StoqMA meets distribution testing

Yupan Liu

TQC 2021
arXiv:2011.05733
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete
4) Towards error reduction for StoqMA
(5) Open problems
(1) What is the complexity class StoqMA?

The definition of StoqMA
What is the computational power of StoqMA
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete
(4) Towards error reduction for StoqMA
(5) Open problems

A "quantum" definition of NP
Consider $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{n o}\right) \in N P$, there is a verifier such that for any input $x \in \mathcal{L}$, a polynomial-time verification circuit V_{x} such that

- Yes: If $x \in \mathcal{L}_{\text {yes }}, \exists|w\rangle$ such that V_{x} accepts $|w\rangle$;
- No: If $x \in \mathcal{L}_{n o}, \forall|w\rangle$, we have V_{x} rejects $|w\rangle$.
"Quantize" the definition: Viewed V_{x} as a quantum circuit

\diamond Verification circuit using only classical reversible gates (i.e. Toffoli, CNOT, X).
\diamond Measure the designated output qubit in the $\{|0\rangle,|1\rangle\}$ basis.

Acceptance probability $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\||1\rangle\left\langle\left. 1\right|_{1} V_{x} \mid w\right\rangle|\overline{0}\rangle \|_{2}^{2}$
Remark on equivalence. The optimal witness is classical witness (since the matrix $\langle\overline{0}|\left(V_{x}^{\dagger}|1\rangle\left\langle\left. 1\right|_{1} V_{x}\right)|\overline{0}\rangle\right.$ is diagonal), so it is equivalent to standard def. .

A "quantum" definition of MA: adding randomness
Consider $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{\text {no }}\right) \in \mathrm{MA}$, there is a verifier such that for any input $x \in \mathcal{L}$, a randomized polynomial-time verification circuit V_{x} such that

- Yes: If $x \in \mathcal{L}_{y e s}, \exists|w\rangle$ such that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \geq 2 / 3$;
- No: If $x \in \mathcal{L}_{n o}, \forall|w\rangle$, we have $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \leq 1 / 3$.

\diamond Ancillary qubits $|\overline{+}\rangle$ corresponds to ancillary random bits.
\diamond Acceptance probability

$$
\begin{aligned}
& \operatorname{Pr}\left[V_{x} \text { accepts }|w\rangle\right] \\
& =\||1\rangle\left\langle\left. 1\right|_{1} V_{x} \mid w\right\rangle|\overline{0}\rangle|\overline{+}\rangle \|_{2}^{2} .
\end{aligned}
$$

Remark: Error reduction for MA
Theorem. For any threshold parameters $0 \leq a, b \leq 1$ such that $a-b \geq \frac{1}{\operatorname{poly}(n)}$:

$$
\mathrm{MA}(a, b) \subseteq \mathrm{MA}\left(1-2^{-n}, 2^{-n}\right) \subseteq \mathrm{MA}(2 / 3,1 / 3)
$$

Proof Sketch. Running (polynomially many) copies of the verifier in parallel, and taking the majority vote of the measurement outcomes.

The weird class StoqMA [BBT06]

Consider $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{n o}\right) \in S$ toqMA, there is a verifier such that for any input $x \in \mathcal{L}$, a randomized polynomial-time verification circuit V_{x} that measures the designated output qubit in the $\{|+\rangle,|-\rangle\}$ basis such that

- Yes: If $x \in \mathcal{L}_{y e s}, \exists|w\rangle$ such that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \geq a$;
- No: If $x \in \mathcal{L}_{n o}, \forall|w\rangle$, we have $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \leq b$; where $1 \geq a>b \geq 1 / 2$ and $a-b \geq 1 / \operatorname{poly}(n)$.

Acceptance probability $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\||+\rangle\left\langle+\left.\right|_{1} V_{x} \mid w\right\rangle|\overline{0}\rangle|\overline{+}\rangle \|_{2}^{2}$

Remarks on the weirdness

- Threshold parameters a, b cannot be replaced by some constants since error reduction for StoqMA remains unknown since [BBT06].
- For any non-negative witness, it is evident that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.w\right] \geq 1 / 2$.
- Owing to Perron-Frobenius theorem, the optimal witness is non-negative state. W.L.O.G. we can think the witness as a probability distribution!
(1) What is the complexity class StoqMA?

The definition of StoqMA
What is the computational power of StoqMA
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete
(4) Towards error reduction for StoqMA
(5) Open problems

The computational power of StoqMA

Q: Is it possible to collapse the hierarchy $\mathrm{MA} \subseteq$ StoqMA $\subseteq S B P$?
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete
(4) Towards error reduction for StoqMA
(5) Open problems
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens

Proving StoqMA \subseteq MA by taking samples (and failed)
eStoqMA \subseteq MA: taking both samples and queries
(3) Distinguishing reversible circuits is StoqMA-complete
(4) Towards error reduction for StoqMA
(5) Open problems

Distribution testing in a nutshell
Definition: Sample Access
Let D be a fixed distribution over Ω. A sampling oracle for D is an oracle S_{D} : when queried, S_{D} returns an element $x \in \Omega$ with probability $D(x)$.

Task: Tolerant Testing

Given independent (sample) oracle accesses to D_{0}, D_{1} (both unknown), decide whether they are ϵ_{1}-close or ϵ_{2}-far from each other.

Theorem: Sample Complexity Lower Bound for Tolerant Testing in d_{H}^{2}
(A corollary of Theorem 9 in [DKW18])
There is a constant $\epsilon>0$ such that any algorithm for distinguishing $d_{H}^{2}\left(D_{0}, D_{1}\right) \leq \epsilon^{2} / 8$ (close) from $d_{H}^{2}\left(D_{0}, D_{1}\right) \geq \epsilon^{2} / 2$ (far), requires
$\Omega(N / \log N)$ samples, where the square Hellinger distance
$d_{H}^{2}\left(D_{0}, D_{1}\right):=\frac{1}{2} \sum_{i \in[N]}\left(\sqrt{D_{0}(i)}-\sqrt{D_{1}(i)}\right)^{2}=1-\left\langle D_{0} \mid D_{1}\right\rangle$.

Measuring a non-negative state in the Hadamard basis, revisited
First (failed) attempt: proving StoqMA \subseteq MA by distribution testing
Given the state $|0\rangle\left|D_{0}\right\rangle+|1\rangle\left|D_{1}\right\rangle:=V_{x}|w\rangle|\overline{0}\rangle|\overline{+}\rangle$ (before the measurement), measure the designated output qubit in the $\{|+\rangle,|-\rangle\}$ basis:
 where $\left|D_{k}\right\rangle=\sum_{i} \sqrt{D_{k}(i)}|i\rangle$ for $k=0,1$ and $\left\langle D_{0} \mid D_{0}\right\rangle+\left\langle D_{1} \mid D_{1}\right\rangle=1$.

- It suffices to approximate the squared Hellinger distance $d_{H}^{2}\left(D_{0}, D_{1}\right)$ within $1 / \operatorname{poly}(n)$ accuracy using only $\operatorname{poly}(n)$ sample accesses to D_{0}, D_{1}.
- Proving MA containment by distribution testing!
\diamond Bad news: This "MA containment" requires exponentially many samples. ©
\diamond Good news: We probably could take advantage of other models! ©
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens

Proving StoqMA \subseteq MA by taking samples (and failed)
eStoqMA \subseteq MA: taking both samples and queries
(3) Distinguishing reversible circuits is StoqMA-complete
(4) Towards error reduction for StoqMA
(5) Open problems

From dual access model to easy witness

Dual (query+sample) access model

- Sample access to D : Run a copy of V_{x} that takes $|w\rangle$ as an input, measure all qubits in the $\{|0\rangle,|1\rangle\}$ basis, then viewed the measurement outcome $i \in\{0,1\}^{n}$ as a sample.
- Query access to $\left(D_{0}, D_{1}\right)$: Given an index $j \in\{0,1\}^{n-1}$, algorithm Q_{D} evaluates $D_{0}(j) / D_{1}(j)$ efficiently, where $D_{0}(\cdot):=D(0 \| \cdot)$ and so does D_{1}.

Theorem [CR14]. Approximating the total variation distance $d_{T V}\left(D_{0}, D_{1}\right)$ within ϵ accuracy requires only $\Theta\left(1 / \epsilon^{2}\right)$ accesses to the oracle.

StoqMA with easy witness (eStoqMA)

- Easy witness: given a witness state $|D\rangle$, there is an algo. Q_{D} such that the quotient $D_{0}(j) / D_{1}(j)$ can be evaluated efficiently for any index j. e.g. $|S\rangle=\sum_{i \in S} \frac{1}{\sqrt{|S|}}|i\rangle$ where S 's membership is efficiently verifiable.
- eStoqMA's definition modified from StoqMA: For yes instance $x \in \mathcal{L}_{y e s}$ where $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{\text {no }}\right) \in \mathrm{e}$ StoqMA, the witness must be easy witness.

eStoqMA = MA: Proof Sketch

Theorem. eStoqMA $=$ MA.
Proof Sketch. Consider state $|0\rangle\left|D_{0}\right\rangle+|1\rangle\left|D_{1}\right\rangle:=V_{x}|w\rangle|\overline{0}\rangle|\overline{+}\rangle$, then

$$
\frac{\operatorname{Pr}\left[V_{x} \text { accepts }|w\rangle\right]}{\left\|D_{1}\right\|_{1}}=\frac{\frac{1}{2} \|\left|D_{0}\right\rangle+\left|D_{1}\right\rangle \|_{2}^{2}}{\left\|D_{1}\right\|_{1}}=\underset{i \sim D_{1} /\left\|D_{1}\right\|_{1}}{\mathbb{E}}\left(1+\frac{D_{0}(i)}{D_{1}(i)}\right)^{2}
$$

Note $D_{0}(i) / D_{1}(i)$ is evaluated by Q_{D}. By Chernoff bound, an empirical estimation infers $1 / \operatorname{poly}(n)$ additive error approx. of $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]$.

Corollary. StoqMA $A_{1} \subseteq$ MA.

Proof. It is evident that StoqMA $\mathrm{Ma}_{1} \subseteq \mathrm{eStoqMA}_{1}$ since the easy witness is the subset state associated with the set that consists of all nodes that mark "good" on the configuration graph of a $\operatorname{SetCSP}_{0,1 / \operatorname{poly}(n)}$ instance.

Remark. Guided Stoquastic Local Hamiltonian [Bravyi15], which is contained in MA, can be viewed as a (generalized) Hamiltonian version of eStoqMA.
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete
4) Towards error reduction for StoqMA
(5) Open problems
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete Computational complexity of distinguishing circuits Proof Sketch: StoqMA-completeness

4 Towards error reduction for StoqMA
(5) Open problems

From SWAP test to Reversible Circuit Distinguishability

SWAP test [BCWdW01]

\diamond SWAP test outputs 1 with prob. $|\langle\psi \mid \phi\rangle|^{2}$.
\diamond Thinking $|\psi\rangle \otimes|\phi\rangle$ as a witness, then SWAP test looks like a trivial StoqMA verifier with maximum accept. prob. 1 (and the optimal witness is classical).

Reversible Circuit Distinguishability, $\operatorname{RCD}\left(a, b ; n_{+}\right)$

Given efficient reversible circuits C_{0}, C_{1} that utilizes ancillary states $|\overline{0}\rangle$ and $|\overline{+}\rangle$. Let non-negative states that generates by $C_{k}(k=0,1)$ and $|w\rangle$ be $\left|D_{k}\right\rangle:=C_{k}|w\rangle|\overline{0}\rangle|\overline{+}\rangle$, decide which is the following cases:

- Yes (a-indistinguishable): $\exists|w\rangle$ s.t. $\left\langle D_{0} \mid D_{1}\right\rangle \geq a$;
- No (b-distinguishable): $\forall|w\rangle,\left\langle D_{0} \mid D_{1}\right\rangle \leq b$, where $a-b \geq 1 / \operatorname{poly}(n)$.

The computational complexity of distinguishing circuits

Theorem

Reversible Circuit Distinguishability, viz. $\mathrm{RCD}(\cdot, \cdot ;$ poly $)$, is StoqMA-complete.

- Theorem [JWZ03]. Quantum Circuit Distinguishability is QMA-complete.
- Theorem [Jordan14]. Reversible Circuit Distinguishability (without ancillary random bit), viz. $\mathrm{RCD}(\cdot, ; ; 0)$, is NP-complete.
$\star \operatorname{RCD}(\cdot, \cdot ;$ poly $)$ seems MA-complete but it is actually StoqMA-complete!

Proposition 1

Exact Reversible Circuit Dist., viz. $\operatorname{RCD}(\cdot, 0 ;$ poly $)$, is NP-complete.
Corollary. StoqMA with perfect soundness is contained in NP.

- Theorem [FGMSZ89] Arthur-Merlin games with perfect soundness \subseteq NP.
- Theorem [Tanaka10] Exact Quantum Circuit Distinguishability is NQP-complete, namely QMA with perfect soundness, which is as powerful as $\operatorname{coC}=\mathrm{P}$.

Proposition 2

RCD without ancillary random bit, viz. $\operatorname{RCD}(\cdot, \cdot ; 0)$, is NP-complete.
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete Computational complexity of distinguishing circuits Proof Sketch: StoqMA-completeness
(4) Towards error reduction for StoqMA
(5) Open problems

Reversible Circuit Distinguishability is StoqMA-complete: Proof Sketch

For $k=0,1$, let $\left|D_{k}\right\rangle:=C_{k}|w\rangle|\overline{0}\rangle|\overline{+}\rangle$, then:

- $\operatorname{RCD}(a, b$; poly $)$ is contained in StoqMA $\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right)$.
\diamond Dash line:
$\frac{1}{\sqrt{2}}|0\rangle\left|D_{0}\right\rangle+\frac{1}{\sqrt{2}}|1\rangle\left|D_{1}\right\rangle$.

$-\operatorname{RCD}(a, b ;$ poly $)$ is hard for StoqMA $\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right)$.
\diamond Set $C_{0}:=V_{x}^{\dagger} X_{1} V_{x}$ and $C_{1}:=I$.
\diamond Let $M:=\langle\overline{0}|\langle\overline{+}| V_{x}^{\dagger} X_{1} V_{x}|\overline{0}\rangle|\overline{+}\rangle$, then $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\frac{1}{2}+\frac{1}{2} \lambda_{\max }(M)$.
Remark. This observation went back to (weak) error reduction for QMA [KSV02].

(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA
(5) Open problems
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA
Why error reduction is important for StoqMA?
Soundness error reduction for StoqMA
(5) Open problems

Why error reduction is important for StoqMA?
Conjecture: Error reduction for StoqMA
$\forall 1 / 2 \leq a, b \leq 1$ such that $a-b \geq 1 / \operatorname{poly}(n)$, it holds that

$$
\text { StoqMA }(a, b) \subseteq \text { StoqMA }\left(1-2^{-n}, \frac{1}{2}+2^{-n}\right) .
$$

Theorem (Soundness error reduction for StoqMA)
For any $l=\operatorname{poly}(n)$, StoqMA $\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right) \subseteq \operatorname{StoqMA}\left(\frac{1}{2}+\frac{a^{l(n)}}{2}, \frac{1}{2}+\frac{b^{l(n)}}{2}\right)$.

* It suffices to reduce two-sided errors separately and alternatively, e.g., the polarization lemma of SZK [SV03] or space-efficient QMA error reduction [FKL+16].

Theorem [AGL20]: Error reduction implies StoqMA $=$ MA
(Completeness) error reduction for StoqMA implies StoqMA \subseteq MA.
Namely, StoqMA $\left(1-1 / p_{1}(n), 1-1 / p_{2}(n)\right) \subseteq$ MA, where p_{1} is a super-polynomial of n and p_{2} is a polynomial of n.
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA
Why error reduction is important for StoqMA?
Soundness error reduction for StoqMA
(5) Open problems

Soundness error reduction for StoqMA

Theorem (restated)
For any $l=\operatorname{poly}(n)$, StoqMA $\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right) \subseteq$ StoqMA $\left(\frac{1}{2}+\frac{a^{l(n)}}{2}, \frac{1}{2}+\frac{b^{l(n)}}{2}\right)$.
Corollary. $\quad \forall 1-a \geq 1 / \operatorname{poly}(n), l=\operatorname{poly}(n), \operatorname{StoqMA}(1, a) \subseteq \operatorname{StoqMA}\left(1,2^{-l(n)}\right)$.

Proof Sketch

Recall that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\frac{1}{2}+\frac{1}{2} \lambda_{\text {max }}(M)$ where $M=\langle\overline{0}|\langle\bar{\mp}| V_{x}^{\dagger} X_{1} V_{x}|\overline{0}\rangle|\overline{+}\rangle$.
Let us take the tensor product (i.e. "conjunction" or "AND") now:

(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits is StoqMA-complete
(4) Towards error reduction for StoqMA
(5) Open problems

Conclusions and open problems

Take-home messages
(1) The difficulty of StoqMA arisen from different kinds of optimal witness:

Witness Type	Results
Classical	$\operatorname{cStoqMA}(a, b) \subseteq \operatorname{MA}(2 a-1,2 b-1)[$ Grilo20]
Easy	$\forall a-b \geq 1 /$ poly $(n), \operatorname{eStoqMA}(a, b) \subseteq \mathrm{MA}(9 / 16,7 / 16)$
Non-negative	StoqMA $\stackrel{?}{=} \mathrm{MA}$

(2) Soundness error reduction for StoqMA is possible, and interestingly, the proof is inspired by showing distinguishing reversible circuits (RCD) is StoqMA-complete (instead of MA as expected!).

Open problems
(1) StoqMA vs. MA and SBP vs. MA.
(2) Completeness error reduction for StoqMA.
(3) More (natural) StoqMA-complete problems.

Thank you!

