StoqMA meets distribution testing

Yupan Liu

TQC 2021

arXiv:2011.05733

- 2 StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits is StoqMA-complete
- Towards error reduction for StoqMA
- **6** Open problems

The definition of StoqMA

What is the computational power of StoqMA

StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

Towards error reduction for StoqMA

A "quantum" definition of NP

Consider $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no}) \in NP$, there is a verifier such that for any input $x \in \mathcal{L}$, a polynomial-time verification circuit V_x such that

- Yes: If $x \in \mathcal{L}_{yes}$, $\exists |w\rangle$ such that V_x accepts $|w\rangle$;
- No: If $x \in \mathcal{L}_{no}$, $\forall |w\rangle$, we have V_x rejects $|w\rangle$.

"Quantize" the definition: Viewed V_x as a quantum circuit

- Verification circuit using only classical reversible gates (i.e. Toffoli, CNOT, X).
- $\diamond~$ Measure the designated output qubit in the $\{|0\rangle\,,|1\rangle\}$ basis.

Acceptance probability $\Pr[V_x \text{ accepts } |w\rangle] = \||1\rangle \langle 1|_1 V_x |w\rangle |\overline{0}\rangle\|_2^2$

Remark on equivalence. The optimal witness is classical witness (since the matrix $\langle \bar{0} | \left(V_x^{\dagger} | 1 \rangle \langle 1 |_1 V_x \right) | \bar{0} \rangle$ is diagonal), so it is equivalent to standard def.

A "quantum" definition of MA: adding randomness

Consider $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no}) \in MA$, there is a verifier such that for any input $x \in \mathcal{L}$, a randomized polynomial-time verification circuit V_x such that

- Yes: If $x \in \mathcal{L}_{yes}$, $\exists \ket{w}$ such that $\Pr[V_x \text{ accepts } \ket{w}] \geq 2/3$;
- No: If $x \in \mathcal{L}_{no}$, $\forall |w\rangle$, we have $\Pr[V_x \text{ accepts } |w\rangle] \leq 1/3$.

- $\diamond~$ Ancillary qubits $|\bar{+}\rangle$ corresponds to ancillary random bits.
- ♦ Acceptance probability $\Pr[V_x \text{ accepts } |w\rangle] = |||1\rangle \langle 1|_1 V_x |w\rangle |\bar{0}\rangle |\bar{+}\rangle||_2^2.$

Remark: Error reduction for MA

Theorem. For any threshold parameters $0 \le a, b \le 1$ such that $a - b \ge \frac{1}{\operatorname{poly}(n)}$: MA $(a, b) \subseteq$ MA $(1 - 2^{-n}, 2^{-n}) \subseteq$ MA(2/3, 1/3).

Proof Sketch. Running (polynomially many) copies of the verifier in parallel, and taking the *majority vote* of the *measurement outcomes*.

The weird class StoqMA [BBT06]

Consider $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no}) \in \text{StoqMA}$, there is a verifier such that for any input $x \in \mathcal{L}$, a randomized polynomial-time verification circuit V_x that measures the designated output qubit in the $\{|+\rangle, |-\rangle\}$ basis such that

- Yes: If $x \in \mathcal{L}_{yes}$, $\exists |w\rangle$ such that $\Pr[V_x \text{ accepts } |w\rangle] \geq a$;
- No: If $x \in \mathcal{L}_{no}$, $\forall |w\rangle$, we have $\Pr[V_x \text{ accepts } |w\rangle] \leq b$; where

 $1 \ge a > b \ge 1/2$ and $a - b \ge 1/\text{poly}(n)$.

Acceptance probability $\Pr[V_x \text{ accepts } |w\rangle] = \||+\rangle \langle +|_1 V_x |w\rangle |\bar{0}\rangle |+\rangle \|_2^2$

Remarks on the weirdness

- Threshold parameters a, b cannot be replaced by some constants since error reduction for StoqMA remains unknown since [BBT06].
- For any non-negative witness, it is evident that $\Pr[V_x \text{ accepts } w] \ge 1/2$.
- Owing to Perron-Frobenius theorem, the optimal witness is non-negative state. W.L.O.G. we can think the witness as a probability distribution!

The definition of StoqMA

What is the computational power of StoqMA

StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

Towards error reduction for StoqMA

The computational power of StoqMA

SBP StoqMA MA NP

- Stoquastic (i.e. sign problem free) local Hamilton. problem is StoqMA-complete [BBT06].
- Complexity classification of 2-LHP [CM13,BH14]: P, NP-complete, StoqMA-complete, or QMA-complete. Schaefer's theorem CSP over F₂ is either in P or NP-complete.
- StoqMA contains MA: simulating a single-qubit $\{|0\rangle, |1\rangle\}$ basis measurement by a $\{|+\rangle, |-\rangle\}$ basis measurement with an ancillary qubit.
- AM (essentially SBP) contains StoqMA: Set lower bound protocol [GS86], where AM is a two-message randomized generalization of NP.
- Stoq $MA_1 = MA$ [BBT06,BT09].
- Under derandomization assumptions [KvM02,MV05], AM collapses to NP: MA = StoqMA = SBP.
- **Q:** Is it possible to collapse the hierarchy $MA \subseteq StoqMA \subseteq SBP$?

2 StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

- Towards error reduction for StoqMA
- **6** Open problems

② StoqMA: a distribution testing lens Proving StoqMA ⊆ MA by taking samples (and failed) eStoqMA ⊂ MA: taking both samples and queries

3 Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA

Distribution testing in a nutshell

Definition: Sample Access

Let D be a fixed distribution over Ω . A sampling oracle for D is an oracle S_D : when queried, S_D returns an element $x \in \Omega$ with probability D(x).

Task: Tolerant Testing

Given independent (sample) oracle accesses to D_0, D_1 (both unknown), decide whether they are ϵ_1 -close or ϵ_2 -far from each other.

Theorem: Sample Complexity Lower Bound for Tolerant Testing in d_H^2 (A corollary of Theorem 9 in [DKW18])

There is a constant $\epsilon > 0$ such that any algorithm for distinguishing $d_{H}^{2}(D_{0}, D_{1}) \leq \epsilon^{2}/8$ (close) from $d_{H}^{2}(D_{0}, D_{1}) \geq \epsilon^{2}/2$ (far), requires $\Omega(N/\log N)$ samples, where the square Hellinger distance $d_{H}^{2}(D_{0}, D_{1}) := \frac{1}{2} \sum_{i \in [N]} \left(\sqrt{D_{0}(i)} - \sqrt{D_{1}(i)} \right)^{2} = 1 - \langle D_{0} | D_{1} \rangle.$

Measuring a non-negative state in the Hadamard basis, revisited

First (failed) attempt: proving StoqMA \subseteq MA by distribution testing Given the state $|0\rangle |D_0\rangle + |1\rangle |D_1\rangle := V_x |w\rangle |\bar{0}\rangle |\bar{+}\rangle$ (before the measurement), measure the designated output qubit in the $\{|+\rangle, |-\rangle\}$ basis:

 $\|\left|+\right\rangle\left\langle+\right|_{1}\left(\left|0\right\rangle\left|D_{0}\right\rangle+\left|1\right\rangle\left|D_{1}\right\rangle\right)\|_{2}^{2}=\frac{1}{2}+\left\langle D_{0}|D_{1}\right\rangle=1-d_{H}^{2}(D_{0},D_{1}),$

where $|D_k\rangle = \sum_i \sqrt{D_k(i)} |i\rangle$ for k = 0, 1 and $\langle D_0 | D_0 \rangle + \langle D_1 | D_1 \rangle = 1$.

- ► It suffices to approximate the squared Hellinger distance d²_H(D₀, D₁) within 1/poly(n) accuracy using only poly(n) sample accesses to D₀, D₁.
- Proving MA containment by distribution testing!
- ◇ Bad news: This "MA containment" requires *exponentially* many samples. ☺
 ◇ Good news: We probably could take advantage of other models! ☺

② StoqMA: a distribution testing lens Proving StoqMA ⊆ MA by taking samples (and failed) eStoqMA ⊆ MA: taking both samples and queries

3 Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA

From dual access model to easy witness

Dual (query+sample) access model

- Sample access to D: Run a copy of V_x that takes $|w\rangle$ as an input, measure all qubits in the $\{|0\rangle, |1\rangle\}$ basis, then viewed the measurement outcome $i \in \{0, 1\}^n$ as a sample.
- Query access to (D_0, D_1) : Given an index $j \in \{0, 1\}^{n-1}$, algorithm Q_D evaluates $D_0(j)/D_1(j)$ efficiently, where $D_0(\cdot) := D(0||\cdot)$ and so does D_1 .

Theorem [CR14]. Approximating the total variation distance $d_{TV}(D_0, D_1)$ within ϵ accuracy requires only $\Theta(1/\epsilon^2)$ accesses to the oracle.

StoqMA with easy witness (eStoqMA)

Easy witness: given a witness state |D⟩, there is an algo. Q_D such that the quotient D₀(j)/D₁(j) can be evaluated efficiently for any index j.
 e.g. |S⟩ = ∑_{i∈S} 1/√|S| |i⟩ where S's membership is efficiently verifiable.
 eStoqMA's definition modified from StoqMA: For yes instance x ∈ L_{yes} where L = (L_{yes}, L_{no}) ∈ eStoqMA, the witness must be easy witness.

eStoqMA = MA: Proof Sketch

Theorem. eStoqMA = MA.

Proof Sketch. Consider state $|0\rangle |D_0\rangle + |1\rangle |D_1\rangle := V_x |w\rangle |0\rangle |+\rangle$, then

$$\frac{\Pr[V_x \text{ accepts } |w\rangle]}{\|D_1\|_1} = \frac{\frac{1}{2} \||D_0\rangle + |D_1\rangle\|_2^2}{\|D_1\|_1} = \mathop{\mathbb{E}}_{i \sim D_1/\|D_1\|_1} \left(1 + \frac{D_0(i)}{D_1(i)}\right)^2$$

Note $D_0(i)/D_1(i)$ is evaluated by Q_D . By Chernoff bound, an empirical estimation infers 1/poly(n) additive error approx. of $\Pr[V_x \text{ accepts } |w\rangle]$. \Box

Corollary. Stoq $MA_1 \subseteq MA$.

Proof. It is evident that $StoqMA_1 \subseteq eStoqMA_1$ since the easy witness is the subset state associated with the set that consists of all nodes that mark "good" on the configuration graph of a $SetCSP_{0,1/poly(n)}$ instance.

Remark. *Guided Stoquastic Local Hamiltonian* [Bravyi15], which is contained in MA, can be viewed as a (generalized) Hamiltonian version of eStoqMA.

2 StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

- Towards error reduction for StoqMA
- **6** Open problems

- StoqMA: a distribution testing lens
- Oistinguishing reversible circuits is StoqMA-complete Computational complexity of distinguishing circuits Proof Sketch: StoqMA-completeness
- 4 Towards error reduction for StoqMA
- **6** Open problems

From SWAP test to Reversible Circuit Distinguishability

SWAP test [BCWdW01]

- \diamond SWAP test outputs 1 with prob. $|\langle \psi | \phi \rangle|^2$.
- ♦ Thinking $|\psi\rangle \otimes |\phi\rangle$ as a witness, then SWAP test looks like a trivial StoqMA verifier with maximum accept. prob. 1 (and the optimal witness is classical).

Reversible Circuit Distinguishability, $RCD(a, b; n_+)$

Given efficient reversible circuits C_0, C_1 that utilizes ancillary states $|0\rangle$ and $|\bar{+}\rangle$. Let non-negative states that generates by C_k (k = 0, 1) and $|w\rangle$ be $|D_k\rangle := C_k |w\rangle |\bar{0}\rangle |\bar{+}\rangle$, decide which is the following cases:

- Yes (a-indistinguishable): $\exists |w\rangle$ s.t. $\langle D_0|D_1\rangle \geq a$;
- No (b-distinguishable): $\forall |w\rangle$, $\langle D_0 | D_1 \rangle \leq b$,

where $a - b \ge 1/\text{poly}(n)$.

The computational complexity of distinguishing circuits

Theorem

Reversible Circuit Distinguishability, viz. $RCD(\cdot, \cdot; poly)$, is StoqMA-complete.

- ► Theorem [JWZ03]. Quantum Circuit Distinguishability is QMA-complete.
- ► **Theorem [Jordan14].** Reversible Circuit Distinguishability (without ancillary random bit), viz. RCD(·,·;0), is NP-complete.
- $\star \operatorname{RCD}(\cdot,\cdot;\operatorname{poly}) \text{ seems MA-complete but it is actually StoqMA-complete!}$

Proposition 1

Exact Reversible Circuit Dist., viz. $RCD(\cdot, 0; poly)$, is NP-complete.

Corollary. StoqMA with perfect soundness is contained in NP.

- **Theorem [FGMSZ89]** Arthur-Merlin games with perfect soundness \subseteq NP.
- Theorem [Tanaka10] Exact Quantum Circuit Distinguishability is NQP-complete, namely QMA with perfect soundness, which is as powerful as coC=P.

Proposition 2

RCD without ancillary random bit, viz. $RCD(\cdot, \cdot; 0)$, is NP-complete.

2 StoqMA: a distribution testing lens

Oistinguishing reversible circuits is StoqMA-complete Computational complexity of distinguishing circuits Proof Sketch: StoqMA-completeness

4 Towards error reduction for StoqMA

Reversible Circuit Distinguishability is StoqMA-complete: Proof Sketch

For k = 0, 1, let $|D_k\rangle := C_k |w\rangle |\bar{0}\rangle |\bar{+}\rangle$, then:

- ► RCD(a, b; poly) is contained in StoqMA($\frac{1}{2} + \frac{a}{2}, \frac{1}{2} + \frac{b}{2}$).
 - $$\begin{split} \diamond \; & \mathsf{Dash \; line:} \\ \frac{1}{\sqrt{2}} \left| 0 \right\rangle \left| D_0 \right\rangle + \frac{1}{\sqrt{2}} \left| 1 \right\rangle \left| D_1 \right\rangle. \end{split}$$

► RCD(*a*,*b*; poly) is hard for StoqMA($\frac{1}{2} + \frac{a}{2}, \frac{1}{2} + \frac{b}{2}$).

 $\begin{aligned} &\diamond \; \mathsf{Set}\; C_0 := V_x^{\dagger} X_1 V_x \; \mathsf{and}\; C_1 := I. \\ &\diamond \; \mathsf{Let}\; M := \left\langle \bar{0} \middle| \left\langle \bar{+} \middle| V_x^{\dagger} X_1 V_x \middle| \bar{0} \right\rangle \middle| \bar{+} \right\rangle, \; \mathsf{then} \\ & \Pr[V_x \; \mathsf{accepts}\; |w\rangle] = \frac{1}{2} + \frac{1}{2} \lambda_{\max}(M). \end{aligned}$

Remark. This observation went back to (weak) error reduction for QMA [KSV02].

2 StoqMA: a distribution testing lens

Oistinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA

2 StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA

Why error reduction is important for StoqMA?

Soundness error reduction for StoqMA

Why error reduction is important for StoqMA?

Conjecture: Error reduction for StoqMA $\forall 1/2 \leq a, b \leq 1$ such that $a - b \geq 1/\text{poly}(n)$, it holds that $\operatorname{StoqMA}(a,b) \subseteq \operatorname{StoqMA}\left(1-2^{-n}, \frac{1}{2}+2^{-n}\right)$.

Theorem (Soundness error reduction for StoqMA)

 $\mathsf{For any}\ l = \mathrm{poly}(n),\ \mathsf{StoqMA}\left(\tfrac{1}{2} + \tfrac{a}{2}, \tfrac{1}{2} + \tfrac{b}{2}\right) \subseteq \mathsf{StoqMA}\left(\tfrac{1}{2} + \tfrac{a^{l(n)}}{2}, \tfrac{1}{2} + \tfrac{b^{l(n)}}{2}\right).$

* It suffices to reduce two-sided errors *separately* and *alternatively*, e.g., the polarization lemma of SZK [SV03] or space-efficient QMA error reduction [FKL+16].

Theorem [AGL20]: Error reduction implies StoqMA = MA (Completeness) error reduction for StoqMA implies StoqMA \subseteq MA. Namely, StoqMA $(1-1/p_1(n), 1-1/p_2(n)) \subseteq$ MA, where p_1 is a *super-polynomial* of n and p_2 is a polynomial of n.

2 StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA

Why error reduction is important for StoqMA?

Soundness error reduction for StoqMA

Soundness error reduction for StoqMA

Theorem (restated)

For any
$$l = \operatorname{poly}(n)$$
, $\operatorname{StoqMA}\left(\frac{1}{2} + \frac{a}{2}, \frac{1}{2} + \frac{b}{2}\right) \subseteq \operatorname{StoqMA}\left(\frac{1}{2} + \frac{a^{l(n)}}{2}, \frac{1}{2} + \frac{b^{l(n)}}{2}\right)$.

Corollary. $\forall 1 - a \ge 1/\text{poly}(n), \ l = \text{poly}(n), \ \text{StoqMA}(1, a) \subseteq \text{StoqMA}(1, 2^{-l(n)}).$

Proof Sketch

Recall that $\Pr[V_x \text{ accepts } |w\rangle] = \frac{1}{2} + \frac{1}{2}\lambda_{\max}(M)$ where $M = \langle \bar{0}|\langle \bar{+}|V_x^{\dagger}X_1V_x|\bar{0}\rangle|\bar{+}\rangle$. Let us take the tensor product (i.e. "conjunction" or "AND") now:

2 StoqMA: a distribution testing lens

3 Distinguishing reversible circuits is StoqMA-complete

4 Towards error reduction for StoqMA

Conclusions and open problems

Take-home messages

1 The difficulty of StoqMA arisen from *different kinds of optimal witness*:

Witness Type	Results
Classical	$cStoqMA(a,b) \subseteq MA(2a-1,2b-1) [Grilo20]$
Easy	$\forall a-b \geq 1/poly(n), eStoqMA(a,b) \subseteq MA(9/16,7/16)$
Non-negative	$StoqMA \stackrel{?}{=} MA$

Soundness error reduction for StoqMA is possible, and interestingly, the proof is inspired by showing distinguishing reversible circuits (RCD) is StoqMA-complete (*instead of MA as expected*!).

- 1 StoqMA vs. MA and SBP vs. MA.
- ② Completeness error reduction for StoqMA.
- More (natural) StoqMA-complete problems.

Thank you!