum verification circuits $\{V_x\}_{x \in \mathcal{L}}$ where n := |x|, that can be computed by a deterministic poly(n)-time Turing machine, satisfies the following:

Completeness. If $x \in \mathcal{L}_{yes}$, there is a witness $|w\rangle$ s.t. $\Pr[V_x \text{ accepts } w] \ge c(n)$. **Soundness.** If $x \in \mathcal{L}_{no}$, for any witness $|w\rangle$, $\Pr[V_x \text{ accepts } w] \le s(n)$.

Figure: QMA verification circuit

Figure: stateQMA verification circuit

Definition 1.2 (stateQMA). A state family $\{|\psi_x\rangle\}_{x\in\mathcal{L}}$ where $\mathcal{L} \subseteq \{0,1\}^*$ is in stateQMA_{δ}[c,s], if there is a family of $\operatorname{poly}(n)$ -size quantum verification circuits $\{V_x\}_{x\in\mathcal{L}}$ where n := |x|, that can be computed by a deterministic $\operatorname{poly}(n)$ -time TM and output a resulting state $\rho_{x,w}$ when V_x accepts, satisfies the following:

Completeness. If $x \in \mathcal{L}$, there is a state $|w\rangle$ s.t. $\Pr[V_x \text{ accepts } w] \geq c(n)$.

Soundness. For any $|w\rangle$ s.t. $td(\rho_{x,w}, \psi_x) \ge \delta(n)$, $Pr[V_x \text{ accepts } w] \le s(n)$.

^{*} Definition 1.2 is inspired by [Rosenthal-Yuen'22].

Subtleties in the definitions of state-synthesizing complexity classes

Definition 1.3 (stateBQP). A state family $\{|\psi_x\rangle\}_{x\in\mathcal{L}}$ where $\mathcal{L} \subseteq \{0,1\}^*$ is in stateBQP $_{\delta}[\gamma]$ if there is a family of $\operatorname{poly}(n)$ -size quantum circuits $\{Q_x\}_{x\in\mathcal{L}}$ where n := |x|, that can be computed by a deterministic $\operatorname{poly}(n)$ -time TM and output a resulting state $\rho_{x,w}$ when Q_x accepts, satisfies the following:

- The probability that Q_x accepts is at least γ(n).
- The resulting state ρ_x of the circuit Q_x satisfying $td(\rho_x, \psi_x) \leq \delta(n)$.

It is not hard to see that stateBQP_{δ}[γ] \subseteq stateBQP_{δ'}[1] where $\delta' := \gamma \delta + 1 - \gamma$.

Proposition 1.4 (stateBQP \subseteq stateQMA). stateBQP $_{\delta}[\gamma] \subseteq$ stateQMA $_{\delta}[\gamma, \gamma']$ for some $\gamma' > 0$ such that $\gamma(n) - \gamma'(n) \ge 1/\text{poly}(n)$.

Actual solution: $|0\rangle \longrightarrow 1$ $|\overline{0}\rangle \swarrow^{k-1} Q_x \longrightarrow \rho_{x,0^n}$ $|w\rangle \swarrow^m \swarrow s \in \{0,1\}^n$ Accept if $s = 0^n$. Then $\gamma(n) - \gamma'(n) \ge 1/\text{poly}(n)$

where $\Pr[V_x \text{ accepts } w] \ge \gamma |\langle w | 0^n \rangle|^2 := \gamma' > 0.$

1 State-synthesizing complexity classes: Definitions

2 Which results can be "translated" into state-synthesizing classes?

3 Which results currently do not have state-synthesizing counterparts?

Which results can be "translated" into state-synthesizing classes: stateQIP

Definition 2.1 (stateQIP, informally adapted from [Rosenthal-Yuen'22]). A state family $\{|\psi_n\rangle\}_{n\in\mathbb{N}}$ is in stateQIP $_{\delta}[c,s]$ if for any $\operatorname{poly}(n)$ -time verifier V, there is a computationally unbounded (and untrusted) prover P such that V will produce ρ_n when V accepts this interactive protocol $P \rightleftharpoons V$ and all protocols $P \rightleftharpoons V$ satisfy:

Completeness. There is a protocol $P \rightleftharpoons V$ s.t. $\Pr[V \text{ accepts } P \rightleftharpoons V] \ge c(n)$. **Soundness**. For any protocol $P \rightleftharpoons V$, if $\operatorname{Tr}(\rho_n, \psi_n) \ge \delta(n)$, then $\Pr[V \text{ accepts } P \rightleftharpoons V] \le s(n)$.

Figure: t-message stateQIP protocol

Which results can be "translated" into state-synthesizing classes: stateQIP (Cont.)

Summary of known results on stateQIP:

Inclusion	Reference	State-synthesizing counterpart
$PSPACE \subseteq QIP$	$\underline{PSPACE \subseteq IP} \subseteq QIP$ [Lund-Fortnow-Karloff-Nisan'90, Shamir'90]	$statePSPACE_{\delta} \subseteq stateQIP_{\delta+1/\mathrm{poly}}$ $[Rosenthal-Yuen'22]$
$QIP(3) \subseteq PSPACE$	$\label{eq:QIP(3)} \begin{split} & QIP(3) \subseteq \underline{QMAM} \subseteq NC(\operatorname{poly}) \subseteq PSPACE \\ & [Jain-Ji-Upadhyay-Watrous'09] \\ & Depth-bounded \ SDP \ solver \end{split}$	$\label{eq:stateQIP} \begin{array}{l} stateQIP_{\delta} \subseteq statePSPACE_{\delta+1/\mathrm{poly}} \\ & [Metger-Yuen'23] \end{array}$ Space-bounded quantum SDP solver
$QIP \subseteq QIP(3)$ "parallelization"	[Kitaev-Watrous'03] (also [Kempe-Kobayashi-Matsumoto-Vidick'07])	$statePSPACE_{\delta} \subseteq stateQIP(6)_{\delta+1/\mathrm{poly}}$ $[Rosenthal'23]$

$\mathsf{Proof Strategies: state}\mathsf{PSPACE} \subseteq \mathsf{state}\mathsf{QIP}$

Main techniques: Preparing a state w/ the help of a trusted classical oracle

- [Aaronson'16]: poly(n) adaptive queries protocol.
- ▶ [Rosenthal'23]: poly(n) non-adaptive queries protocol \Rightarrow a single query suffices!
- ▶ [Lombardi-Ma-Wright'23]: Synthesizing unitary requires more than one query.

Bonus: New phenomenon in stateQIP

Question: What is the computational power required to implement the optimal prover strategies? Could we make the implementation computationally bounded?

- ▶ [LFKN90, Shamir'90]: PSPACE \subseteq IP[PSPACE, BPP].
- ▶ There is no known quantum analog in the model of promise problems!
- ▶ [MY23]: statePSPACE \subseteq stateQIP[unitaryPSPACE, unitaryBQP].

Algorithmic Uhlmann transformation

Uhlmann theorem (1976). Let $|\psi\rangle_{AB}$ and $|\phi\rangle_{AB}$ be pure states on registers A, B and denote their reduced states on register A by ρ_A and σ_A , respectively. Then there is a unitary U_B such that $F(\rho_A, \sigma_A) = |\langle \phi |_{AB}(I_A \otimes U_B) | \psi \rangle_{AB}|$.

Implementing the Uhlmann transformation U_B is in unitaryPSPACE [MY23].

This techniques is further explored in [Bostanci-Efron-Metger-Poremba-Qian-Yuen'23].

Which results can be "translated" into state-synthesizing classes: stateQMA

Class	Implication	State-synthesizing counterpart
QMA	$QMA_{\log} \subseteq BQP$	$stateQMA_{\log} \subseteq stateBQP$
[Marriott-Watrous'05]	Log-size witness is useless	[Delavenne-Le Gall-LMiyamoto'23]
QMA _U PSPACE	$PreciseQMA \subseteq BQ_{U}PSPACE$	$statePreciseQMA \subseteq state_UPSPACE$
	[Fefferman-Lin'18]	[Delavenne-Le Gall-LMiyamoto'23]
QMA _U L [†]	$QMA_UL\subseteqBQ_UL$	$stateQMA_UL^off \subseteq stateBQ_UL$
	[Fefferman-Kobayashi-Lin-Morimae-Nishimura'16]	Corollary of [Le Gall-LWang'23]

1 Witness-preserving error reduction for QMA-like classes:

†QMA_UL only allows off-line log-size witness accesses.

2 QCMA achieves perfect completeness:

- ▶ [Jordan-Kobayashi-Nagaj-Nishimura'11]: $QCMA \subseteq QCMA_1$.
- ▶ [Delavenne-Le Gall-L.-Miyamoto'23]: stateQCMA \subseteq stateQCMA[1, 1 1/poly].

(3) How QMA witness states relate to stateQMA?

Theorem 2.2 (UQMA witness is in stateQMA, [Delavenne-Le Gall-L.-Miyamoto'23]).

- For any (L_{yes}, L_{no}) ∈ UQMA, unique-witness state family {|w_x⟩}_{x∈Lyes} corresponding to yes instances is in stateQMA_{1/poly}.
- (2) For any $(\mathcal{L}_{yes}, \mathcal{L}_{no}) \in \mathsf{PreciseUQMA}[1-1/\exp, \cdot]$, the unique-witness state family $\{|w_x\rangle\}_{x \in \mathcal{L}_{yes}}$ corresponding to *yes* instances is in statePreciseQMA_{1/exp}.

1 State-synthesizing complexity classes: Definitions

2 Which results can be "translated" into state-synthesizing classes?

3 Which results currently do not have state-synthesizing counterparts?

Which results currently do not have state-synthesizing counterparts?

Generally lacking of the notion of hardness for state-synthesizing classes! Only some variant of unitary-synthesizing classes admit the notions of reduction and hardness [Bostanci-Efron-Metger-Poremba-Qian-Yuen'23].

There are several results that relies on the notion of hardness:

- ▶ [Fefferman-Lin'18] PSPACE is in PreciseQMA.
- ► [Deshpande-Gorshkov-Fefferman'22] Local Hamiltonian Problem with exponentially small spectral gap (and promise gap) is PSPACE-hard.
- ► [Jeronimo-Wu'23] NEXP is in QMA⁺(2), where "+" indicates that witness states are entrywise non-negative states in both *yes* and *no* instances. See also the follow-up work [Bassirian-Fefferman-Marwaha'23], which shows that NEXP is in QMA⁺ with certain regime.

Question: Is there any new phenomenon in state-synthesizing complexity classess?

Thanks!