On estimating the trace of quantum state powers

Yupan Liu¹ Qisheng Wang^{2,1}

¹Graduate School of Mathematics, Nagoya University

²School of Informatics, University of Edinburgh

To appear in SODA 2025. Available on arXiv soon.

SEAS, Harvard University, October 2024

- 2 Main results: Upper and lower bounds
- **③** Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- Open problems

What is quantum state testing

Task: Quantum state testing

Given two quantum devices Q_0 and Q_1 that prepare *n*-qubit quantum states $\rho_0 \in \mathbb{C}^{N \times N}$ and $\rho_1 \in \mathbb{C}^{N \times N}$, respectively. Decide whether $\operatorname{dist}(\rho_0, \rho_1) \leq \varepsilon_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \varepsilon_2$.

Three types of access to quantum devices Q_b for $b \in \{0,1\}$ are considered:

- **Sample access**: Receive copies of the state ρ_b from the device Q_b .
- Query access: Q_b denotes the state-preparation circuit of the state ρ_b :
 - \diamond **Black-box model**. Q_b is given as a black box (oracle).
 - \diamond White-box model. The (gate-based) description of Q_b is provided.

Type of access	Complexity measure	
Sample access	ss Sample complexity (the number of copies	
Query access (black-box)	Query complexity (the number of queries)	
Query access (white-box)	Complexity class	

Typical goal. Minimize the	"complexity" of ρ_b	(or its corresponding	Q_b) for $b \in \{$	$\{0,1\}$:
----------------------------	--------------------------	-----------------------	------------------------	-------------

In this talk: We focus on query access, primarily the white-box model (i.e., a promise problem), while addressing all three types of access in our work.

Quantum state testing: Hard and easy examples

Quantum state testing is *hard* in general, with complexity (linearly) depending on the dimension N (or rank r), through some distance-like measures make these task *easy*.

Hard examples. Quantum state testing with respect to von Neumann entropy:

- ▶ QUANTUM ENTROPY DIFFERENCE (QED): $S(\rho_0) S(\rho_1)$ is $\geq 1/2$ or $\leq -1/2$.
 - ◊ [Ben Aroya-Schwartz-Ta-Shma'08] QED is QSZK-complete.
- ▶ QUANTUM ENTROPY APPROXIMATION (QEA). $S(\rho)$ is $\geq t(n) + 1/2$ or $\leq t(n) 1/2$.
 - ◊ [BASTS08, Chailloux-Ciocan-Kerenidis-Vadhan'08] QEA is NIQSZK-complete.
 - ♦ [Bun-Kothari-Thaler'18] Query complexity lower bound for QED and QEA is $\Omega(\sqrt{N})$.

Easy example. PURITY ESTIMATION: Decide whether $Tr(\rho^2)$ is $\geq 2/3$ or $\leq 1/3$.

- ► [Buhurman-Cleve-Watrous-de Wolf'01] Query complexity for approximating $Tr(\rho^2)$ to within additive error ε is $O(1/\varepsilon)$, with BQP containment in the white-box setting.
- ► [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek'02] The same bound and the BQP containment apply for estimating Tr(ρ^q) for integer q > 1.
- These examples raise questions on estimating the trace of quantum state powers:
 - **()** Is there an efficient quantum algorithm for estimating $Tr(\rho^q)$ for *non-integer* q > 1?
 - **2** Is estimating the trace of quantum state powers, e.g., $Tr(\rho^2)$, BQP-*complete*?

Quantum state testing with respect to quantum q-Tsallis entropy

Quantum q-Tsallis entropy: power quantum entropy of order q

$$S_q(\rho) = \frac{1 - \text{Tr}(\rho^q)}{q - 1} = -\text{Tr}(\rho^q \ln_q(\rho)), \text{ where } \ln_q(x) \coloneqq \frac{1 - x^{1 - q}}{q - 1}.$$

As $q \to 1$, the von Neumman entropy is recovered: $S_q(\rho) = S(\rho)$ and $\ln_q(x) = \ln(x)$.

Tsallis entropy has been independently rediscovered several times: [Havrda-Charváť67, Daróczy'70, Tsallis'88], with the quantum version introduced in [Raggio'95].

Quantum state testing with respect to quantum Tsallis entropy:

- ▶ QUANTUM *q*-TSALLIS ENTROPY DIFFERENCE (TSALLISQED*q*): Decide whether $S_q(\rho_0) - S_q(\rho_1) \ge 0.001$ or $S_q(\rho_0) - S_q(\rho_1) \le -0.001$.
- ► QUANTUM *q*-TSALLIS ENTROPY APPROXIMATION (TSALLISQEA_{*q*}): Decide whether $S_q(\rho) \ge t(n) + 0.001$ or $S_q(\rho) \le t(n) - 0.001$.

Why investigate $S_q(\rho)$ for non-integer q?

• Since $S_q(\rho) \le S(\rho)$, $S_{q=1+\varepsilon}(\rho)$ serves as a reasonable lower bound for $S(\rho)$. "Hardness of approximating von Neumann entropy"?

Ø H_{q=3/2}(p) captures systems where both frequent and rare events matter. Meanwhile, estimating S_q(ρ) for non-integer 1 < q < 2 seems to be challenging:</p>

- $\diamond H_{q=2}(p)$, also known as *Gini impurity*, is very sensitive to rare events.
- Examples in fluid dynamics: modeling velocity changes in turbulent flows [Beck'02].

- 2 Main results: Upper and lower bounds
- 3 Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- Open problems

Main result (upper bounds): Quantum estimator for q-Tsallis entropy

Theorem 1 (Quantum estimator for *q*-Tsallis entropy).

Given quantum query access to the state-preparation circuit Q of an *n*-qubit state ρ , for any $q \ge 1 + \Omega(1)$, there exists a quantum algorithm that estimates $S_q(\rho)$ to within additive error ε with query complexity $O(1/\varepsilon^{1+\frac{1}{q-1}}) = \text{poly}(1/\varepsilon)$.

► If the description of the state-preparation circuit is of size L(n), the time complexity is $O(L/\varepsilon^{1+\frac{1}{q-1}}) = poly(n, 1/\varepsilon)$.

 \diamond As a corollary, for any $q \ge 1 + \Omega(1)$, TSALLISQED_q and TSALLISQEA_q are in BQP.

Using the samplizer [Wang-Zhang'24], allowing a quantum query-to-sample simulation, the sample complexity required to estimate S_q(ρ) is Õ(1/ε^{3+ ²/_{q-1}}).

Prior works have complexity depending on the dimension $N = 2^n$ or the rank *r* of ρ :

- 1 Dimension dependence: [Acharya-Issa-Shende-Wagner'19].
- 2 Rank dependence: [Wang-Guan-Liu-Zhang-Ying'22, Wang-Zhang-Li'22, Wang-Zhang'24].

Main results (lower bounds): Hardness for TSALLISQED_q and TSALLISQEA_q

Let CONSTRANKTSALLISQED_q and CONSTRANKTSALLISQEA_q be restricted variants of TSALLISQED_q and TSALLISQEA_q, respectively, where the rank of the state(s) is $\leq O(1)$.

Theorem 2 (Computational hardness for TSALLISQED_q and TSALLISQEA_q).

The promise problems TSALLISQED_q and TSALLISQEA_q capture the computational power of respective complexity classes, depending on the regime of q:

• Easy regimes. For $q \in [1,2]$, CONSTRANKTSALLISQED_q and CONSTRANKTSALLISQEA_q are BQP-hard. The following corollaries holds:

- ◊ For 1 + Ω(1) ≤ q ≤ 2, TSALLISQED_q and TSALLISQEA_q are BQP-complete.
- ♦ PURITY ESTIMATION is BQP-complete.
- **@ Hard regimes.** For $q \in (1, 1 + \frac{1}{n-1}]$, TSALLISQED_q is QSZK-hard under Karp reduction, and consequently, TSALLISQEA_q is QSZK-hard under Turing reduction. For $q = 1 + \frac{1}{n-1}$, TSALLISQEA_q is NIQSZK-hard under Karp reduction.

Our reductions for the hard regimes also leads to query and sample complexity lower bounds for estimating $S_q(\rho)$ to within additive error ε :

The regime of q	Query complexity	Sample complexity
$q \geq 1 + \Omega(1)$	$\Omega(1/\sqrt{\epsilon})$	$\Omega(1/arepsilon)$
$1 < q \le 1 + \tfrac{1}{n-1}$	$\Omega(r^{1/3})$	$\Omega(r^{2/3})$

Summary: "Hardness of approximating von Neumann entropy"

Quick summary for estimating $S_q(\rho)$ for q = 1 (von Neumann entropy) and q > 1:

	q = 1	$1 < q \leq 1 + \tfrac{1}{n-1}$	$1 + \Omega(1) \leq q \leq 2$	q > 2
TsallisQED _q	QSZK-complete	QSZK-hard	BQP-complete	in BQP
	[BASTS08]	Theorem 2(2)	Theorem 1 & Theorem 2(1)	Theorem 1
TSALLISQEAq	NIQSZK-complete	NIQSZK-hard*	BQP-complete	in BQP
	[BASTS08,CCKV08]	Theorem 2(2)	Theorem 1 & Theorem 2(1)	Theorem 1

A sharp phase transition occurs between the case of q = 1 and constant q > 1.

Why is the regime $q \ge 1 + \Omega(1)$ computationally easy?

Let's focus on PURITY ESTIMATION (q = 2). Let $\{\lambda_k\}_{k \in [2^n]}$ be eigenvalues of an *n*-qubit state ρ . For any state $\hat{\rho}$ having eigenvalues at most 1/n, we have $\operatorname{Tr}(\hat{\rho}^2) = \sum_k \lambda_k^2 \leq 1/n$. Hence, *zero* serves as a good estimate of $\operatorname{Tr}(\hat{\rho}^2)$ to within additive error 1/3.

4 Only (sufficiently) large eigenvalues contribute to the estimate of $Tr(\rho^2)$!

Q: How to estimate $\sum_{k \in \mathcal{I}_{large}} \lambda^2$, where \mathcal{I}_{large} is the index set of large eigenvalues λ_k ?

For integer $q \ge 2$, SWAP test-like techniques [BCWdW01,EAO+02] provide a solution.

For non-integer $q \ge 1 + \Omega(1)$, our result (Theorem 1) solves the problem.

2 Main results: Upper and lower bounds

8 Proof techniques: Uniform polynomial approximation and QJT_q-based reductions

Open problems

BQP containment for the regime $q \ge 1 + \Omega(1)$

We begin with a procedure that accepts with probability $\frac{1}{2}(1 + \text{Tr}(\rho U_{f(\rho)}))$, utilizing the Hadamard test [Kitaev'95, Aharonov-Jones-Landau'06]:

- ► $U_{f(\rho)}$ is an *approximate* unitary block-encoding of $f(\rho) = \rho^{q-1}$, constructed from the state-preparation circuit *Q* and implemented using quantum singular value transformation [Gilyén-Su-Low-Wiebe'19], with an appropriate polynomial approximation $P_d(x)$ of $f(x) = x^{q-1}$.
- This approach has been applied to estimate fidelity [Gilyén-Poremba'22], trace distance [Wang-Zhang'23, Le Gall-L.-Wang'23], and von Neumann entropy [Le Gall-L.-Wang'23, Wang-Zhang'24].
- The acceptance probability of this procedure can be further *boosted*, to say at least 2/3 for *yes* instances, through quantum amplitude estimation.

BQP containment (Cont.): Removing the rank dependence

Rank dependence in prior works. Prior works based on this approach require time (or query) complexity that depends at least *linearly* on the rank. Specifically,

$$\begin{split} |\mathrm{Tr}(
ho f(oldsymbol{
ho}) - \mathrm{Tr}(
ho P_d(
ho))| &\leq \sum_{0\leq\lambda_j<\delta} \left|\lambda_j f(\lambda_j) - \lambda_j P_d(\lambda_j)\right| + \sum_{\lambda_j\geq\delta} \left|\lambda_j f(\lambda_j) - \lambda_j P_d(\lambda_j)\right| \ &\leq r\cdot\mathrm{poly}(\delta) + O(arepsilon). \end{split}$$

To ensure that the last line is bounded by $O(\varepsilon)$, δ must be *sufficiently small*, e.g., 1/poly(r), introducing rank dependence. The target function f(x) is approximated by a polynomial $P_d(x)$ of degree $d = O(\frac{1}{\delta} \log \frac{1}{\varepsilon})$ such that

$$\max_{x \in [\delta,1]} |P_d(x) - f(x)| \le \varepsilon \quad \text{and} \quad \max_{x \in [-1,1]} |P(x)| \le 1.$$

Removing the rank dependence. Instead, we need a polynomial that *uniformly* approximates f(x). The best uniform (polynomial) approximation of x^q was investigated in [Bernstein'38], with a non-constructive proof in [Timan'63], satisfies:

$$\max_{x\in[0,1]} \left| P^*_{d'}(x) - x^q \right| \to 1/d'^q, \quad \text{ as } d' \to \infty.$$

The remaining challenge is to make the coefficients of $P_{d'}^*(x)$ efficiently computable. This can be achieved using the asymptotically best uniform (polynomial) approximation $\widehat{P}_{d}(x)$, particularly via Chebyshev truncation and the de La Vallée Poussin partial sum:

$$\max_{x\in[0,1]} \left|\widehat{P}_{\hat{d}}(x) - x^q/2\right| \leq \varepsilon \quad \text{and} \quad \max_{x\in[-1,1]} |P(x)| \leq 1, \quad \text{where } \hat{d} = O(1/\varepsilon^{1/q}).$$

Hardness results via QJT_q-based reductions

The key quantity underlying our proof is the quantum q-Jensen-(Shannon-)Tsallis divergence, as defined in [Briët-Harremoës'09]:

$$\mathsf{QJT}_{\boldsymbol{q}}(\boldsymbol{\rho}_0,\boldsymbol{\rho}_1) \coloneqq \frac{1}{2} \big(\mathsf{S}_{\boldsymbol{q}}(\boldsymbol{\rho}_0) + \mathsf{S}_{\boldsymbol{q}}(\boldsymbol{\rho}_1) \big) - \mathsf{S}_{\boldsymbol{q}} \Big(\frac{\boldsymbol{\rho}_0 + \boldsymbol{\rho}_1}{2} \Big).$$

Specifically, we focus on reductions from restricted versions of quantum state testing with respect to the trace distance (QSD), particularly decide whether $T(\rho_0, \rho_1)$ is at least $1 - \varepsilon(n)$ or at most $\varepsilon(n)$, to TSALLISQED_q or TSALLISQEA_q:

Problem	Regime of q	Reduction from	New inequalities
ConstRank- TsallisQED _q	$1 \le q \le 2$	PUREQSD is BQP-hard [RASW23]	$H_{q}\left(\tfrac{1}{2}\right)\!-\!H_{q}\!\left(\tfrac{1-T}{2}\right) \leq QJT_{q} \leq H_{q}\!\left(\tfrac{1}{2}\right)\!T^{q}$
TSALLISQEDq	$1\!\leq\!q\!\leq\!1\!+\!\tfrac{1}{n\!-\!1}$	QSD is QSZK-hard [Wat02, Wat09]	$\mathbf{H}_{q}\left(\frac{1}{2}\right) - \mathbf{H}_{q}\left(\frac{1-\mathrm{T}}{2}\right) \leq QJT_{q}$
TSALLISQEA _q	$q = 1 + \frac{1}{n-1}$	QSCMM is NIQSZK-hard [Kob03, BASTS10, CCKV08]	$\left(1\!-\!\mathbf{T}\!-\!\frac{1}{2^n}\right)\ln_q(2^n)\leq\mathbf{S}_q\leq\ln_q(2^n(1\!-\!\mathbf{T}))$

Our upper bound for Tsallis binary entropy is also crucial: $H_q(x) \le H_q(\frac{1}{2})\sqrt{x(1-x)}$.

Hardness results via QJT_q-based reductions (Cont.)

Proof Sketch (New Inequalities between QJT_q and T). We follow the approach for proving the inequalities for QJS from [Briët-Harremoës'09]. The key step is to establish the data-processing inequality $QJT_q(\Phi(\rho_0), \Phi(\rho_1)) \leq QJT_q(\rho_0, \rho_1)$ for $1 \leq q \leq 2$:

- ► For q = 1 (QJS), this follows from $QJS(\rho_0, \rho_1) = \frac{1}{2} \left(D(\rho_0 \| \frac{\rho_0 + \rho_1}{2}) + D(\rho_1 \| \frac{\rho_0 + \rho_1}{2}) \right)$.
- For $1 < q \le 2$, we need the joint convexity for QJT_q [Chen-Tropp'14, Virosztek'17]:

$$\mathsf{QJT}_q\big((1-\lambda)\rho_0 + \lambda\rho_0', (1-\lambda)\rho_1 + \lambda\rho_1'\big) \leq (1-\lambda)\mathsf{QJT}_q\big(\rho_0,\rho_1\big) + \lambda\mathsf{QJT}_q\big(\rho_0',\rho_1'\big).$$

Proof Sketch (Reductions from variants of QSD to (CONSTRANK)TSALLISQED_q). **Pure-state reductions** are inspired by [L.'23], namely QJT_q can be viewed as a distance version of $S_q(\rho_0) - S_q(\rho_1)$ for $1 \le q \le 2$. Consider the following states

$$\begin{split} \rho_0' &:= (p_0 | 0 \rangle \langle 0 | + p_1 | 1 \rangle \langle 1 |) \otimes \frac{1}{2} (| \psi_0 \rangle \langle \psi_0 | + | \psi_1 \rangle \langle \psi_1 |), \\ \rho_1' &:= \frac{1}{2} | 0 \rangle \langle 0 | \otimes | \psi_0 \rangle \langle \psi_0 | + \frac{1}{2} | 1 \rangle \langle 1 | \otimes | \psi_1 \rangle \langle \psi_1 |. \end{split}$$

Using the pseudo-additivity and the joint entropy theorem for S_q , we obtain

$$\mathbf{S}_q(\boldsymbol{\rho}_0') - \mathbf{S}_q(\boldsymbol{\rho}_1') = (1 - (q - 1)\mathbf{H}_q(p_0)) \cdot \mathsf{QJT}_q(|\boldsymbol{\psi}_0\rangle \langle \boldsymbol{\psi}_0|, |\boldsymbol{\psi}_1\rangle \langle \boldsymbol{\psi}_1|) + \mathbf{H}_q(p_0) - \mathbf{H}_q(\frac{1}{2}).$$

By choosing a suitable $p_0 \in (0, 1/2)$, the bounds for $S_q(\rho'_0) - S_q(\rho'_1)$ follow from the inequalities between QJT_q and the trace distance.

② Mixed-state reductions, inspired by [BASTS'08], are a bit more complicated. The upper bound for $S_q(\rho'_0) - S_q(\rho'_1)$ now needs the Fannes' inequality for QJT_q [Zhang'07]:

$$\forall q > 1, \quad \left| S_q(\rho_0) - S_q(\rho_1) \right| \le T(\rho_0, \rho_1)^q \cdot \ln_q(2^n - 1) + H_q(T(\rho_0, \rho_1)).$$

- 2 Main results: Upper and lower bounds
- **③** Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- Open problems

Conclusions and open problems

Take-home messages on our work

● For the regime q ≥ 1 + Ω(1), estimating the quantum Tsallis entropy S_q(ρ), equivalently the trace of quantum state powers, is computationally *easy* and has query or sample complexity that is *independent* of the rank of the state. This provides an efficiently computable lower bound for the von Neumann entropy!

Ø For the regime 1 < q ≤ 1 + $\frac{1}{n-1}$, estimating the quantum Tsallis entropy S_q(ρ) is computationally *hard*:

- $\diamond~$ The white-box problems cannot be solved efficiently unless BQP = QSZK;
- $\diamond~$ The rank dependence in query or sample complexity is unavoidable in black-box settings.

This can be interpreted as "hardness of approximating the von Neumann entropy".

Open problems

- Are there more applications for estimating quantum *q*-Tsallis entropy S_q(ρ) in the regime 1 < q < 2, which has previously been challenging to compute?</p>
- **②** Can we improve query and sample complexity bounds for the regime $q \ge 1 + \Omega(1)$?
- **(a)** What are the computational complexity and hardness for estimating $S_q(\rho)$ for the regime 0 < q < 1? Can we show that TSALLISQED_q (or TSALLISQEA_q) for the regime $1 < q < 1 + \frac{1}{n-1}$ is contained in QSZK (or NIQSZK)?

Thanks!