StoqMA meets distribution testing

Yupan Liu ???

TQC 2021

Why StoqMA is important?

Why StoqMA is important?

Dichotomy Theorem on **C**onstraint **S**atisfaction **P**roblem over boolean domain [Schaefer'78] $(\neg x_1 \lor x_2) \land (x_2 \lor \neg x_3 \lor x_4)$ P NP-complete O Assume that P_₹NP

Why StoqMA is important?

[Bravyi-Bessen-Terhal'06]

[Bravyi-Bessen-Terhal'06]

[Bravyi-Bessen-Terhal'06]

StoqMA

[Bravyi-Bessen-Terhal'06]

StoqMA Non-negative states are sufficient (due to Perron-Frobenius theorem) $|\bar{0}\rangle_{+}$ $|\bar{0}\rangle_{+}$ $|\bar{1}\rangle_{+}$ • For yes instances, $\Pr[V_x \text{ accepts } |w\rangle] \ge a$. • For *no* instances, $\Pr[V_x \text{ accepts } |w\rangle] \le b$. where $\frac{1}{2} \le a, b \le 1$ and $a - b \ge 1/\text{poly}(n)$.

Using only *Toffoli, CNOT, X* gates

[Bravyi-Bessen-Terhal'06]

StoqMA *Non-negative states* are sufficient (due to Perron-Frobenius theorem)

+

- For yes instances, $\Pr[V_x \text{ accepts } |w\rangle] \ge a$.
- For *no* instances, $\Pr[V_x \text{ accepts } |w\rangle] \leq b$.

where
$$\frac{1}{2} \le a, b \le 1$$
 and $a - b \ge 1/\text{poly}(n)$.

Using only *Toffoli, CNOT, X* gates

Off-diagonal entries are non-positive

Definition of StoqMA came from *Stoquastic Local Hamiltonian*.

[Bravyi-Bessen-Terhal'06]

StoqMA

Definition of StoqMA came from *Stoquastic Local Hamiltonian*.

• $MA \subseteq StoqMA \subseteq AM$, where AM is two-message randomized generalization of NP.

[Bravyi-Bessen-Terhal'06]

StoqMA

Off-diagonal entries are non-positive

- Definition of StoqMA came from *Stoquastic Local Hamiltonian*.
- $MA \subseteq StoqMA \subseteq AM$, where AM is two-message randomized generalization of NP.
- Error reduction (i.e., making *a,b* exponentially close to 1 and 1/2) for StoqMA is *unknown*.

Take-home message from the SWAP test:

• Single-qubit Hadamard-basis measurement can be thought as a *distribution testing* task!

Easy witness

Consider $|w\rangle = \sum_{i} \sqrt{p(i)} |i\rangle$ such that $\forall x, y \in \{0,1\}^n$, $\frac{p(x)}{p(y)}$ is *efficiently* computable.

• An analogous condition appears in *Guided Stoquastic Local Hamiltonian Problem* [Bravyi'15].

Easy witness

Consider $|w\rangle = \sum_{i} \sqrt{p(i)} |i\rangle$ such that $\forall x, y \in \{0,1\}^n$, $\frac{p(x)}{p(y)}$ is *efficiently* computable.

O An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

Theorem. For any $\frac{1}{2} \le a, b \le 1$ such that $a - b \ge 1/\text{poly}(n)$, $eStoqMA(a, b) \subseteq MA$.

Easy witness

Consider $|w\rangle = \sum_{i} \sqrt{p(i)} |i\rangle$ such that $\forall x, y \in \{0,1\}^n$, $\frac{p(x)}{p(y)}$ is *efficiently* computable.

• An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

Theorem. For any $\frac{1}{2} \le a, b \le 1$ such that $a - b \ge 1/\text{poly}(n)$, $eStoqMA(a, b) \subseteq MA$.

Proof Sketch. Using the dual access model [Canonne-Rubinfeld'14]:

- Sample access: running a copy of V_x and measuring all qubits in computational basis;
- Query access: efficiently evaluating the quotient.

One can approximate max. acc. prob. with *polynomially many of copies* of the witness $|w\rangle$.

Easy witness

Consider $|w\rangle = \sum_{i} \sqrt{p(i)} |i\rangle$ such that $\forall x, y \in \{0,1\}^n$, $\frac{p(x)}{p(y)}$ is *efficiently* computable.

• An analogous condition appears in Guided Stoquastic Local Hamiltonian Problem [Bravyi'15].

Theorem. For any $\frac{1}{2} \le a, b \le 1$ such that $a - b \ge 1/\text{poly}(n)$, $eStoqMA(a, b) \subseteq MA$.

Proof Sketch. Using the dual access model [Canonne-Rubinfeld'14]:

- Sample access: running a copy of V_x and measuring all qubits in computational basis;
- Query access: efficiently evaluating the quotient.

One can approximate max. acc. prob. with *polynomially many of copies* of the witness $|w\rangle$.

• **Prop** ([Grilo20]). For any *a*,*b*, classical-witness-StoqMA(a, b) ⊆ MA(2a - 1, 2b - 1). • **O** The difficulty of StoqMA roots in *different kinds of optimal witness*!

Reversible Circuit Distinguishability is StoqMA-complete

Given *reversible circuits* C_0, C_1 , define $|D_k\rangle := C_i |w\rangle |\bar{0}\rangle |\bar{+}\rangle$

for k = 0,1 and a *non-negative* witness $|w\rangle$:

- *Yes*: $\exists | w \rangle$ such that $\langle D_0 | D_1 \rangle \ge \alpha$;
- No: $\forall | w \rangle$, $\langle D_0 | D_1 \rangle \leq \beta$;

where $0 \le \alpha, \beta \le 1$ and $\alpha - \beta \ge 1/\text{poly}(n)$.

• **NP**-complete if C_0 , C_1 are reversible circuits *without ancillary random bit*

Thanks!