On estimating the trace of quantum state powers

Yupan Liu 1 Qisheng Wang 2,1

¹Graduate School of Mathematics, Nagoya University

²School of Informatics, University of Edinburgh

Available on arXiv:2410.13559

SODA 2025, New Orleans

- Quantum state testing with respect to the trace of quantum state powers
- 2 Main results: Upper and lower bounds
- 3 Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- Open problems

What is quantum state testing

An *n*-qubit quantum state ρ is a $N \times N$ positive semi-definite matrix satisfying $Tr(\rho) = 1$.

Task: Quantum state testing

Given two quantum devices Q_0 and Q_1 that prepare n-qubit quantum states ρ_0 and ρ_1 , respectively. Decide whether $\operatorname{dist}(\rho_0,\rho_1) \leq \varepsilon_1$ or $\operatorname{dist}(\rho_0,\rho_1) \geq \varepsilon_2$.

Consider query access to quantum devices Q_b for $b \in \{0,1\}$, where each device denotes the state-preparation circuit of the state ρ_b :

- \diamond **Black-box model**: Q_b is given as a black box (oracle).
- \diamond **White-box model**: The (gate-based) description of Q_b is provided.

Typical goal. Minimize the "complexity" of ρ_b (or its corresponding Q_b) for $b \in \{0,1\}$:

Type of access	Complexity measure	
Query access (black-box)	Query complexity (the number of queries)	
Query access (white-box)	Complexity class	

<u>In this talk:</u> We focus on the white-box model (i.e., a promise problem), while addressing three types of access (including *sample access*) in our work.

Quantum state testing: Hard and easy examples

Quantum state testing is hard in general, with complexity (linearly) depending on the dimension N (or rank r), through some distance-like measures make these task easy.

Hard examples. Quantum state testing with respect to von Neumann entropy:

- ▶ QUANTUM ENTROPY DIFFERENCE (QED): $S(\rho_0) S(\rho_1)$ is $\geq 1/2$ or $\leq -1/2$.
 - ♦ [Ben Aroya-Schwartz-Ta-Shma'08] QED is QSZK-complete.
 - \diamond [Bun-Kothari-Thaler'18] Query complexity lower bound for QED is $\widetilde{\Omega}(\sqrt{N})$.

Easy example. Purity Estimation: Decide whether $Tr(\rho^2)$ is $\geq 2/3$ or $\leq 1/3$.

- ▶ [Buhurman-Cleve-Watrous-de Wolf'01] Query complexity for approximating $Tr(\rho^2)$ to within additive error ε is $O(1/\varepsilon)$, with BQP containment in the white-box setting.
- ► [Ekert-Alves-Oi-Horodecki-Horodecki-Lwek'02] The same bound and the BQP containment apply for estimating $\text{Tr}(\rho^q)$ for integer q > 1.

Purity is closely related to the *quantum linear entropy* $S_L(\rho) = 1 - Tr(\rho^2)$.

- These examples raise questions on estimating the trace of quantum state powers:
 - Is there an efficient quantum algorithm for estimating $Tr(\rho^q)$ for non-integer q > 1?
 - 2 Is estimating the trace of quantum state powers, e.g., $Tr(\rho^2)$, BQP-complete?

Quantum state testing with respect to quantum q-Tsallis entropy

Quantum q-Tsallis entropy: power quantum entropy of order q

$$\mathrm{S}_q(\rho) = \frac{1 - \mathrm{Tr}(\rho^q)}{q-1} = -\mathrm{Tr}(\rho^q \ln_q(\rho)), \text{ where } \ln_q(x) \coloneqq \frac{1 - x^{1-q}}{q-1}.$$

As $q \to 1$, the von Neumman entropy is recovered: $S_{q=1}(\rho) = S(\rho)$ and $\ln_{q=1}(x) = \ln(x)$. When q=2, the quantum linear entropy is recovered: $S_{q=2}(\rho) = S_L(\rho) = 1 - \text{Tr}(\rho^2)$.

Tsallis entropy has been independently rediscovered several times: [Havrda-Charvát'67, Daróczy'70, Tsallis'88], with the quantum version introduced in [Raggio'95].

Quantum state testing with respect to quantum Tsallis entropy:

QUANTUM q-TSALLIS ENTROPY DIFFERENCE (TSALLISQED $_q$): Decide whether $\mathrm{S}_q(\rho_0)-\mathrm{S}_q(\rho_1)\geq 0.001$ or $\mathrm{S}_q(\rho_0)-\mathrm{S}_q(\rho_1)\leq -0.001$.

Why investigate $S_q(\rho)$ for non-integer q?

- $\textbf{ Since } S_q(\rho) \leq S(\rho), \, S_{q=1+\varepsilon}(\rho) \text{ serves as a reasonable lower bound for } S(\rho).$ "Hardness of approximating von Neumann entropy"?
- @ ${
 m H}_{q=3/2}(p)$ captures systems where both frequent and rare events matter. Meanwhile, estimating ${
 m S}_q(
 ho)$ for non-integer 1 < q < 2 seems to be challenging:
 - Examples in fluid dynamics: modeling velocity changes in turbulent flows [Beck'02].

- Quantum state testing with respect to the trace of quantum state powers
- 2 Main results: Upper and lower bounds
- 3 Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- Open problems

Main results (upper bounds): Quantum estimator for *q*-Tsallis entropy

Theorem 1 (Quantum estimator for *q*-Tsallis entropy).

Given quantum query access to the state-preparation circuit Q of an n-qubit state ρ , for any $q \geq 1 + \Omega(1)$, there exists a quantum algorithm that estimates $S_q(\rho)$ to within additive error ε with query complexity $O(1/\varepsilon^{1+\frac{1}{q-1}}) = \operatorname{poly}(1/\varepsilon)$.

⋄ As a corollary, for any $q \ge 1 + \Omega(1)$, TSALLISQED_q is in BQP.

Prior works have complexity (at least linearly) depending on the dimension $N=2^n$ or the rank r of ρ :

- 1 Dimension dependence: [Acharya-Issa-Shende-Wagner'19].
- Rank dependence: [Wang-Guan-Liu-Zhang-Ying'22, Wang-Zhang-Li'22, Wang-Zhang'24].

Our work provides an *exponential* improvement over the prior best results!

Main results (lower bounds): Hardness for TSALLISQED_q

Let ConstrankTsallisQED $_q$ be a restricted variant of TsallisQED $_q$, where the rank of the states is at most O(1).

Theorem 2 (Computational hardness for TSALLISQED $_q$).

The promise problem $TSALLISQED_q$ capture the computational power of respective complexity classes, depending on the regime of q:

- \bullet Easy regimes. For $q\in[1,2],$ ConstrankTsallisQED $_q$ is BQP-hard. The following corollaries holds:
 - \diamond For $1 + \Omega(1) \le q \le 2$, TSALLISQED_q is BQP-complete.
 - ♦ PURITY ESTIMATION is BQP-complete.
- **2** Hard regimes. For $q \in (1, 1 + \frac{1}{n-1}]$, TSALLISQED_q is QSZK-hard.

Our reductions for the hard regimes also leads to quantitative (query complexity) lower bounds for estimating $S_q(\rho)$ to within additive error ε :

The regime of q	Query complexity
$q \geq 1 + \Omega(1)$	$\Omega(1/\sqrt{\epsilon})$
$1 < q \le 1 + \frac{1}{n-1}$	$\Omega(r^{1/3})$

Summary: "A dichotomy theorem on approximating von Neumann entropy"

Quick summary for estimating $S_q(\rho)$ for q=1 (von Neumann entropy) and q>1:

	q = 1	$1 < q \le 1 + \frac{1}{n-1}$	$1 + \Omega(1) \le q \le 2$	q > 2
TsallisQED _q	QSZK-complete	QSZK-hard	BQP-complete	in BQP
	[BASTS08]	Theorem 2(2)	Theorem 1 & Theorem 2(1)	Theorem 1

A sharp phase transition occurs between the case of q = 1 and constant q > 1.

Why is the regime $q \ge 1 + \Omega(1)$ computationally easy?

Let's focus on Purity Estimation (q=2). Let $\{\lambda_k\}_{k\in[2^n]}$ be eigenvalues of an n-qubit state ρ . For any state $\widehat{\rho}$ having eigenvalues at most 1/n, we have $\mathrm{Tr}(\widehat{\rho}^2)=\sum_k \lambda_k^2 \leq 1/n$. Hence, zero serves as a good estimate of $\mathrm{Tr}(\widehat{\rho}^2)$ to within additive error 1/3.

 \blacksquare Only (sufficiently) large eigenvalues contribute to the estimate of $\operatorname{Tr}(\rho^2)!$

Q: How to estimate $\sum_{k \in \mathcal{I}_{large}} \lambda^2$, where \mathcal{I}_{large} is the index set of large eigenvalues λ_k ?

- For integer $q \ge 2$, SWAP test-like techniques [BCWdW01,EAO+02] provide a solution.
- For non-integer $q \ge 1 + \Omega(1)$, our result (Theorem 1) solves the problem.

- Quantum state testing with respect to the trace of quantum state powers
- 2 Main results: Upper and lower bounds
- 3 Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- Open problems

BQP containment for the regime $q \ge 1 + \Omega(1)$

We begin by implementing a two-outcome measurement $\{\Pi_0,\Pi_1\},$ where

$$\Pi_b \coloneqq \frac{1}{2} \Big(I + (-1)^b U_{f(\boldsymbol{\rho})} \Big) \text{ for } b \in \{0,1\},$$

using the Hadamard test [Kitaev'95, Aharonov-Jones-Landau'06]:

- $lackbox{$\,U_{f(
 ho)}$ is an approximate unitary block-encoding of $f(
 ho)=
 ho^{q-1}$, constructed from the state-preparation circuit Q and implemented using quantum singular value transformation [Gilyén-Su-Low-Wiebe'19], with an appropriate polynomial approximation <math>P_d(x)$ of $f(x)=x^{q-1}$.
- $lackbrack \{\Pi_0,\Pi_1\}$ is efficiently implementable if $U_{f(\rho)}$ can be efficiently implemented!

Efficiently implementation of the measurement. We need a polynomial that uniformly approximates f(x). The best uniform (polynomial) approximation of x^q was investigated in [Bernstein'38], with a non-constructive proof in [Timan'63], satisfies:

$$\max_{x \in [0,1]} \left| P_{d'}^*(x) - x^q \right| \to 1/d'^q, \quad \text{ as } d' \to \infty.$$

The remaining challenge is to make the coefficients of $P_{d'}^*(x)$ efficiently computable. This can be achieved using the asymptotically best uniform (polynomial) approximation $\widehat{P}_{\widehat{d}}(x)$, particularly via Chebyshev truncation and the de La Vallée Poussin partial sum:

$$\max_{x \in [0,1]} \left| \widehat{P}_{\hat{d}}(x) - x^q/2 \right| \leq \varepsilon \quad \text{and} \quad \max_{x \in [-1,1]} |P(x)| \leq 1, \quad \text{ where } \hat{d} = O(1/\varepsilon^{1/q}).$$

Hardness results via QJT_q-based reductions

The key quantity underlying our proof is the quantum q-Jensen-(Shannon-)Tsallis divergence, as defined in [Briët-Harremoës'09]:

$$\mathsf{QJT}_q(\rho_0,\rho_1) \coloneqq \frac{1}{2} \left(\mathsf{S}_q(\rho_0) + \mathsf{S}_q(\rho_1) \right) - \mathsf{S}_q \bigg(\frac{\rho_0 + \rho_1}{2} \bigg).$$

Specifically, we focus on reductions from restricted versions of quantum state testing with respect to the trace distance (QSD), particularly decide whether $\mathrm{T}(\rho_0,\rho_1)$ is at least $1-\varepsilon(n)$ or at most $\varepsilon(n)$, to TSALLISQED $_q$ (or TSALLISQEA $_q$):

Problem	Regime of q	Reduction from	New inequalities
ConstRank- TsallisQED $_q$	$1 \le q \le 2$	PUREQSD is BQP-hard [RASW23]	$\mathbf{H}_q\left(\tfrac{1}{2}\right)\!-\!\mathbf{H}_q\!\left(\tfrac{1-\mathrm{T}}{2}\right) \leq QJT_q \leq \mathbf{H}_q\!\left(\tfrac{1}{2}\right)\!T^q$
TsallisQED _q	$1 \le q \le 1 + \frac{1}{n-1}$	QSD is QSZK-hard [Wat02, Wat09]	$\mathbf{H}_q\left(\frac{1}{2}\right) - \mathbf{H}_q\left(\frac{1-\mathbf{T}}{2}\right) \leq QJT_q$
TsallisQEA _q	$q=1+\frac{1}{n-1}$	QSCMM is NIQSZK-hard [Kob03, BASTS10, CCKV08]	$\left(1-T-\tfrac{1}{2^n}\right)\ln_q(2^n) \leq S_q \leq \ln_q(2^n(1-T))$

Our upper bound for Tsallis binary entropy is also crucial: $H_q(x) \le H_q(\frac{1}{2})\sqrt{x(1-x)}$.

- 1 Quantum state testing with respect to the trace of quantum state powers
- 2 Main results: Upper and lower bounds
- 3 Proof techniques: Uniform polynomial approximation and QJT_q-based reductions
- 4 Open problems

Conclusions and open problems

Take-home messages on our work

- For the regime $q \geq 1 + \Omega(1)$, estimating the quantum Tsallis entropy $S_q(\rho)$, equivalently the trace of quantum state powers, is computationally *easy* and has quantitative bounds that are *independent* of the rank of the state.
 - This provides an efficiently computable lower bound for the von Neumann entropy!
- **②** For the regime $1 < q \le 1 + \frac{1}{n-1}$, estimating the quantum Tsallis entropy $S_q(\rho)$ is computationally *hard*:
 - ⋄ The white-box problems cannot be solved efficiently unless BQP = QSZK;
 - The rank dependence in quantitative bounds is unavoidable in black-box settings.

This can be interpreted as "hardness of approximating the von Neumann entropy".

Open problems

- Are there more applications for estimating quantum q-Tsallis entropy $S_q(\rho)$ in the regime 1 < q < 2, which has previously been challenging to compute?
- ② Can we improve these quantitative bounds for the regime $q \ge 1 + \Omega(1)$?
- What are the computational complexity and hardness for estimating the quantum Rényi entropy?

Thanks!