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Abstract

Learning an unknown Hamiltonian from local measurements is an
increasingly important task in the NISQ era. Recent work by [BAL19]
proposed an approach to learn non-commuting local Hamiltonians,
though their method fails for commuting Hamiltonians.

We provide a method to learn Pauli commuting local Hamiltonians,
which is a subclass of general CLHs. Given exp(n) copies of the Gibbs
state ρ of a Pauli commuting local HamiltonianH on n qubits, one can
learn such a Hamiltonian by

1. Applying a linear-depth Clifford circuit on given copies;
2. Performing classical post-processing.

Our result sheds light on learning general commuting local Hamilto-
nians using local measurements.

Problem Statement: A Quantum Perspective

Consider an "inverse problem" of finding ground states by given a
Hamiltonian (i.e., the local Hamiltonian problem), namely

Q1: What’s the sample complexity m?
Q2: What’s the time complexity of a learning algorithm A?

Problem Statement: A Classical Perspective

The classical analog is learning a Markov random field (e.g. [KM17]):

Gibbs distribution defined on z = (z1, · · · , zn) ∈ {±1}n,

Pr[Z = z] ∝ exp(−Hc) := exp

 ∑
i 6=j∈[n]

Aijzizj +
∑
i∈[n]

θizi

 .

Configuration graph G = ([n], E) where (i, j) ∈ E if Ai,j 6= 0.

Let Xi := {zj |j 6= i, (i, j) ∈ E} and Yi :=
(1 − zi)/2 be random variables. Note Xi is
only dependent on the neighbors of i due to
the Markovianity Pr[A|B] = Pr[A,C|B].

Task. Givenm random samples (Xi, Yi) sat-
isfying E[Yi|Xi = x] = σ(Aj · x+ θi) where
σ(x) = 1/(1 + e−x), recover Aj and θi.

Main Algorithm: Learning a Pauli CLH

Proof Technique: Learning candidates of local terms

Consider HL =
∑M

m=1 cmSm defined on a
local patch L with a Gibbs state ρ, [BAL19]
implies that ∀ local observables An inside L,∑M

m=1 cmTr(iρ[Sm, An]) = 0 and |{An on L}| ≤
poly(n). Let matrix Knm := Tr(iρ[Sm, An]).

Claim. If An is a local term in HL, then ∀Sm,
[Sm, An] = 0, i.e., the n-th row of K is all-zero.
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Defintion: Pauli Commuting Local Hamiltonians

A k-CLH H =
∑m

i=1Hi on n-qubit is a Pauli CLH if it satisfies

• ∀i ∈ [m], Hi = aiσ
(i)
1 ⊗· · ·⊗σ

(i)
n , where σ(i)

j := ix
(i)
j z

(i)
j Xx

(i)
j Zz

(i)
j .

• ∀i, j ∈ [m], [Hi, Hj ] = 0.
A Pauli CLH can be described by a Stabilizer tableau [AG04], namely
each local term can be represented by a (2n+ 1)-tuple:

Commutation. ∀i, j, [Hi, Hj ] = 0⇔X(i) · Z(j) ⊕X(j) · Z(i) = 0.
Linear column operations on the tableau. It is equivalent to apply

Clifford gates [AG04], such as Hadamard, S, CNOT:
• Hadk: swap Xk with Zk and p′ := p⊕ (Xi � Zi).
• Sk: Z′k := Zk ⊕Xk and p′ := p⊕ (Xi � Zi).
• CNOTi,j : X′j := Xi ⊕Xj , Z′i := Zi ⊕ Zj

and p′ := p⊕ (Xi � Zj � (Xj ⊕ Zi ⊕ 1)).

Proof Technique: Mapping Pauli CLHs into Classical Hamiltonians

Applying a O(n/ log n)-depth Clifford circuit [AG04, JST+20]:

1) Gaussian Elimin.:
(

p A B
) CNOT−→

(
p(1) I B1

A2 B2

)
;

2) Making Full-rank.: S−→
(

p(2) I B
(1)
1

A2 B
(1)
2

)
=

(
p(2) I NNT

A2 B
(1)
2

)
;

3) Cholesky Decom: CNOT−→
(

p(3) N N

A
(1)
2 B

(2)
2

)
S−→
(

p(4) 0 N

A
(2)
2 B

(2)
2

)
;

4) Gaussian Elimin.: CNOT−→
(

p(5) 0 I

A
(3)
2 B

(3)
2

)
=

(
p(5) 0 I

0 B
(3)
2

)
.

An efficient classical post-processing condition:
rank(A|B) = m and all rows in (A|B) are linearly independent.

Now we obtain a 1-local classical Hamiltonian since B(3)
2 = 0. It can

be learned efficiently in both time complexity and sample complexity.

Open Problem: Towards an Efficient Classical Post-processing

A classical algorithm for learning classical Hamiltonians. [KM17]
provides an algorithm for learning a k-local classical Hamiltonian
with run-time nΘ(k) and sample complexity nO(k).

Main issues. The resulting classical Hamiltonian H ′ is non-necessarily
local since B(3)

2 6= 0 in general, so applying [KM17] for H ′ directly re-
quires exp(n) run-time and exp(n) samples. Could we learn a classical
Hamiltonian obtained from a Pauli CLH efficiently?

Open Problem: Learning CLHs by Matrix MWU Methods

[KM17] is based on multiplicative weight updates (MWU) and Markov
property of Gibbs distributions. Notice Markov property holds for
commuting local Hamiltonians due to the Koashi-Imoto decomposition
[KI02]. Could we learn CLHs using Matrix MWU methods?
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