Towards a quantum-inspired proof for IP = PSPACE

Yupan Liu

Hebrew University of Jerusalem Joint work with Ayal Green and Guy Kindler

YITP, Kyoto University, Oct 2019

- **2** An in-class interactive proof for NP^{PP}
- 3 An in-class interactive proof for PreciseBQP [AG17]
- **4** Discussion

A tale from interactions

Delegated computation

2 An in-class interactive proof for NP^PP

3 An in-class interactive proof for PreciseBQP [AG17]

4 Discussion

Delegated computation by interactions

Let us start from a computationally hard problem:

Factoring

Input: $n, k \in \mathbb{N}$ (input size is $\log(n)$). Output: YES if n has factor < k; otherwise NO.

What do we know about Factoring?

- ▶ Factoring ∈ NP since we can multiply large numbers efficiently.
- Factoring \in BQP [Shor94].

Here is a protocol to verify Factoring by interactions:

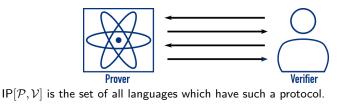
- The verifier chooses two large number k_1, k_2 , and sends n (which is $k_1 \times k_2$) and k_1 to the prover.
- **2** The prover answer YES if k_1 is a factor of n otherwise NO.

We can delegate a complicated computation using interactions!

An introduction to interactive proofs

Interactive proofs

Given a language $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no})$, there is an interactive proof protocol with at most poly(n) round interactions (using poly(n)-size *classical* messages) between a \mathcal{P} -power prover and a \mathcal{V} -power verifier.



We usually assume that the power of verifier is BPP, namely all *probabilistic* polynomial-time computations. Examples:

- ► Factoring \in IP[NP, BPP] ► NP \subseteq IP[NP, BPP]
- ► Factoring \in IP[BQP, BPP] ► BQP $\stackrel{?}{\subseteq}$ IP[BQP, BPP] (open problem)

Could we think about delegated computation as interactive proofs?

A tale from interactions

Delegated computation

- **2** An in-class interactive proof for NP^{PP}
- 3 An in-class interactive proof for PreciseBQP [AG17]
- **4** Discussion

Delegated computation, revisited

In-class interactive proofs

A class \mathcal{P} has an in-class interactive proof if for any language \mathcal{L} in \mathcal{P} , there is an interactive proof $\mathsf{IP}[\mathcal{P},\mathcal{V}]$ for \mathcal{L} . Denote by $\mathcal{P} = \mathsf{IP}[\mathcal{P},\mathcal{V}]$.

Which classes have delegated computation by interactive proofs?

- NP by simply by definition.
- ▶ $P^{\#P}$ [LFKN90, AG17] where #P is the counting version of NP.
- PSPACE = IP[PSPACE, BPP] [Shamir90] where PSPACE is all computation can be done in polynomial space.
- NC(poly) = IP[NC(poly), BPP] [GKR08] where NC(poly) is defined by poly-depth but exp-size Boolean circuits computation (upscaling version).

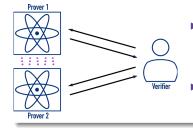
Even the prover is *all-powerful*, interactive proofs don't have more power (IP = PSPACE = QIP [Shamir90,JJUW09]). But *multi-prover* interactive proofs are more powerful, such as MIP = NEXP [BFL91] and NEEXP \subseteq MIP^{*} [NW19].

What about delegation of quantum computation?

Delegation of quantum computation

 A single quantum prover and a classical verifier with a small quantum device.

Ref BFK09,ABOE10/ABOEM17,FHM18.



- Multiple quantum provers with maximal entanglement, a classical verifier, poly-szie (i.e. O(n⁸¹⁹²)) communication [RUV13].
- Two provers, one round, and quasi-linear size communication [CGJV19].

Besides, a few *subclasses* of BQP is in IP[BQP, BPP], such as $MA \cap BQP$ [MTN17] and computing the order of solvable groups [LGMNT18].

2 An in-class interactive proof for NP^PP

3 An in-class interactive proof for PreciseBQP [AG17]

4 Discussion

An in-class interactive proof for NP^{PP} Main result

The protocol

3 An in-class interactive proof for PreciseBQP [AG17]

4 Discussion

Quantum characterization of classical complexity classes

Starting from classes regarding precise quantum computation:

- PreciseBQP: Performing an *efficient* quantum computation within *inverse-exponential* accuracy.
- PreciseQMA: Given a quantum "proof" (i.e. witness), verifying an efficient quantum computation within inverse-exponential accuracy.

A few classical complexity classes have a quantum characterization:

- PreciseBQP = PP [Aar05, Kup09, GSSSY18].
- PreciseQCMA = NP^{PP} [MN17, GSSSY18].
- PreciseQMA = PSPACE [FL16,FL18].

Delegation of precise quantum computation [AG17]

PreciseBQP = IP[PreciseBQP, BPP], or a quantum-inspired proof for [LFKN90].

2 An in-class interactive proof for NP^PP

Main result

The protocol

3 An in-class interactive proof for PreciseBQP [AG17]

An in-class interactive proof protocol for PreciseQCMA

Main result

 $\mathsf{PreciseQCMA} \subseteq \mathsf{IP}[\mathsf{PreciseQCMA},\mathsf{BPP}], \ \mathsf{namely} \ \mathsf{NP}^\mathsf{PP} \subseteq \mathsf{IP}[\mathsf{NP}^\mathsf{PP},\mathsf{BPP}].$

The protcol

For any language $\mathcal{L} \in \mathsf{PreciseQCMA}$, given an instance $x \in \mathcal{L}$, one can verify \mathcal{L} :

- **1** The verifier V sends the instance x (i.e. a problem) to the prover P.
- **2** The verifier V asks the prover P for a classical witness w of x.
- The prover P and the verifier V follows an in-class interactive proof protocol W for PreciseBQP, and V accepts iff W accepts.

An explicit example:

- 1 A local Hamiltonian H which its ground states $|\Omega\rangle$ can be prepared in a polynomial-depth circuit within inverse-exponential accuracy.
- 2 The witness is an efficient PEPS representation of a ground state $|\Omega\rangle$.
- $\textbf{S} \ \text{Verifying the ground energy } \langle \Omega | H | \Omega \rangle \ \text{of} \ | \Omega \rangle \ \text{by contracting a tensor network}.$

Q: Is a PreciseQCMA-power prover powerful enough to find a *classical* witness?

Finding the classical witness by an adaptive search

We said that a prover has PreciseQCMA-power if this prover can access a PreciseQCMA oracle *polynomially* many times.

A witness-finding algorithm $\mathcal A$ for NP (i.e. search-to-decision reduction)

- The prover P queries the oracle O whether the claim S₀, "there exists a witness for the instance x where the first bit b = 0", is true or not.
- If the answer is NO. The prover P queries the oracle O about S₀ where the value of the first bit b is flipped; otherwise, the first bit b = 0.
- **③** The prover P can find the first bit b of the witness, and P can find a witness by querying statements S_{b0} adaptively for all bits. Namely, repeating first two steps for each bit in the witness.

Indeed, the witness-finding algorithm \mathcal{A} works for NP \subseteq PreciseQCMA. Does such an algorithm work for PreciseQCMA?

Why the witness-finding algorithm works for PreciseQCMA?

To prove that the witness-finding algorithm works for NP, it is enough to show that the language $\hat{\mathcal{L}}$ associated with the witness-finding algorithm is in NP.

- ▶ A language $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no}) \in \mathsf{NP}$ if there is an efficient classical verifier $V_{\mathcal{L}}$ where $\mathcal{L}_{yes} = \{x | \exists w \text{ s.t. } V_{\mathcal{L}}(x, w) = 1\}$, $\mathcal{L}_{no} = \{x | \forall w, V_{\mathcal{L}}(x, w) = 0\}$.
- ► The language L̂ describes all (instance, partial witness) pairs, which can be found by the witness-finding algorithm A given a verifier V_L, is defined by L̂ := {(x,w₀)|∃w₁ s.t. V_L(x,w₀ ∘ w₁) = 1}, where w₀ is a prefix of a correct witness.
- It is easy to see that $(\hat{\mathcal{L}}, \{0,1\}^* \setminus \hat{\mathcal{L}}) \in \mathsf{NP}.$

What about PreciseQCMA?

Why the witness-finding algorithm works for PreciseQCMA? (Cont.)

The language of partial witnesses for PreciseQCMA

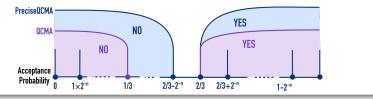
Given a (c,s)-PreciseQCMA verifier $V_{\mathcal{L}}$, one can define $\hat{\mathcal{L}}'$ similarly,

$$\hat{\mathcal{L}}' := \{ (x, w_0) | \exists w_1 \text{ s.t. } \Pr[V_{\mathcal{L}} | x \rangle | w_0 \circ w_1 \rangle = |\mathsf{Acc}\rangle] \ge c \}.$$

It implies that $\{0,1\}^* \setminus \hat{\mathcal{L}}' = \{(x,w_0) | \forall w_1, \Pr[V_{\mathcal{L}}|x\rangle | w_0 \circ w_1\rangle = |\mathsf{Acc}\rangle] \leq c - \delta\},$ where δ is the accuracy required of the acceptance probability.

Would δ be arbitrarily small? Thanks to the lemma below, δ is only exponentially small, which means that $(\hat{L}', \{0,1\}^* \setminus \hat{\mathcal{L}}') \in \mathsf{PreciseQCMA}$.

Lemma The acceptance probability of $x \in \mathcal{L}$ where $\mathcal{L} \in \mathsf{PreciseQCMA}$ locates on an inverse-exponentially-separated grid.



2 An in-class interactive proof for NP^{PP}

3 An in-class interactive proof for PreciseBQP [AG17]

4 Discussion

2 An in-class interactive proof for NP^{PP}

3 An in-class interactive proof for PreciseBQP [AG17] Problem statement

The AG protocol

In-class interactive proofs for PreciseBQP

Q-CIRCUIT problem

Approximating an amplitude $\langle 0^n | U | 0^n \rangle$ of a polynomial-size quantum circuit U (i.e. U consists of poly(n) local gates) on n qubits within inverse-exponential accuracy is PreciseBQP-complete.

To show that PreciseBQP \subseteq IP[PreciseBQP,BPP], it is enough to find an approach to verify $\langle 0^n | U | 0^n \rangle \approx_{\epsilon} C$ where $\epsilon = \exp(-\text{poly}(n))$.

- Preparing a poly-size quantum circuit U is not necessarily in classical polynomial-time.
- ▶ Using the correspondence between degree-3 polynomials and quantum circuits [Montanaro17], an amplitude (0ⁿ|U|0ⁿ) can be converted into a #SAT instance, then it follows from the original sum-check [LFKN90].

[AG17] provides a *structure-preserving* in-class interactive proof for PreciseBQP. In some sense, it reinterprets the sum-check from a *tensor-network contraction* perspective.

2 An in-class interactive proof for NP^{PP}

3 An in-class interactive proof for PreciseBQP [AG17]

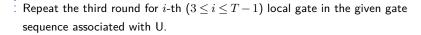
Problem statement

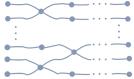
The AG protocol

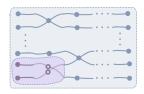
AG protocol

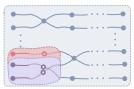
3

- The verifier V sends a gate sequence associated with U which consists of poly(n) local quantum gates.
- V replaces a two-qubit gate U₁ by two single-qubit random rotations V₁⁽¹⁾ ⊗ V₁⁽²⁾.
 - V asks P for a small tensor M_1 , receive M'_1 .
 - V rejects if $\operatorname{contract}(M'_1, U_1) \neq_{\epsilon} C$.
 - V replaces a single-qubit gate U₂ by a single-qubit random rotations V₂.
 - \blacktriangleright V asks P for a small tensor M_2 and receive M'_2
 - ► V rejects if $\operatorname{contract}(M'_2, U_2, V_1^{(1)} \otimes V_1^{(2)}) \neq_{\epsilon}$ $\operatorname{contract}(M'_1, V_1^{(1)} \otimes V_1^{(2)}).$





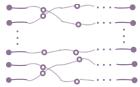




AG protocol (Cont.)

Now is the final round of the AG protocol..

- (T+1) ► V replaces a local gate U_T by a tensor product of single-qubit random rotations.
 - ► V rejects if $\operatorname{contract}(M'_{T-1}, V_T^{(1)} \otimes V_T^{(2)}) \neq_{\epsilon}$ $\operatorname{contract}(V_1^{(1)} \otimes V_1^{(2)}, V_2, \cdots, V_T^{(1)} \otimes V_T^{(2)}).$
 - Otherwise V accepts.



Completeness

- ▶ At the *i*-th $(2 \le i \le T+1)$ round, the prover *P* can compute the small tensor M_{i-1} since contracting a tensor network defined on an arbitrary graph is in #P [SWVC06,AL08].
- At the (T+1)-th round, notice that the tensor network here only consists of *strands* and *loops* which its bond dimension is *constant*, the verifier Vcan compute $contract(V_1^{(1)} \otimes V_1^{(2)}, V_2, \cdots, V_T^{(1)} \otimes V_T^{(2)})$.

AG protocol: Soundness

Soundness (unlimited precision)

One can show that both cases below are impossible by a direct calculation:

- ▶ A cheating prover passes on the round associated with the *i*-th gate with $M_{i-1} M'_{i-1} \neq 0$ and $M_i M'_i = 0$.
- A cheating prover passes on the round associate with the T-th gate with $M_{T-1}-M_{T-1}'\neq 0.$

Soundness

To prevent from a cheating prover, the required accuracy of $\langle 0^n | U | 0^n \rangle$ decays *exponentially* on the number of rounds (Claim 6.2 in [AG17]).

2 An in-class interactive proof for NP^{PP}

3 An in-class interactive proof for PreciseBQP [AG17]

4 Discussion

Discussion: Towards an in-class interactive proof for PreciseQMA

Extending the protocol for PreciseQCMA

- Sending quantum witness directly requires *exponential-bit* communication.
- For quantum interactive proofs, it is not known how to achieve inverse exponential accuracy without exponentially many copies of the witness.

$\mathsf{QMA} \subseteq \mathsf{IP}[\mathsf{PreciseBQP},\mathsf{BPP}]$

- The witness-preserving gap amplification for QMA [MW05, NWZ09] deduces an efficient quantum circuit U_V associated a QMA verifier V.
- ▶ One can verify any QMA computation by verifying a circuit amplitude $\langle 0^n | U_V | 0^n \rangle$ within inverse-exponential accuracy.

Extending the protocol for QMA

- It fails for PreciseQCMA since such an amplification deduces an exponential-size quantum circuit due to the inverse-exponential gap c-s.
- PostQMA [MN17] seems avoid this issue due to a *constant gap* c s.
 However, witness-preserving gap amplification for PostQMA is unknown since its acceptance probability described by *conditional probability*.

Thank you!