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Off-diagonal entries are non-positive

1
2 ≤ a, b ≤ 1

• Definition of StoqMA came from Stoquastic Local Hamiltonian. 

• MA ⊆ StoqMA ⊆ AM, where AM is two-message randomized generalization of NP. 

• Error reduction (i.e., making a,b exponentially close to 1 and 1/2) for StoqMA is unknown. 
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• Sample access: running a copy of  and measuring all qubits in computational basis;  Vx

• Query access: efficiently evaluating the quotient.

One can approximate max. acc. prob. with polynomially many of copies of the witness .         |w⟩ □

Prop ([Grilo20]). For any a,b, classical-witness-𝖲𝗍𝗈𝗊𝖬𝖠(a, b) ⊆ 𝖬𝖠(2a − 1,2b − 1) .
The difficulty of StoqMA roots in different kinds of optimal witness!
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