On estimating the trace of quantum state powers

Yupan Liu¹ Qisheng Wang^{2,1}

¹Graduate School of Mathematics, Nagoya University

²School of Informatics, University of Edinburgh

Available on [arXiv:2410.13559](https://arxiv.org/abs/2410.13559)

SODA 2025, New Orleans

- [Main results: Upper and lower bounds](#page-5-0)
- \bullet Proof techniques: Uniform polynomial approximation and QJT_q -based reductions
- [Open problems](#page-12-0)

What is quantum state testing

An *n*-qubit quantum state ρ is a $N \times N$ positive semi-definite matrix satisfying $Tr(\rho) = 1$.

Task: Quantum state testing

Given two quantum devices O_0 and O_1 that prepare *n*-qubit quantum states ρ_0 and ρ_1 , respectively. Decide whether $dist(\rho_0, \rho_1) \leq \varepsilon_1$ or $dist(\rho_0, \rho_1) \geq \varepsilon_2$.

Consider query access to quantum devices Q_b for $b \in \{0,1\}$, where each device denotes the state-preparation circuit of the state ρ_b :

- *⋄* **Black-box model**: *Q^b* is given as a black box (oracle).
- *⋄* **White-box model**: The (gate-based) description of *Q^b* is provided.

Typical goal. Minimize the "complexity" of ρ_b (or its corresponding O_b) for $b \in \{0,1\}$:

In this talk: We focus on the white-box model (i.e., a promise problem), while addressing three types of access (including *sample access*) in our work.

Quantum state testing: Hard and easy examples

Quantum state testing is *hard* in general, with complexity (linearly) depending on the dimension *N* (or rank *r*), through some distance-like measures make these task *easy*.

Hard examples. Quantum state testing with respect to *von Neumann entropy*:

- ▶ QUANTUM ENTROPY DIFFERENCE (QED): S(ρ0)*−*S(ρ1) is *≥* 1*/*2 or *≤ −*1*/*2.
	- *⋄* [Ben Aroya-Schwartz-Ta-Shma'08] QED is QSZK-complete.
	- *↑* [Bun-Kothari-Thaler'18] Query complexity lower bound for QED is $\tilde{\Omega}(\sqrt{N})$.

Easy example. PURITY ESTIMATION: Decide whether $\text{Tr}(\rho^2)$ is $\geq 2/3$ or $\leq 1/3$.

- \blacktriangleright [Buhurman-Cleve-Watrous-de Wolf'01] Query complexity for approximating $\text{Tr}(\rho^2)$ to within additive error ε is $O(1/\varepsilon)$, with BQP containment in the white-box setting.
- ▶ [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek'02] The same bound and the BQP containment apply for estimating $\text{Tr}(\rho^q)$ for integer $q > 1$.

Purity is closely related to the *quantum linear entropy* $S_L(\rho) = 1 - Tr(\rho^2)$.

- **These examples raise questions on estimating the trace of quantum state powers:**
All the trace of quantum state powers:
	- **D** Is there an efficient quantum algorithm for estimating $\text{Tr}(\rho^q)$ for *non-integer* $q > 1$?
	- \bullet Is estimating the trace of quantum state powers, e.g., $\text{Tr}(\rho^2)$, BQP-*complete*?

Quantum state testing with respect to quantum *q*-Tsallis entropy

Quantum *q***-Tsallis entropy**: power quantum entropy of order *q*

$$
\mathrm{S}_q(\rho)=\frac{1-\mathrm{Tr}(\rho^q)}{q-1}=-\mathrm{Tr}(\rho^q\ln_q(\rho)), \text{ where }\ln_q(x)\coloneqq\frac{1-x^{1-q}}{q-1}.
$$

As $q \to 1$, the von Neumman entropy is recovered: $S_{q=1}(\rho) = S(\rho)$ and $\ln_{q=1}(x) = \ln(x)$. When $q = 2$, the quantum linear entropy is recovered: $S_{q=2}(\rho) = S_L(\rho) = 1 - \text{Tr}(\rho^2)$.

Tsallis entropy has been independently rediscovered several times: [Havrda-Charvát'67, Daróczy'70, Tsallis'88], with the quantum version introduced in [Raggio'95].

Quantum state testing with respect to quantum Tsallis entropy:

▶ QUANTUM *q*-TSALLIS ENTROPY DIFFERENCE (TSALLISQED*q*): Decide whether $S_q(\rho_0) - S_q(\rho_1) \ge 0.001$ or $S_q(\rho_0) - S_q(\rho_1) \le -0.001$.

Why investigate S*q*(ρ) **for non-integer** *q***?**

1 Since $S_q(\rho) \leq S(\rho)$, $S_{q=1+\epsilon}(\rho)$ serves as a reasonable lower bound for $S(\rho)$. *"Hardness of approximating von Neumann entropy"?*

² H*q*=3*/*² (*p*) captures systems where both frequent and rare events matter. Meanwhile, estimating $S_q(\rho)$ for non-integer $1 < q < 2$ seems to be challenging:

⋄ Examples in fluid dynamics: modeling velocity changes in turbulent flows [Beck'02].

- [Main results: Upper and lower bounds](#page-5-0)
- \bullet Proof techniques: Uniform polynomial approximation and QJT_q -based reductions
- [Open problems](#page-12-0)

Main results (upper bounds): Quantum estimator for *q*-Tsallis entropy

Theorem 1 (Quantum estimator for *q*-Tsallis entropy).

Given quantum query access to the state-preparation circuit *Q* of an *n*-qubit state ρ, for any $q \ge 1 + \Omega(1)$, there exists a quantum algorithm that estimates $S_q(\rho)$ to within additive error ε with query complexity $O(1/\varepsilon^{1+\frac{1}{q-1}})=\text{poly}(1/\varepsilon).$

⋄ As a corollary, for any *q ≥* 1+Ω(1), TSALLISQED*^q* is in BQP.

Prior works have complexity (at least linearly) depending on the dimension $N = 2ⁿ$ or the rank *r* of ρ:

- **1** Dimension dependence: [Acharya-Issa-Shende-Wagner'19].
- ² Rank dependence: [Wang-Guan-Liu-Zhang-Ying'22, Wang-Zhang-Li'22, Wang-Zhang'24].

Our work provides an *exponential* improvement over the prior best results!

Main results (lower bounds): Hardness for TSALLISQED*^q*

Let CONSTRANKTSALLISQED_a be a restricted variant of TSALLISQED_a, where the rank of the states is at most *O*(1).

Theorem 2 (Computational hardness for TSALLISQED*q*).

The promise problem $TSALLISQED_q$ capture the computational power of respective complexity classes, depending on the regime of *q*:

- ¹ **Easy regimes**. For *q ∈* [1*,*2], CONSTRANKTSALLISQED*^q* is BQP-hard. The following corollaries holds:
	- *⋄* For 1+Ω(1) *≤ q ≤* 2, TSALLISQED*^q* is BQP-complete.
	- *⋄* PURITY ESTIMATION is BQP-complete.
- **2** Hard regimes. For $q \in (1, 1 + \frac{1}{n-1}]$, TSALLISQED_q is QSZK-hard.

Our reductions for the hard regimes also leads to quantitative (query complexity) lower bounds for estimating $S_q(\rho)$ to within additive error ε :

Summary: "A dichotomy theorem on approximating von Neumann entropy"

Quick summary for estimating $S_q(\rho)$ for $q = 1$ (von Neumann entropy) and $q > 1$:

A sharp phase transition occurs between the case of $q = 1$ and constant $q > 1$.

Why is the regime $q > 1 + \Omega(1)$ **computationally easy?**

Let's focus on PURITY ESTIMATION (*q* = 2). Let *{*λ*k}k∈*[² *ⁿ*] be eigenvalues of an *n*-qubit state ρ . For any state $\widehat{\rho}$ having eigenvalues at most 1/*n*, we have Tr($\widehat{\rho}^2$) = $\sum_k \lambda_k^2 \le 1/n$. Hence, *zero* serves as a good estimate of Tr($\widehat{\rho}^2$) to within additive error 1/3. **4** Only (sufficiently) large eigenvalues contribute to the estimate of $Tr(\rho^2)$!

 ${\bf Q:}$ How to estimate $\sum_{k\in{\cal I}_{\rm large}}\lambda^2$, where ${\cal I}_{\rm large}$ is the index set of large eigenvalues $\lambda_k?$

- ▶ For integer *q ≥* 2, SWAP test-like techniques [BCWdW01,EAO+02] provide a solution.
- **►** For non-integer $q > 1 + Ω(1)$, our result (Theorem 1) solves the problem.

[Main results: Upper and lower bounds](#page-5-0)

[Proof techniques: Uniform polynomial approximation and QJT](#page-9-0)*q*-based reductions

[Open problems](#page-12-0)

BQP containment for the regime $q > 1 + \Omega(1)$

We begin by implementing a two-outcome measurement ${T_0, \Pi_1}$, where

$$
\Pi_b := \frac{1}{2} \Big(I + (-1)^b U_{f(\rho)} \Big) \text{ for } b \in \{0, 1\},\
$$

using the Hadamard test [Kitaev'95, Aharonov-Jones-Landau'06]:

- ▶ *U_{f(ρ)}* is an *approximate* unitary block-encoding of f (*ρ*) = ρ ^{*q*−1}, constructed from the state-preparation circuit *Q* and implemented using quantum singular value transformation [Gilyén-Su-Low-Wiebe'19], with an appropriate polynomial approximation $P_d(x)$ of $f(x) = x^{q-1}$.
- \blacktriangleright $\{\Pi_0, \Pi_1\}$ is efficiently implementable if $U_{f(\rho)}$ can be efficiently implemented!

Efficiently implementation of the measurement. We need a polynomial that *uniformly* approximates $f(x)$. The best uniform (polynomial) approximation of x^q was investigated in [Bernstein'38], with a non-constructive proof in [Timan'63], satisfies:

$$
\max_{x\in[0,1]} \left| P_{d'}^*(x) - x^q \right| \to 1/d'^q, \quad \text{as } d' \to \infty.
$$

The remaining challenge is to make the coefficients of $P_{d'}^{*}(x)$ efficiently computable. This can be achieved using the asymptotically best uniform (polynomial) approximation $P_{\hat{d}}(x)$, particularly via Chebyshev truncation and the de La Vallée Poussin partial sum:

$$
\max_{x\in[0,1]} \left|\widehat{P}_{\widehat{d}}(x)-x^q/2\right|\leq \varepsilon\quad\text{and}\quad \max_{x\in[-1,1]}|P(x)|\leq 1,\quad \text{ where } \widehat{d}=O(1/\varepsilon^{1/q}).
$$

Hardness results via QJT*q*-based reductions

The key quantity underlying our proof is the quantum *q*-Jensen-(Shannon-)Tsallis divergence, as defined in [Briët-Harremoës'09]:

$$
\mathsf{QJT}_q(\rho_0,\rho_1)\coloneqq\frac{1}{2}\big(S_q(\rho_0)+S_q(\rho_1)\big)-S_q\Big(\frac{\rho_0+\rho_1}{2}\Big).
$$

Specifically, we focus on reductions from restricted versions of quantum state testing with respect to the trace distance (QSD), particularly decide whether $T(\rho_0, \rho_1)$ is at least 1*−*ε(*n*) or at most ^ε(*n*), to TSALLISQED*^q* (or TSALLISQEA*q*):

Our upper bound for Tsallis binary entropy is also crucial: $H_q(x) \leq H_q\left(\frac{1}{2}\right)\sqrt{x(1-x)}$.

- [Main results: Upper and lower bounds](#page-5-0)
- \bullet Proof techniques: Uniform polynomial approximation and QJT_q -based reductions
- [Open problems](#page-12-0)

Conclusions and open problems

Take-home messages on our work

1 For the regime $q \geq 1 + \Omega(1)$, estimating the quantum Tsallis entropy $S_q(\rho)$, equivalently the trace of quantum state powers, is computationally *easy* and has quantitative bounds that are *independent* of the rank of the state.

This provides an efficiently computable lower bound for the von Neumann entropy!

 2 For the regime 1 $<$ q $≤$ $1+\frac{1}{n-1}$, estimating the quantum Tsallis entropy $\mathrm{S}_q(\rho)$ is computationally *hard*:

- *⋄* The white-box problems cannot be solved efficiently unless BQP = QSZK;
- *⋄* The rank dependence in quantitative bounds is *unavoidable* in black-box settings.

This can be interpreted as "hardness of approximating the von Neumann entropy".

Open problems

- **1** Are there more applications for estimating quantum q -Tsallis entropy $S_q(\rho)$ in the regime $1 < q < 2$, which has previously been challenging to compute?
- 2 Can we improve these quantitative bounds for the regime $q > 1 + \Omega(1)$?
- What are the computational complexity and hardness for estimating the quantum Rényi entropy?

Thanks!