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Delegated computation by interactions

Let us start from a computationally hard problem:

Factoring
Input: n,k ∈ N (input size is log(n)).
Output: YES if n has factor < k; otherwise NO.

What do we know about Factoring?
▶ Factoring ∈ NP since we can multiply large numbers efficiently.
▶ Factoring ∈ BQP [Shor94].

Here is a protocol to verify Factoring by interactions:

1 The verifier chooses two large number k1,k2, and sends n (which is
k1 × k2) and k1 to the prover.

2 The prover answer YES if k1 is a factor of n otherwise NO.

We can delegate a complicated computation using interactions!



An introduction to interactive proofs

Interactive proofs
Given a language L = (Lyes,Lno), there is an interactive proof protocol with
at most poly(n) round interactions (using poly(n)-size classical messages)
between a P-power prover and a V-power verifier.

IP[P,V] is the set of all languages which have such a protocol.

We usually assume that the power of verifier is BPP, namely all probabilistic
polynomial-time computations. Examples:

▶ Factoring ∈ IP[NP,BPP]

▶ Factoring ∈ IP[BQP,BPP]

▶ NP ⊆ IP[NP,BPP]

▶ BQP
?
⊆ IP[BQP,BPP] (open problem)

Could we think about delegated computation as interactive proofs?
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Delegated computation, revisited

In-class interactive proofs
A class P has an in-class interactive proof if for any language L in P, there is
an interactive proof IP[P,V] for L. Denote by P = IP[P,V].

Which classes have delegated computation by interactive proofs?
▶ NP by simply by definition.
▶ P#P [LFKN90, AG17] where #P is the counting version of NP.
▶ PSPACE = IP[PSPACE,BPP] [Shamir90] where PSPACE is all

computation can be done in polynomial space.
▶ NC(poly) = IP[NC(poly),BPP] [GKR08] where NC(poly) is defined by

poly-depth but exp-size Boolean circuits computation (upscaling version).

Even the prover is all-powerful, interactive proofs don’t have more power
(IP = PSPACE = QIP [Shamir90,JJUW09]). But multi-prover interactive proofs
are more powerful, such as MIP = NEXP [BFL91] and NEEXP ⊆ MIP∗ [NW19].

What about delegation of quantum computation?



Delegation of quantum computation
▶ A single quantum prover and a classical

verifier with a small quantum device.

Ref BFK09,ABOE10/ABOEM17,FHM18.

▶ Multiple quantum provers with maximal
entanglement, a classical verifier, poly-szie
(i.e. O(n8192)) communication [RUV13].

▶ Two provers, one round, and quasi-linear
size communication [CGJV19].

▶ A single quantum prover and a classical
verifier, with a computational soundness.

Ref Mahadev18, CCKW18, GV19.

Besides, a few subclasses of BQP is in IP[BQP,BPP], such as MA ∩ BQP
[MTN17] and computing the order of solvable groups [LGMNT18].
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Quantum characterization of classical complexity classes

Starting from classes regarding precise quantum computation:
▶ PreciseBQP: Performing an efficient quantum computation within

inverse-exponential accuracy.
▶ PreciseQMA: Given a quantum ”proof” (i.e. witness), verifying an

efficient quantum computation within inverse-exponential accuracy.

A few classical complexity classes have a quantum characterization:
▶ PreciseBQP = PP [Aar05, Kup09, GSSSY18].
▶ PreciseQCMA = NPPP [MN17, GSSSY18].
▶ PreciseQMA = PSPACE [FL16,FL18].

Delegation of precise quantum computation [AG17]
PreciseBQP = IP[PreciseBQP,BPP], or a quantum-inspired proof for [LFKN90].

Q: Could we extend their protocol to PreciseQMA?
A: Partially YES! We provide an in-class interactive proof protocol for NPPP.
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An in-class interactive proof protocol for PreciseQCMA

Main result
PreciseQCMA ⊆ IP[PreciseQCMA,BPP], namely NPPP ⊆ IP[NPPP,BPP].

The protcol
For any language L ∈ PreciseQCMA, given an instance x ∈ L, one can verify L:

1 The verifier V sends the instance x (i.e. a problem) to the prover P .

2 The verifier V asks the prover P for a classical witness w of x.

3 The prover P and the verifier V follows an in-class interactive proof
protocol W for PreciseBQP, and V accepts iff W accepts.

An explicit example:
1 A local Hamiltonian H which its ground states |Ω⟩ can be prepared in a polynomial-depth

circuit within inverse-exponential accuracy.
2 The witness is an efficient PEPS representation of a ground state |Ω⟩.
3 Verifying the ground energy ⟨Ω|H|Ω⟩ of |Ω⟩ by contracting a tensor network.

Q: Is a PreciseQCMA-power prover powerful enough to find a classical witness?



Finding the classical witness by an adaptive search

We said that a prover has PreciseQCMA-power if this prover can access a
PreciseQCMA oracle polynomially many times.

A witness-finding algorithm A for NP (i.e. search-to-decision reduction)
1 The prover P queries the oracle O whether the claim S0, ”there exists a

witness for the instance x where the first bit b = 0”, is true or not.

2 If the answer is NO. The prover P queries the oracle O about S0 where
the value of the first bit b is flipped; otherwise, the first bit b = 0.

3 The prover P can find the first bit b of the witness, and P can find a
witness by querying statements Sb0 adaptively for all bits. Namely,
repeating first two steps for each bit in the witness.

Indeed, the witness-finding algorithm A works for NP ⊆ PreciseQCMA. Does
such an algorithm work for PreciseQCMA?



Why the witness-finding algorithm works for PreciseQCMA?

To prove that the witness-finding algorithm works for NP, it is enough to show
that the language L̂ associated with the witness-finding algorithm is in NP.

▶ A language L = (Lyes,Lno) ∈ NP if there is an efficient classical verifier
VL where Lyes = {x|∃w s.t. VL(x,w) = 1}, Lno = {x|∀w,VL(x,w) = 0}.

▶ The language L̂ describes all (instance, partial witness) pairs, which can
be found by the witness-finding algorithm A given a verifier VL, is defined
by L̂ := {(x,w0)|∃w1 s.t. VL(x,w0 ◦ w1) = 1}, where w0 is a prefix of a
correct witness.

▶ It is easy to see that (L̂,{0,1}∗ \ L̂) ∈ NP.

What about PreciseQCMA?



Why the witness-finding algorithm works for PreciseQCMA? (Cont. )

The language of partial witnesses for PreciseQCMA
Given a (c,s)-PreciseQCMA verifier VL, one can define L̂′ similarly,

L̂′ := {(x,w0)|∃w1 s.t. Pr[VL|x⟩|w0 ◦ w1⟩ = |Acc⟩] ≥ c}.

It implies that {0,1}∗ \ L̂′ = {(x,w0)|∀w1,Pr[VL|x⟩|w0 ◦w1⟩ = |Acc⟩] ≤ c− δ},

where δ is the accuracy required of the acceptance probability.

Would δ be arbitrarily small? Thanks to the lemma below, δ is only
exponentially small, which means that (L̂′,{0,1}∗ \ L̂′) ∈ PreciseQCMA.

Lemma The acceptance probability of x ∈ L where L ∈ PreciseQCMA locates
on an inverse-exponentially-separated grid.
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In-class interactive proofs for PreciseBQP

Q-CIRCUIT problem
Approximating an amplitude ⟨0n|U |0n⟩ of a polynomial-size quantum circuit U

(i.e. U consists of poly(n) local gates) on n qubits within inverse-exponential
accuracy is PreciseBQP-complete.

To show that PreciseBQP ⊆ IP[PreciseBQP,BPP], it is enough to find an
approach to verify ⟨0n|U |0n⟩ ≈ϵ C where ϵ = exp(−poly(n)).
▶ Preparing a poly-size quantum circuit U is not necessarily in classical

polynomial-time.
▶ Using the correspondence between degree-3 polynomials and quantum

circuits [Montanaro17], an amplitude ⟨0n|U |0n⟩ can be converted into a
#SAT instance, then it follows from the original sum-check [LFKN90].

[AG17] provides a structure-preserving in-class interactive proof for
PreciseBQP. In some sense, it reinterprets the sum-check from a
tensor-network contraction perspective.
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AG protocol

1 The verifier V sends a gate sequence associated
with U which consists of poly(n) local quantum
gates.

2 ▶ V replaces a two-qubit gate U1 by two
single-qubit random rotations V

(1)
1 ⊗ V

(2)
1 .

▶ V asks P for a small tensor M1, receive M ′
1.

▶ V rejects if contract(M ′
1,U1) ̸=ϵ C.

3 ▶ V replaces a single-qubit gate U2 by a
single-qubit random rotations V2.

▶ V asks P for a small tensor M2 and receive M ′
2

▶ V rejects if contract(M ′
2,U2,V

(1)
1 ⊗ V

(2)
1 ) ̸=ϵ

contract(M ′
1,V

(1)
1 ⊗ V

(2)
1 ).

... Repeat the third round for i-th (3 ≤ i ≤ T −1) local gate in the given gate
sequence associated with U.



AG protocol (Cont. )

Now is the final round of the AG protocol..

(T+1) ▶ V replaces a local gate UT by a tensor product
of single-qubit random rotations.

▶ V rejects if contract(M ′
T −1,V

(1)
T ⊗ V

(2)
T ) ̸=ϵ

contract(V (1)
1 ⊗ V

(2)
1 ,V2, · · · ,V

(1)
T ⊗ V

(2)
T ).

▶ Otherwise V accepts.

Completeness
▶ At the i-th (2 ≤ i ≤ T + 1) round, the prover P can compute the small

tensor Mi−1 since contracting a tensor network defined on an arbitrary
graph is in #P [SWVC06,AL08].

▶ At the (T + 1)-th round, notice that the tensor network here only consists
of strands and loops which its bond dimension is constant, the verifier V

can compute contract(V (1)
1 ⊗ V

(2)
1 ,V2, · · · ,V

(1)
T ⊗ V

(2)
T ).



AG protocol: Soundness

Soundness (unlimited precision)
One can show that both cases below are impossible by a direct calculation:
▶ A cheating prover passes on the round associated with the i-th gate with

Mi−1 − M ′
i−1 ̸= 0 and Mi − M ′

i = 0.
▶ A cheating prover passes on the round asscoiate with the T -th gate with

MT −1 − M ′
T −1 ̸= 0.

Soundness
To prevent from a cheating prover, the required accuracy of ⟨0n|U |0n⟩ decays
exponentially on the number of rounds (Claim 6.2 in [AG17]).

▶ A similar behavior also appears in [LFKN90].
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Discussion: Towards an in-class interactive proof for PreciseQMA

Extending the protocol for PreciseQCMA
▶ Sending quantum witness directly requires exponential-bit communication.
▶ For quantum interactive proofs, it is not known how to achieve inverse

exponential accuracy without exponentially many copies of the witness.

QMA ⊆ IP[PreciseBQP,BPP]
▶ The witness-preserving gap amplification for QMA [MW05, NWZ09]

deduces an efficient quantum circuit UV associated a QMA verifier V .
▶ One can verify any QMA computation by verifying a circuit amplitude

⟨0n|UV |0n⟩ within inverse-exponential accuracy.

Extending the protocol for QMA
▶ It fails for PreciseQCMA since such an amplification deduces an

exponential-size quantum circuit due to the inverse-exponential gap c − s.
▶ PostQMA [MN17] seems avoid this issue due to a constant gap c − s.

However, witness-preserving gap amplification for PostQMA is unknown
since its acceptance probability described by conditional probability.



Thank you!
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