Towards a quantum-inspired proof for $I P=P S P A C E$

Yupan Liu

Hebrew University of Jerusalem
Joint work with Ayal Green and Guy Kindler

YITP, Kyoto University, Oct 2019
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for $N P^{P P}$
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion
(1) Delegated computation meets interactive proofs

A tale from interactions
Delegated computation
(2) An in-class interactive proof for NPPP
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion

Delegated computation by interactions

Let us start from a computationally hard problem:

Factoring

Input: $n, k \in \mathbb{N}$ (input size is $\log (n)$).
Output: YES if n has factor $<k$; otherwise NO.

What do we know about Factoring?

- Factoring \in NP since we can multiply large numbers efficiently.
- Factoring \in BQP [Shor94].

Here is a protocol to verify Factoring by interactions:
(1) The verifier chooses two large number k_{1}, k_{2}, and sends n (which is $k_{1} \times k_{2}$) and k_{1} to the prover.
(2) The prover answer YES if k_{1} is a factor of n otherwise NO.

We can delegate a complicated computation using interactions!

An introduction to interactive proofs

Interactive proofs

Given a language $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{\text {no }}\right)$, there is an interactive proof protocol with at most poly (n) round interactions (using poly (n)-size classical messages) between a \mathcal{P}-power prover and a \mathcal{V}-power verifier.

$\operatorname{IP}[\mathcal{P}, \mathcal{V}]$ is the set of all languages which have such a protocol.

We usually assume that the power of verifier is BPP, namely all probabilistic polynomial-time computations. Examples:

- Factoring $\in \operatorname{IP}[N P, B P P]$
- Factoring $\in \operatorname{IP}[B Q P, B P P]$
- NP $\subseteq I P[N P, B P P]$
- $B Q P \stackrel{?}{\subseteq} I P[B Q P, B P P]$ (open problem)

Could we think about delegated computation as interactive proofs?
(1) Delegated computation meets interactive proofs

A tale from interactions
Delegated computation
(2) An in-class interactive proof for NPPP
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion

Delegated computation, revisited

In-class interactive proofs
A class \mathcal{P} has an in-class interactive proof if for any language \mathcal{L} in \mathcal{P}, there is an interactive proof $\operatorname{IP}[\mathcal{P}, \mathcal{V}]$ for \mathcal{L}. Denote by $\mathcal{P}=\operatorname{IP}[\mathcal{P}, \mathcal{V}]$.

Which classes have delegated computation by interactive proofs?

- NP by simply by definition.
- $\mathrm{P}^{\# \mathrm{P}}$ [LFKN90, AG17] where \#P is the counting version of NP.
- PSPACE $=\mathrm{IP}[$ PSPACE, BPP] [Shamir90] where PSPACE is all computation can be done in polynomial space.
- $\mathrm{NC}($ poly $)=\mathrm{IP}[\mathrm{NC}($ poly $), \mathrm{BPP}]$ [GKR08] where $\mathrm{NC}($ poly $)$ is defined by poly-depth but exp-size Boolean circuits computation (upscaling version).

Even the prover is all-powerful, interactive proofs don't have more power (IP = PSPACE = QIP [Shamir90, JJUW09]). But multi-prover interactive proofs are more powerful, such as MIP $=$ NEXP [BFL91] and NEEXP \subseteq MIP* * [NW19].

What about delegation of quantum computation?

Delegation of quantum computation

- A single quantum prover and a classical verifier with a small quantum device. Ref BFK09,ABOE10/ABOEM17,FHM18.
- Multiple quantum provers with maximal entanglement, a classical verifier, poly-szie (i.e. $O\left(n^{8192}\right)$) communication [RUV13].
- Two provers, one round, and quasi-linear size communication [CGJV19].

- A single quantum prover and a classical verifier, with a computational soundness. Ref Mahadev18, CCKW18, GV19.

Besides, a few subclasses of BQP is in IP[BQP, BPP], such as MA $\cap B Q P$ [MTN17] and computing the order of solvable groups [LGMNT18].
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for NP $P^{P P}$
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for NP $P^{P P}$

Main result
The protocol
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion

Quantum characterization of classical complexity classes

Starting from classes regarding precise quantum computation:

- PreciseBQP: Performing an efficient quantum computation within inverse-exponential accuracy.
- PreciseQMA: Given a quantum "proof" (i.e. witness), verifying an efficient quantum computation within inverse-exponential accuracy.

A few classical complexity classes have a quantum characterization:

- PreciseBQP = PP [Aar05, Kup09, GSSSY18].
- PreciseQCMA $=$ NP ${ }^{P P}$ [MN17, GSSSY18].
- PreciseQMA $=$ PSPACE [FL16,FL18].

Delegation of precise quantum computation [AG17]
PreciseBQP $=\mathrm{IP}[$ PreciseBQP, BPP], or a quantum-inspired proof for [LFKN90].

Q: Could we extend their protocol to PreciseQMA?
A: Partially YES! We provide an in-class interactive proof protocol for NP ${ }^{P P}$.
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for NP $P^{P P}$

Main result
The protocol
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion

An in-class interactive proof protocol for PreciseQCMA

Main result
PreciseQCMA $\subseteq \operatorname{IP}[$ PreciseQCMA,$B P P]$, namely $N P^{P P} \subseteq I P\left[N P^{P P}, B P P\right]$.
The protcol
For any language $\mathcal{L} \in \operatorname{Precise} Q C M A$, given an instance $x \in \mathcal{L}$, one can verify \mathcal{L} :
(1) The verifier V sends the instance x (i.e. a problem) to the prover P.
(2) The verifier V asks the prover P for a classical witness w of x.
(3) The prover P and the verifier V follows an in-class interactive proof protocol W for PreciseBQP, and V accepts iff W accepts.

An explicit example:
(1) A local Hamiltonian H which its ground states $|\Omega\rangle$ can be prepared in a polynomial-depth circuit within inverse-exponential accuracy.
(2) The witness is an efficient PEPS representation of a ground state $|\Omega\rangle$.
(3) Verifying the ground energy $\langle\Omega| H|\Omega\rangle$ of $|\Omega\rangle$ by contracting a tensor network.

Q: Is a PreciseQCMA-power prover powerful enough to find a classical witness?

Finding the classical witness by an adaptive search

We said that a prover has PreciseQCMA-power if this prover can access a PreciseQCMA oracle polynomially many times.

A witness-finding algorithm \mathcal{A} for NP (i.e. search-to-decision reduction)
(1) The prover P queries the oracle \mathcal{O} whether the claim S_{0}, "there exists a witness for the instance x where the first bit $b=0$ ", is true or not.
(2) If the answer is NO. The prover P queries the oracle \mathcal{O} about S_{0} where the value of the first bit b is flipped; otherwise, the first bit $b=0$.
(3) The prover P can find the first bit b of the witness, and P can find a witness by querying statements $S_{b 0}$ adaptively for all bits. Namely, repeating first two steps for each bit in the witness.

Indeed, the witness-finding algorithm \mathcal{A} works for NP \subseteq PreciseQCMA. Does such an algorithm work for PreciseQCMA?

Why the witness-finding algorithm works for PreciseQCMA?

To prove that the witness-finding algorithm works for NP, it is enough to show that the language $\hat{\mathcal{L}}$ associated with the witness-finding algorithm is in NP.

- A language $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{n o}\right) \in \mathrm{NP}$ if there is an efficient classical verifier $V_{\mathcal{L}}$ where $\mathcal{L}_{\text {yes }}=\left\{x \mid \exists w\right.$ s.t. $\left.V_{\mathcal{L}}(x, w)=1\right\}, \mathcal{L}_{n o}=\left\{x \mid \forall w, V_{\mathcal{L}}(x, w)=0\right\}$.
- The language $\hat{\mathcal{L}}$ describes all (instance, partial witness) pairs, which can be found by the witness-finding algorithm \mathcal{A} given a verifier $V_{\mathcal{L}}$, is defined by $\hat{\mathcal{L}}:=\left\{\left(x, w_{0}\right) \mid \exists w_{1}\right.$ s.t. $\left.V_{\mathcal{L}}\left(x, w_{0} \circ w_{1}\right)=1\right\}$, where w_{0} is a prefix of a correct witness.
- It is easy to see that $\left(\hat{\mathcal{L}},\{0,1\}^{*} \backslash \hat{\mathcal{L}}\right) \in \mathrm{NP}$.

Why the witness-finding algorithm works for PreciseQCMA? (Cont.)
The language of partial witnesses for PreciseQCMA
Given a (c, s)-PreciseQCMA verifier $V_{\mathcal{L}}$, one can define $\hat{\mathcal{L}}^{\prime}$ similarly,

$$
\hat{\mathcal{L}}^{\prime}:=\left\{\left(x, w_{0}\right) \mid \exists w_{1} \text { s.t. } \operatorname{Pr}\left[V_{\mathcal{L}}|x\rangle\left|w_{0} \circ w_{1}\right\rangle=|\mathrm{Acc}\rangle\right] \geq c\right\} .
$$

It implies that $\{0,1\}^{*} \backslash \hat{\mathcal{L}}^{\prime}=\left\{\left(x, w_{0}\right)\left|\forall w_{1}, \operatorname{Pr}\left[V_{\mathcal{L}}|x\rangle\left|w_{0} \circ w_{1}\right\rangle=|\operatorname{Acc}\rangle\right] \leq c-\delta\right\}\right.$, where δ is the accuracy required of the acceptance probability.

Would δ be arbitrarily small? Thanks to the lemma below, δ is only exponentially small, which means that $\left(\hat{L}^{\prime},\{0,1\}^{*} \backslash \hat{\mathcal{L}}^{\prime}\right) \in$ PreciseQCMA.

Lemma The acceptance probability of $x \in \mathcal{L}$ where $\mathcal{L} \in$ PreciseQCMA locates on an inverse-exponentially-separated grid.

(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for $N P^{P P}$
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for $N P^{P P}$
(3) An in-class interactive proof for PreciseBQP [AG17]

Problem statement
The AG protocol
(4) Discussion

In-class interactive proofs for PreciseBQP

Q-CIRCUIT problem

Approximating an amplitude $\left\langle 0^{n}\right| U\left|0^{n}\right\rangle$ of a polynomial-size quantum circuit U (i.e. U consists of $\operatorname{poly}(n)$ local gates) on n qubits within inverse-exponential accuracy is PreciseBQP-complete.

To show that PreciseBQP $\subseteq \operatorname{IP}[$ PreciseBQP, BPP], it is enough to find an approach to verify $\left\langle 0^{n}\right| U\left|0^{n}\right\rangle \approx_{\epsilon} C$ where $\epsilon=\exp (-\operatorname{poly}(n))$.

- Preparing a poly-size quantum circuit U is not necessarily in classical polynomial-time.
- Using the correspondence between degree-3 polynomials and quantum circuits [Montanaro17], an amplitude $\left\langle 0^{n}\right| U\left|0^{n}\right\rangle$ can be converted into a \#SAT instance, then it follows from the original sum-check [LFKN90].
[AG17] provides a structure-preserving in-class interactive proof for PreciseBQP. In some sense, it reinterprets the sum-check from a tensor-network contraction perspective.
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for $N P^{P P}$
(3) An in-class interactive proof for PreciseBQP [AG17]

Problem statement
The AG protocol
(4) Discussion

AG protocol

(1) The verifier V sends a gate sequence associated with U which consists of $\operatorname{poly}(n)$ local quantum gates.

(2)

- V replaces a two-qubit gate U_{1} by two single-qubit random rotations $V_{1}^{(1)} \otimes V_{1}^{(2)}$.
- V asks P for a small tensor M_{1}, receive M_{1}^{\prime}.
- V rejects if contract $\left(M_{1}^{\prime}, U_{1}\right) \neq \epsilon C$.

- V replaces a single-qubit gate U_{2} by a single-qubit random rotations V_{2}.
- V asks P for a small tensor M_{2} and receive M_{2}^{\prime}
- V rejects if contract $\left(M_{2}^{\prime}, U_{2}, V_{1}^{(1)} \otimes V_{1}^{(2)}\right) \neq \epsilon$ $\operatorname{contract}\left(M_{1}^{\prime}, V_{1}^{(1)} \otimes V_{1}^{(2)}\right)$.

Repeat the third round for i-th $(3 \leq i \leq T-1)$ local gate in the given gate sequence associated with U.

AG protocol (Cont.)

Now is the final round of the AG protocol..
$(T+1) \vee V$ replaces a local gate U_{T} by a tensor product of single-qubit random rotations.

- V rejects if contract $\left(M_{T-1}^{\prime}, V_{T}^{(1)} \otimes V_{T}^{(2)}\right) \neq \epsilon$ $\operatorname{contract}\left(V_{1}^{(1)} \otimes V_{1}^{(2)}, V_{2}, \cdots, V_{T}^{(1)} \otimes V_{T}^{(2)}\right)$.
- Otherwise V accepts.

Completeness

- At the i-th $(2 \leq i \leq T+1)$ round, the prover P can compute the small tensor M_{i-1} since contracting a tensor network defined on an arbitrary graph is in \#P [SWVC06,AL08].
- At the $(T+1)$-th round, notice that the tensor network here only consists of strands and loops which its bond dimension is constant, the verifier V can compute contract $\left(V_{1}^{(1)} \otimes V_{1}^{(2)}, V_{2}, \cdots, V_{T}^{(1)} \otimes V_{T}^{(2)}\right)$.

AG protocol: Soundness

Soundness (unlimited precision)

One can show that both cases below are impossible by a direct calculation:

- A cheating prover passes on the round associated with the i-th gate with $M_{i-1}-M_{i-1}^{\prime} \neq 0$ and $M_{i}-M_{i}^{\prime}=0$.
- A cheating prover passes on the round asscoiate with the T-th gate with $M_{T-1}-M_{T-1}^{\prime} \neq 0$.

Soundness

To prevent from a cheating prover, the required accuracy of $\left\langle 0^{n}\right| U\left|0^{n}\right\rangle$ decays exponentially on the number of rounds (Claim 6.2 in [AG17]).

- A similar behavior also appears in [LFKN90].
(1) Delegated computation meets interactive proofs
(2) An in-class interactive proof for NP $P^{P P}$
(3) An in-class interactive proof for PreciseBQP [AG17]
(4) Discussion

Discussion: Towards an in-class interactive proof for PreciseQMA

Extending the protocol for PreciseQCMA

- Sending quantum witness directly requires exponential-bit communication.
- For quantum interactive proofs, it is not known how to achieve inverse exponential accuracy without exponentially many copies of the witness.

QMA $\subseteq I P[$ PreciseBQP, BPP]

- The witness-preserving gap amplification for QMA [MW05, NWZ09] deduces an efficient quantum circuit U_{V} associated a QMA verifier V.
- One can verify any QMA computation by verifying a circuit amplitude $\left\langle 0^{n}\right| U_{V}\left|0^{n}\right\rangle$ within inverse-exponential accuracy.

Extending the protocol for QMA

- It fails for PreciseQCMA since such an amplification deduces an exponential-size quantum circuit due to the inverse-exponential gap $c-s$.
- PostQMA [MN17] seems avoid this issue due to a constant gap $c-s$. However, witness-preserving gap amplification for PostQMA is unknown since its acceptance probability described by conditional probability.

Thank you!

