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What is quantum state testing
An n-qubit quantum state ρ is a N×N positive semi-definite matrix satisfying Tr(ρ) = 1.

Task: Quantum state testing
Given two quantum devices Q0 and Q1 that prepare n-qubit quantum states ρ0 and ρ1,
respectively. Decide whether dist(ρ0,ρ1)≤ ε1 or dist(ρ0,ρ1)≥ ε2.

Consider query access to quantum devices Qb for b ∈ {0,1}, where each device
denotes the state-preparation circuit of the state ρb:

⋄ Black-box model: Qb is given as a black box (oracle).

⋄ White-box model: The (gate-based) description of Qb is provided.

Typical goal. Minimize the “complexity” of ρb (or its corresponding Qb) for b ∈ {0,1}:

Type of access Complexity measure

Query access (black-box) Query complexity (the number of queries)

Query access (white-box) Complexity class

In this talk: We focus on the white-box model (i.e., a promise problem), while
addressing three types of access (including sample access) in our work.
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Quantum state testing: Hard and easy examples

Quantum state testing is hard in general, with complexity (linearly) depending on the
dimension N (or rank r), through some distance-like measures make these task easy.

Hard examples. Quantum state testing with respect to von Neumann entropy :
▶ QUANTUM ENTROPY DIFFERENCE (QED): S(ρ0)−S(ρ1) is ≥ 1/2 or ≤−1/2.

⋄ [Ben Aroya-Schwartz-Ta-Shma’08] QED is QSZK-complete.
⋄ [Bun-Kothari-Thaler’18] Query complexity lower bound for QED is Ω̃(

√
N).

Easy example. PURITY ESTIMATION: Decide whether Tr(ρ2) is ≥ 2/3 or ≤ 1/3.

▶ [Buhurman-Cleve-Watrous-de Wolf’01] Query complexity for approximating Tr(ρ2) to
within additive error ε is O(1/ε), with BQP containment in the white-box setting.

▶ [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek’02] The same bound and the BQP
containment apply for estimating Tr(ρq) for integer q > 1.

Purity is closely related to the quantum linear entropy SL(ρ) = 1−Tr(ρ2).


 These examples raise questions on estimating the trace of quantum state powers:

1 Is there an efficient quantum algorithm for estimating Tr(ρq) for non-integer q > 1?

2 Is estimating the trace of quantum state powers, e.g., Tr(ρ2), BQP-complete?
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Quantum state testing with respect to quantum q-Tsallis entropy

Quantum q-Tsallis entropy: power quantum entropy of order q

Sq(ρ) =
1−Tr(ρq)

q−1
=−Tr(ρq lnq(ρ)), where lnq(x) :=

1− x1−q

q−1
.

As q → 1, the von Neumman entropy is recovered: Sq=1(ρ) = S(ρ) and lnq=1(x) = ln(x).
When q = 2, the quantum linear entropy is recovered: Sq=2(ρ) = SL(ρ) = 1−Tr(ρ2).

Tsallis entropy has been independently rediscovered several times: [Havrda-Charvát’67,

Daróczy’70, Tsallis’88], with the quantum version introduced in [Raggio’95].

Quantum state testing with respect to quantum Tsallis entropy:

▶ QUANTUM q-TSALLIS ENTROPY DIFFERENCE (TSALLISQEDq):
Decide whether Sq(ρ0)−Sq(ρ1)≥ 0.001 or Sq(ρ0)−Sq(ρ1)≤−0.001.

Why investigate Sq(ρ) for non-integer q?

1 Since Sq(ρ)≤ S(ρ), Sq=1+ε (ρ) serves as a reasonable lower bound for S(ρ).
“Hardness of approximating von Neumann entropy”?

2 Hq=3/2(p) captures systems where both frequent and rare events matter.
Meanwhile, estimating Sq(ρ) for non-integer 1 < q < 2 seems to be challenging:

⋄ Examples in fluid dynamics: modeling velocity changes in turbulent flows [Beck’02].
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Main results (upper bounds): Quantum estimator for q-Tsallis entropy

Theorem 1 (Quantum estimator for q-Tsallis entropy).
Given quantum query access to the state-preparation circuit Q of an n-qubit state ρ, for
any q ≥ 1+Ω(1), there exists a quantum algorithm that estimates Sq(ρ) to within
additive error ε with query complexity O(1/ε1+ 1

q−1 ) = poly(1/ε).

⋄ As a corollary, for any q ≥ 1+Ω(1), TSALLISQEDq is in BQP.

Prior works have complexity (at least linearly) depending on the dimension N = 2n or
the rank r of ρ:

1 Dimension dependence: [Acharya-Issa-Shende-Wagner’19].

2 Rank dependence: [Wang-Guan-Liu-Zhang-Ying’22, Wang-Zhang-Li’22, Wang-Zhang’24].

Our work provides an exponential improvement over the prior best results!
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Main results (lower bounds): Hardness for TSALLISQEDq

Let CONSTRANKTSALLISQEDq be a restricted variant of TSALLISQEDq , where the rank of
the states is at most O(1).

Theorem 2 (Computational hardness for TSALLISQEDq).
The promise problem TSALLISQEDq capture the computational power of respective
complexity classes, depending on the regime of q:

1 Easy regimes. For q ∈ [1,2], CONSTRANKTSALLISQEDq is BQP-hard. The following
corollaries holds:

⋄ For 1+Ω(1)≤ q ≤ 2, TSALLISQEDq is BQP-complete.
⋄ PURITY ESTIMATION is BQP-complete.

2 Hard regimes. For q ∈
(
1,1+ 1

n−1

]
, TSALLISQEDq is QSZK-hard.

Our reductions for the hard regimes also leads to quantitative (query complexity) lower
bounds for estimating Sq(ρ) to within additive error ε:

The regime of q Query complexity

q ≥ 1+Ω(1) Ω(1/
√

ε)

1 < q ≤ 1+ 1
n−1 Ω(r1/3)
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Summary: “A dichotomy theorem on approximating von Neumann entropy”

Quick summary for estimating Sq(ρ) for q = 1 (von Neumann entropy) and q > 1:

q = 1 1 < q ≤ 1+ 1
n−1 1+Ω(1)≤ q ≤ 2 q > 2

TSALLISQEDq
QSZK-complete

[BASTS08]

QSZK-hard
Theorem 2(2)

BQP-complete
Theorem 1 & Theorem 2(1)

in BQP
Theorem 1

A sharp phase transition occurs between the case of q = 1 and constant q > 1.

Why is the regime q ≥ 1+Ω(1) computationally easy?
Let’s focus on PURITY ESTIMATION (q = 2). Let {λk}k∈[2n ] be eigenvalues of an n-qubit
state ρ. For any state ρ̂ having eigenvalues at most 1/n, we have Tr(ρ̂2) = ∑k λ 2

k ≤ 1/n.
Hence, zero serves as a good estimate of Tr(ρ̂2) to within additive error 1/3.
 Only (sufficiently) large eigenvalues contribute to the estimate of Tr(ρ2)!

Q: How to estimate ∑k∈Ilarge
λ 2, where Ilarge is the index set of large eigenvalues λk?

▶ For integer q ≥ 2, SWAP test-like techniques [BCWdW01,EAO+02] provide a solution.

▶ For non-integer q ≥ 1+Ω(1), our result (Theorem 1) solves the problem.
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BQP containment for the regime q ≥ 1+Ω(1)

We begin by implementing a two-outcome measurement {Π0,Π1}, where

Πb :=
1
2

(
I +(−1)bU f (ρ)

)
for b ∈ {0,1},

using the Hadamard test [Kitaev’95, Aharonov-Jones-Landau’06]:
▶ U f (ρ) is an approximate unitary block-encoding of f (ρ) = ρq−1, constructed from

the state-preparation circuit Q and implemented using quantum singular value
transformation [Gilyén-Su-Low-Wiebe’19], with an appropriate polynomial
approximation Pd(x) of f (x) = xq−1.

▶ {Π0,Π1} is efficiently implementable if U f (ρ) can be efficiently implemented!

Efficiently implementation of the measurement. We need a polynomial that
uniformly approximates f (x). The best uniform (polynomial) approximation of xq was
investigated in [Bernstein’38], with a non-constructive proof in [Timan’63], satisfies:

max
x∈[0,1]

∣∣P∗
d′ (x)− xq∣∣→ 1/d′q, as d′ → ∞.

The remaining challenge is to make the coefficients of P∗
d′ (x) efficiently computable.

This can be achieved using the asymptotically best uniform (polynomial) approximation
P̂d̂(x), particularly via Chebyshev truncation and the de La Vallée Poussin partial sum:

max
x∈[0,1]

∣∣∣P̂d̂(x)− xq/2
∣∣∣≤ ε and max

x∈[−1,1]
|P(x)| ≤ 1, where d̂ = O(1/ε1/q).
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Hardness results via QJTq-based reductions

The key quantity underlying our proof is the quantum q-Jensen-(Shannon-)Tsallis
divergence, as defined in [Briët-Harremoës’09]:

QJTq(ρ0,ρ1) :=
1
2
(
Sq(ρ0)+Sq(ρ1)

)
−Sq

(ρ0 +ρ1

2

)
.

Specifically, we focus on reductions from restricted versions of quantum state testing
with respect to the trace distance (QSD), particularly decide whether T(ρ0,ρ1) is at
least 1− ε(n) or at most ε(n), to TSALLISQEDq (or TSALLISQEAq):

Problem Regime of q Reduction from New inequalities

ConstRank-
TsallisQEDq

1≤q≤2
PUREQSD is BQP-hard

[RASW23]
Hq

( 1
2

)
−Hq

( 1−T
2

)
≤ QJTq ≤ Hq

( 1
2

)
Tq

TSALLISQEDq 1≤q≤1+ 1
n−1

QSD is QSZK-hard
[Wat02, Wat09]

Hq
( 1

2

)
−Hq

( 1−T
2

)
≤ QJTq

TSALLISQEAq q=1+ 1
n−1

QSCMM is NIQSZK-hard
[Kob03, BASTS10, CCKV08]

(
1−T− 1

2n

)
lnq(2n)≤ Sq ≤ lnq(2n(1−T))

Our upper bound for Tsallis binary entropy is also crucial: Hq(x)≤ Hq
( 1

2

)√
x(1− x).
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Conclusions and open problems

Take-home messages on our work
1 For the regime q ≥ 1+Ω(1), estimating the quantum Tsallis entropy Sq(ρ),

equivalently the trace of quantum state powers, is computationally easy and has
quantitative bounds that are independent of the rank of the state.
This provides an efficiently computable lower bound for the von Neumann entropy!

2 For the regime 1 < q ≤ 1+ 1
n−1 , estimating the quantum Tsallis entropy Sq(ρ) is

computationally hard :

⋄ The white-box problems cannot be solved efficiently unless BQP = QSZK;
⋄ The rank dependence in quantitative bounds is unavoidable in black-box settings.

This can be interpreted as “hardness of approximating the von Neumann entropy”.

Open problems
1 Are there more applications for estimating quantum q-Tsallis entropy Sq(ρ) in the

regime 1 < q < 2, which has previously been challenging to compute?

2 Can we improve these quantitative bounds for the regime q ≥ 1+Ω(1)?

3 What are the computational complexity and hardness for estimating the quantum
Rényi entropy?
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Thanks!
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