StoqMA meets distribution testing

Yupan Liu
???

TQC 2021

Why StoqMA is important?

Why StoqMA is important?

Dichotomy Theorem on
Constraint Satisfaction Problem
over boolean domain [Schaefer'78]

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

NP-complete

O Assume that $\mathrm{P} \cong \mathrm{NP}$

Classification Theorem on
2-Local Hamiltonian Problem
on qubits
[Cubitt-Montanaro'13]
$H=\Sigma_{i}\left(\sigma_{i}^{x} \otimes \sigma_{i+1}^{x}+\sigma_{i}^{y} \otimes \sigma_{i+1}^{z}\right)$

NP-complete

QMA-complete

Why StoqMA is important?

Dichotomy Theorem on
Constraint Satisfaction Problem
over boolean domain
[Schaefer'78]

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

NP-complete

O Assume that $\mathrm{P} \cong \mathrm{NP}$

Classification Theorem on
2-Local Hamiltonian Problem
on qubits
[Cubitt-Montanaro'13]
$H=\Sigma_{i}\left(\sigma_{i}^{x} \otimes \sigma_{i+1}^{x}+\sigma_{i}^{y} \otimes \sigma_{i+1}^{z}\right)$

NP-complete
StoqMA-complete
QMA-complete
O Assume that $\mathrm{P} \ddagger \mathrm{NP} \ddagger$ StoqMA $\ddagger \mathrm{QMA}$

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]
MA

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]

StoqMA

- For yes instances, $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \geq a$.
- For no instances, $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \leq b$.
where $\frac{1}{2} \leq a, b \leq 1$ and $a-b \geq 1 / \operatorname{poly}(n)$.

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]

StoqMA

Non-negative states are sufficient (due to Perron-Frobenius theorem)

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]

StoqMA

Non-negative states are sufficient (due to Perron-Frobenius theorem)

Off-diagonal entries are non-positive

- Definition of StoqMA came from Stoquastic Local Hamiltonian.

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]

StoqMA

Non-negative states are sufficient (due to Perron-Frobenius theorem)

Off-diagonal entries are non-positive

- Definition of StoqMA came from Stoquastic Local Hamiltonian.
- $\mathrm{MA} \subseteq \mathrm{StoqMA} \subseteq \mathrm{AM}$, where AM is two-message randomized generalization of NP .

What's the complexity class StoqMA?

[Bravyi-Bessen-Terhal'06]

StoqMA

Non-negative states are sufficient (due to Perron-Frobenius theorem)

Off-diagonal entries are non-positive

- Definition of StoqMA came from Stoquastic Local Hamiltonian.
- $\mathrm{MA} \subseteq \mathrm{StoqMA} \subseteq \mathrm{AM}$, where AM is two-message randomized generalization of NP .
- Error reduction (i.e., making a, b exponentially close to 1 and $1 / 2$) for StoqMA is unknown.

The mystery of the Hadamard-basis measurement

SWAP test

The mystery of the Hadamard-basis measurement

SWAP test

The mystery of the Hadamard-basis measurement

SWAP test

The mystery of the Hadamard-basis measurement

SWAP test as a StoqMA verifier

The mystery of the Hadamard-basis measurement

SWAP test as a StoqMA verifier

Take-home message from the SWAP test:
O Single-qubit Hadamard-basis measurement can be thought as a distribution testing task!

$1^{\text {st }}$ result: $\mathrm{eStoqMA} \subseteq \mathrm{MA}$

Easy witness

Consider $|w\rangle=\sum_{i} \sqrt{p(i)}|i\rangle$ such that $\forall x, y \in\{0,1\}^{n}, \frac{p(x)}{p(y)}$ is efficiently computable.
O An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

$1^{\text {st }}$ result: $\mathrm{eStoqMA} \mathrm{\subseteq MA}$

Easy witness

Consider $|w\rangle=\sum_{i} \sqrt{p(i)}|i\rangle$ such that $\forall x, y \in\{0,1\}^{n}, \frac{p(x)}{p(y)}$ is efficiently computable.
O An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

Theorem. For any $\frac{1}{2} \leq a, b \leq 1$ such that $a-b \geq 1 / \operatorname{poly}(n)$, eStoqMA $(a, b) \subseteq$ MA.

1st result: eStoqMA \subseteq MA

Easy witness

Consider $|w\rangle=\sum_{i} \sqrt{p(i)}|i\rangle$ such that $\forall x, y \in\{0,1\}^{n}, \frac{p(x)}{p(y)}$ is efficiently computable.
O An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

Theorem. For any $\frac{1}{2} \leq a, b \leq 1$ such that $a-b \geq 1 / \operatorname{poly}(n)$, eStoqMA $(a, b) \subseteq$ MA.
Proof Sketch. Using the dual access model [Canonne-Rubinfeld'14]:

- Sample access: running a copy of V_{x} and measuring all qubits in computational basis;
- Query access: efficiently evaluating the quotient.

One can approximate max. acc. prob. with polynomially many of copies of the witness $|w\rangle$.

1st result: eStoqMA \subseteq MA

Easy witness

Consider $|w\rangle=\sum_{i} \sqrt{p(i)}|i\rangle$ such that $\forall x, y \in\{0,1\}^{n}, \frac{p(x)}{p(y)}$ is efficiently computable.
O An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

Theorem. For any $\frac{1}{2} \leq a, b \leq 1$ such that $a-b \geq 1 / \operatorname{poly}(n)$, eStoqMA $(a, b) \subseteq$ MA.
Proof Sketch. Using the dual access model [Canonne-Rubinfeld'14]:

- Sample access: running a copy of V_{x} and measuring all qubits in computational basis;
- Query access: efficiently evaluating the quotient.

One can approximate max. acc. prob. with polynomially many of copies of the witness $|w\rangle$.

O Prop ([Grilo20]). For any a, b, classical-witness-StoqMA $(a, b) \subseteq \operatorname{MA}(2 a-1,2 b-1)$.
O The difficulty of StoqMA roots in different kinds of optimal witness!

$2^{\text {nd }}$ result:Distinguishing reversible circuits with non-negative states

Reversible Circuit Distinguishability is StoqMA-complete

Given reversible circuits C_{0}, C_{1}, define $\left|D_{k}\right\rangle:=C_{i}|w\rangle|\overline{0}\rangle|\overline{+}\rangle$
for $k=0,1$ and a non-negative witness $|w\rangle$:

- Yes: $\exists|w\rangle$ such that $\left\langle D_{0} \mid D_{1}\right\rangle \geq \alpha$;
- No: $\forall|w\rangle,\left\langle D_{0} \mid D_{1}\right\rangle \leq \beta ;$

where $0 \leq \alpha, \beta \leq 1$ and $\alpha-\beta \geq 1 / \operatorname{poly}(n)$.

$2^{\text {nd }}$ result: Distinguishing reversible circuits with non-negative states

Reversible Circuit Distinguishability is StoqMA-complete

where $0 \leq \alpha, \beta \leq 1$ ahd $\alpha-\beta \geq 1 /$ poly (n).

- QMA-complete if C_{0}, C_{1} are quantum circuits
- NP-complete if C_{0}, C_{1} are reversible circuits without ancillary random bit

$2^{\text {nd }}$ result: Distinguishing reversible circuits with non-negative states

Reversible Circuit Distinguishability is StoqMA-complete

Giver reversible circuits $C_{0} C_{1}$ define $\left|D_{k}\right\rangle:=C_{i}|w\rangle|\overline{0}\rangle|\mp\rangle$
for $k=0,1$ and non-negative witness $|w\rangle$:

- Yes: $\exists|w\rangle$ such that $\left\langle D_{0} \mid D_{1}\right\rangle \geq \alpha$;
- No: $\forall|w\rangle,\left\langle D_{0} \mid B_{1}\right\rangle \leq \beta$;

where $0 \leq \alpha, \beta \leq 1$ and $\alpha-\beta \geq 1 / \operatorname{poly}(n)$.
- QMA-complete if C_{0}, C_{1} are quantum circuits
- NP-complete if C_{0}, C_{1} are reversible circuits without ancillary random bit

Soundness error reduction $\operatorname{StogMA}\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right) \subseteq \operatorname{StogMA}\left(\frac{1}{2}+\frac{a^{r}}{2}, \frac{1}{2}+\frac{b^{r}}{2}\right)$

$2^{\text {nd }}$ result: Distinguishing reversible circuits with non-negative states

Reversible Circuit Distinguishability is StoqMA-complete

Giver reversible circuits C_{0}, C_{1} define $\left|D_{k}\right\rangle:=C_{i}|w\rangle|\overline{0}\rangle|\mp\rangle$
for $k=0,1$ and non-negative witness $|w\rangle$:

- Yes: $\exists|w\rangle$ such that $\left\langle D_{0} \mid D_{1}\right\rangle \geq \alpha$;
- No: $\forall|w\rangle,\left\langle D_{0} \mid D_{1}\right\rangle \leq \beta$;

where $0 \leq \alpha, \beta \leq 1$ and $\alpha-\beta \geq 1 / \operatorname{poly}(n)$.
- QMA-complete if C_{0}, C_{1} are quantum circuits
- NP-complete if C_{0}, C_{1} are reversible circuits without ancillary random bit

Soundness error reduction StoqMA $\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right) \subseteq \operatorname{StogMA}\left(\frac{1}{2}+\frac{a^{r}}{2}, \frac{1}{2}+\frac{b^{r}}{2}\right)$

Thanks!

