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What is quantum state testing

Task: Quantum state testing

Given two quantum devices Q0 and Q1 that prepare n-qubit quantum states ρ0 ∈ CN×N

and ρ1 ∈ CN×N , respectively. Decide whether dist(ρ0,ρ1)≤ ε1 or dist(ρ0,ρ1)≥ ε2.

Three types of access to quantum devices Qb for b ∈ {0,1} are considered:

▶ Sample access: Receive copies of the state ρb from the device Qb.
▶ Query access: Qb denotes the state-preparation circuit of the state ρb:

⋄ Black-box model. Qb is given as a black box (oracle).
⋄ White-box model. The (gate-based) description of Qb is provided.

Typical goal. Minimize the “complexity” of ρb (or its corresponding Qb) for b ∈ {0,1}:

Type of access Complexity measure

Sample access Sample complexity (the number of copies)

Query access (black-box) Query complexity (the number of queries)

Query access (white-box) Complexity class

In this talk: We focus on query access, primarily the white-box model (i.e., a promise
problem), while addressing all three types of access in our work.
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Quantum state testing: Hard and easy examples

Quantum state testing is hard in general, with complexity (linearly) depending on the
dimension N (or rank r), through some distance-like measures make these task easy.

Hard examples. Quantum state testing with respect to von Neumann entropy :
▶ QUANTUM ENTROPY DIFFERENCE (QED): S(ρ0)−S(ρ1) is ≥ 1/2 or ≤−1/2.

⋄ [Ben Aroya-Schwartz-Ta-Shma’08] QED is QSZK-complete.

▶ QUANTUM ENTROPY APPROXIMATION (QEA). S(ρ) is ≥ t(n)+1/2 or ≤ t(n)−1/2.

⋄ [BASTS08, Chailloux-Ciocan-Kerenidis-Vadhan’08] QEA is NIQSZK-complete.
⋄ [Bun-Kothari-Thaler’18] Query complexity lower bound for QED and QEA is Ω(

√
N).

Easy example. PURITY ESTIMATION: Decide whether Tr(ρ2) is ≥ 2/3 or ≤ 1/3.

▶ [Buhurman-Cleve-Watrous-de Wolf’01] Query complexity for approximating Tr(ρ2) to
within additive error ε is O(1/ε), with BQP containment in the white-box setting.

▶ [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek’02] The same bound and the BQP
containment apply for estimating Tr(ρq) for integer q > 1.


 These examples raise questions on estimating the trace of quantum state powers:

1 Is there an efficient quantum algorithm for estimating Tr(ρq) for non-integer q > 1?

2 Is estimating the trace of quantum state powers, e.g., Tr(ρ2), BQP-complete?
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Quantum state testing with respect to quantum q-Tsallis entropy

Quantum q-Tsallis entropy: power quantum entropy of order q

Sq(ρ) =
1−Tr(ρq)

q−1
=−Tr(ρq lnq(ρ)), where lnq(x) :=

1− x1−q

q−1
.

As q → 1, the von Neumman entropy is recovered: Sq(ρ) = S(ρ) and lnq(x) = ln(x).

Tsallis entropy has been independently rediscovered several times: [Havrda-Charvát’67,

Daróczy’70, Tsallis’88], with the quantum version introduced in [Raggio’95].

Quantum state testing with respect to quantum Tsallis entropy:
▶ QUANTUM q-TSALLIS ENTROPY DIFFERENCE (TSALLISQEDq):

Decide whether Sq(ρ0)−Sq(ρ1)≥ 0.001 or Sq(ρ0)−Sq(ρ1)≤−0.001.
▶ QUANTUM q-TSALLIS ENTROPY APPROXIMATION (TSALLISQEAq):

Decide whether Sq(ρ)≥ t(n)+0.001 or Sq(ρ)≤ t(n)−0.001.

Why investigate Sq(ρ) for non-integer q?

1 Since Sq(ρ)≤ S(ρ), Sq=1+ε (ρ) serves as a reasonable lower bound for S(ρ).
“Hardness of approximating von Neumann entropy”?

2 Hq=3/2(p) captures systems where both frequent and rare events matter.
Meanwhile, estimating Sq(ρ) for non-integer 1 < q < 2 seems to be challenging:

⋄ Hq=2(p), also known as Gini impurity, is very sensitive to rare events.
⋄ Examples in fluid dynamics: modeling velocity changes in turbulent flows [Beck’02].
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Main result (upper bounds): Quantum estimator for q-Tsallis entropy

Theorem 1 (Quantum estimator for q-Tsallis entropy).
Given quantum query access to the state-preparation circuit Q of an n-qubit state ρ, for
any q ≥ 1+Ω(1), there exists a quantum algorithm that estimates Sq(ρ) to within
additive error ε with query complexity O(1/ε1+ 1

q−1 ) = poly(1/ε).

▶ If the description of the state-preparation circuit is of size L(n), the time complexity

is O(L/ε1+ 1
q−1 ) = poly(n,1/ε).

⋄ As a corollary, for any q ≥ 1+Ω(1), TSALLISQEDq and TSALLISQEAq are in BQP.

▶ Using the samplizer [Wang-Zhang’24], allowing a quantum query-to-sample
simulation, the sample complexity required to estimate Sq(ρ) is Õ(1/ε3+ 2

q−1 ).

Prior works have complexity depending on the dimension N = 2n or the rank r of ρ:

1 Dimension dependence: [Acharya-Issa-Shende-Wagner’19].

2 Rank dependence: [Wang-Guan-Liu-Zhang-Ying’22, Wang-Zhang-Li’22, Wang-Zhang’24].
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Main results (lower bounds): Hardness for TSALLISQEDq and TSALLISQEAq

Let CONSTRANKTSALLISQEDq and CONSTRANKTSALLISQEAq be restricted variants of
TSALLISQEDq and TSALLISQEAq , respectively, where the rank of the state(s) is ≤ O(1).

Theorem 2 (Computational hardness for TSALLISQEDq and TSALLISQEAq).
The promise problems TSALLISQEDq and TSALLISQEAq capture the computational
power of respective complexity classes, depending on the regime of q:

1 Easy regimes. For q ∈ [1,2], CONSTRANKTSALLISQEDq and
CONSTRANKTSALLISQEAq are BQP-hard. The following corollaries holds:

⋄ For 1+Ω(1)≤ q ≤ 2, TSALLISQEDq and TSALLISQEAq are BQP-complete.
⋄ PURITY ESTIMATION is BQP-complete.

2 Hard regimes. For q ∈
(
1,1+ 1

n−1

]
, TSALLISQEDq is QSZK-hard under Karp

reduction, and consequently, TSALLISQEAq is QSZK-hard under Turing reduction.
For q = 1+ 1

n−1 , TSALLISQEAq is NIQSZK-hard under Karp reduction.

Our reductions for the hard regimes also leads to query and sample complexity lower
bounds for estimating Sq(ρ) to within additive error ε :

The regime of q Query complexity Sample complexity

q ≥ 1+Ω(1) Ω(1/
√

ε) Ω(1/ε)

1 < q ≤ 1+ 1
n−1 Ω(r1/3) Ω(r2/3)
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Summary: “Hardness of approximating von Neumann entropy”

Quick summary for estimating Sq(ρ) for q = 1 (von Neumann entropy) and q > 1:

q = 1 1 < q ≤ 1+ 1
n−1 1+Ω(1)≤ q ≤ 2 q > 2

TSALLISQEDq
QSZK-complete

[BASTS08]

QSZK-hard
Theorem 2(2)

BQP-complete
Theorem 1 & Theorem 2(1)

in BQP
Theorem 1

TSALLISQEAq
NIQSZK-complete

[BASTS08,CCKV08]

NIQSZK-hard∗

Theorem 2(2)

BQP-complete
Theorem 1 & Theorem 2(1)

in BQP
Theorem 1

A sharp phase transition occurs between the case of q = 1 and constant q > 1.

Why is the regime q ≥ 1+Ω(1) computationally easy?
Let’s focus on PURITY ESTIMATION (q = 2). Let {λk}k∈[2n ] be eigenvalues of an n-qubit
state ρ. For any state ρ̂ having eigenvalues at most 1/n, we have Tr(ρ̂2) = ∑k λ 2

k ≤ 1/n.
Hence, zero serves as a good estimate of Tr(ρ̂2) to within additive error 1/3.
 Only (sufficiently) large eigenvalues contribute to the estimate of Tr(ρ2)!

Q: How to estimate ∑k∈Ilarge
λ 2, where Ilarge is the index set of large eigenvalues λk?

▶ For integer q ≥ 2, SWAP test-like techniques [BCWdW01,EAO+02] provide a solution.

▶ For non-integer q ≥ 1+Ω(1), our result (Theorem 1) solves the problem.
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BQP containment for the regime q ≥ 1+Ω(1)

We begin with a procedure that accepts with probability 1
2

(
1+Tr(ρU f (ρ))

)
, utilizing the

Hadamard test [Kitaev’95, Aharonov-Jones-Landau’06]:

|0⟩ H H∣∣0̄〉
U f (ρ)∣∣0̄〉

Q∣∣0̄〉
▶ U f (ρ) is an approximate unitary block-encoding of f (ρ) = ρq−1, constructed from

the state-preparation circuit Q and implemented using quantum singular value
transformation [Gilyén-Su-Low-Wiebe’19], with an appropriate polynomial
approximation Pd(x) of f (x) = xq−1.

▶ This approach has been applied to estimate fidelity [Gilyén-Poremba’22], trace
distance [Wang-Zhang’23, Le Gall-L.-Wang’23], and von Neumann entropy [Le

Gall-L.-Wang’23, Wang-Zhang’24].

▶ The acceptance probability of this procedure can be further boosted, to say at
least 2/3 for yes instances, through quantum amplitude estimation.
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BQP containment (Cont.): Removing the rank dependence
Rank dependence in prior works. Prior works based on this approach require time
(or query) complexity that depends at least linearly on the rank. Specifically,

|Tr(ρ f (ρ)−Tr(ρPd(ρ))| ≤ ∑
0≤λ j<δ

∣∣λ j f (λ j)−λ jPd(λ j)
∣∣+ ∑

λ j≥δ

∣∣λ j f (λ j)−λ jPd(λ j)
∣∣

≤ r ·poly(δ )+O(ε).
To ensure that the last line is bounded by O(ε), δ must be sufficiently small, e.g.,
1/poly(r), introducing rank dependence. The target function f (x) is approximated by a
polynomial Pd(x) of degree d = O

( 1
δ log 1

ε
)

such that

max
x∈[δ ,1]

|Pd(x)− f (x)| ≤ ε and max
x∈[−1,1]

|P(x)| ≤ 1.

Removing the rank dependence. Instead, we need a polynomial that uniformly
approximates f (x). The best uniform (polynomial) approximation of xq was investigated
in [Bernstein’38], with a non-constructive proof in [Timan’63], satisfies:

max
x∈[0,1]

∣∣P∗
d′ (x)− xq∣∣→ 1/d′q, as d′ → ∞.

The remaining challenge is to make the coefficients of P∗
d′ (x) efficiently computable.

This can be achieved using the asymptotically best uniform (polynomial) approximation
P̂d̂(x), particularly via Chebyshev truncation and the de La Vallée Poussin partial sum:

max
x∈[0,1]

∣∣∣P̂d̂(x)− xq/2
∣∣∣≤ ε and max

x∈[−1,1]
|P(x)| ≤ 1, where d̂ = O(1/ε1/q).
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Hardness results via QJTq-based reductions

The key quantity underlying our proof is the quantum q-Jensen-(Shannon-)Tsallis
divergence, as defined in [Briët-Harremoës’09]:

QJTq(ρ0,ρ1) :=
1
2
(
Sq(ρ0)+Sq(ρ1)

)
−Sq

(ρ0 +ρ1

2

)
.

Specifically, we focus on reductions from restricted versions of quantum state testing
with respect to the trace distance (QSD), particularly decide whether T(ρ0,ρ1) is at
least 1− ε(n) or at most ε(n), to TSALLISQEDq or TSALLISQEAq :

Problem Regime of q Reduction from New inequalities

ConstRank-
TsallisQEDq

1≤q≤2
PUREQSD is BQP-hard

[RASW23]
Hq

( 1
2

)
−Hq

( 1−T
2

)
≤ QJTq ≤ Hq

( 1
2

)
Tq

TSALLISQEDq 1≤q≤1+ 1
n−1

QSD is QSZK-hard
[Wat02, Wat09]

Hq
( 1

2

)
−Hq

( 1−T
2

)
≤ QJTq

TSALLISQEAq q=1+ 1
n−1

QSCMM is NIQSZK-hard
[Kob03, BASTS10, CCKV08]

(
1−T− 1

2n

)
lnq(2n)≤ Sq ≤ lnq(2n(1−T))

Our upper bound for Tsallis binary entropy is also crucial: Hq(x)≤ Hq
( 1

2

)√
x(1− x).
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Hardness results via QJTq-based reductions (Cont.)
Proof Sketch (New Inequalities between QJTq and T). We follow the approach for
proving the inequalities for QJS from [Briët-Harremoës’09]. The key step is to establish the
data-processing inequality QJTq(Φ(ρ0),Φ(ρ1))≤ QJTq(ρ0,ρ1) for 1 ≤ q ≤ 2:
▶ For q = 1 (QJS), this follows from QJS(ρ0,ρ1) =

1
2

(
D
(
ρ0∥ ρ0+ρ1

2

)
+D

(
ρ1∥ ρ0+ρ1

2

))
.

▶ For 1 < q ≤ 2, we need the joint convexity for QJTq [Chen-Tropp’14, Virosztek’17]:

QJTq
(
(1−λ )ρ0 +λρ ′

0,(1−λ )ρ1 +λρ ′
1
)
≤ (1−λ )QJTq

(
ρ0,ρ1)+λQJTq(ρ ′

0,ρ
′
1
)
.

Proof Sketch (Reductions from variants of QSD to (CONSTRANK)TSALLISQEDq).
1 Pure-state reductions are inspired by [L.’23], namely QJTq can be viewed as a
distance version of Sq(ρ0)−Sq(ρ1) for 1 ≤ q ≤ 2. Consider the following states

ρ ′
0 := (p0 |0⟩⟨0|+ p1 |1⟩⟨1|)⊗ 1

2 (|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|),

ρ ′
1 := 1

2 |0⟩⟨0|⊗ |ψ0⟩⟨ψ0|+ 1
2 |1⟩⟨1|⊗ |ψ1⟩⟨ψ1| .

Using the pseudo-additivity and the joint entropy theorem for Sq, we obtain

Sq(ρ ′
0)−Sq(ρ ′

1) = (1− (q−1)Hq(p0)) ·QJTq(|ψ0⟩⟨ψ0| , |ψ1⟩⟨ψ1|)+Hq(p0)−Hq
( 1

2

)
.

By choosing a suitable p0 ∈ (0,1/2), the bounds for Sq(ρ ′
0)−Sq(ρ ′

1) follow from the
inequalities between QJTq and the trace distance.

2 Mixed-state reductions, inspired by [BASTS’08], are a bit more complicated. The
upper bound for Sq(ρ ′

0)−Sq(ρ ′
1) now needs the Fannes’ inequality for QJTq [Zhang’07]:

∀q > 1,
∣∣Sq(ρ0)−Sq(ρ1)

∣∣≤ T(ρ0,ρ1)
q · lnq(2n −1)+Hq(T(ρ0,ρ1)).
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Conclusions and open problems

Take-home messages on our work
1 For the regime q ≥ 1+Ω(1), estimating the quantum Tsallis entropy Sq(ρ),

equivalently the trace of quantum state powers, is computationally easy and has
query or sample complexity that is independent of the rank of the state.
This provides an efficiently computable lower bound for the von Neumann entropy!

2 For the regime 1 < q ≤ 1+ 1
n−1 , estimating the quantum Tsallis entropy Sq(ρ) is

computationally hard :

⋄ The white-box problems cannot be solved efficiently unless BQP = QSZK;
⋄ The rank dependence in query or sample complexity is unavoidable in black-box settings.

This can be interpreted as “hardness of approximating the von Neumann entropy”.

Open problems
1 Are there more applications for estimating quantum q-Tsallis entropy Sq(ρ) in the

regime 1 < q < 2, which has previously been challenging to compute?

2 Can we improve query and sample complexity bounds for the regime q ≥ 1+Ω(1)?

3 What are the computational complexity and hardness for estimating Sq(ρ) for the
regime 0 < q < 1? Can we show that TSALLISQEDq (or TSALLISQEAq) for the
regime 1 < q < 1+ 1

n−1 is contained in QSZK (or NIQSZK)?
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Thanks!
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