The untold story of StoqMA

Yupan Liu
Hebrew University of Jerusalem \rightarrow ?

Available at arXiv:2011.05733 and arXiv:2010.02835
Partially joint with Dorit Aharonov and Alex B. Grilo

YITP, Kyoto University (Virtually), Nov 2020
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems
(1) What is the complexity class StoqMA?

The definition of StoqMA
What is the computational power of StoqMA
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

A "quantum" definition of MA
Consider a promise problem $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{n o}\right) \in \mathrm{MA}$, there is a verifier such that for any input $x \in \mathcal{L}$, a uniformly generated verification circuit V_{x} such that

- Yes: If $x \in \mathcal{L}_{\text {yes }}, \exists w$ such that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.w\right] \geq 2 / 3$;
- No: If $x \in \mathcal{L}_{n o}, \forall w$, we have $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.w\right] \leq 1 / 3$.

"Quantize" the definition: Viewed V_{x} as a quantum circuit

\diamond Verification circuit using only classical reversible gates (i.e. Toffoli, CNOT, X).
\diamond Measure the designed output qubit in the $\{|0\rangle,|1\rangle\}$ basis.
\diamond Ancillary qubits $|+\rangle^{\otimes n_{+}}$corresponds to randomized ancillary bits.

Acceptance probability $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\||1\rangle\left\langle\left. 1\right|_{1} V_{x} \mid w\right\rangle|0\rangle^{\otimes n_{0}}|+\rangle^{\otimes n_{+}} \|_{2}^{2}$
Remark on equivalence. The optimal witness is classical witness (since the matrix $\langle\overline{0}|\langle\overline{+}|\left(V_{x}|1\rangle\left\langle\left. 1\right|_{1} V_{x}^{\dagger}\right)|\overline{0}\rangle|\overline{+}\rangle\right.$ is diagonal), so it is equivalent to standard definition.

The weird class StoqMA

Consider a promise problem $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{\text {no }}\right) \in$ StoqMA, there is a verifier such that for any input $x \in \mathcal{L}$, a uniformly generated verification circuit V_{x} that measures the output qubit in the $\{|+\rangle,|-\rangle\}$ basis such that

- Yes: If $x \in \mathcal{L}_{y e s}, \exists|w\rangle$ such that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \geq a$;
- No: If $x \in \mathcal{L}_{n o}, \forall|w\rangle$, we have $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right] \leq b$; where

$$
1 \geq a>b \geq 1 / 2 \text { and } a-b \geq 1 / \operatorname{poly}(n)
$$

Acceptance probability $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\||+\rangle\left\langle+\left.\right|_{1} V_{x} \mid w\right\rangle|0\rangle^{\otimes n_{0}}|+\rangle^{\otimes n_{+}} \|_{2}^{2}$

Remarks on the weirdness

- Threshold parameters a, b cannot be replaced by some constants since error reduction for StoqMA remains unknown since [BBT06].
- For any non-negative witness, it is evident that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.w\right] \geq 1 / 2$.
- Owing to Perron-Frobenius theorem, the optimal witness is non-negative state. W.L.O.G. we can think the witness as a probability distribution!
(1) What is the complexity class StoqMA?

The definition of StoqMA
What is the computational power of StoqMA
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

The computational power of StoqMA

Q: Is it possible to collapse the hierarchy $M A \subseteq S t o q M A \subseteq S B P ?$
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens

Proving StoqMA \subseteq MA by taking samples (and failed)
eStoqMA \subseteq MA: taking both samples and queries
What's the difference between eStoqMA and StoqCMA?
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

Distribution testing in a nutshell

Definition: Sample Access

Let D be a fixed distribution over Ω. A sampling oracle for D is an oracle S_{D} : when queried, S_{D} returns an element $x \in \Omega$ with probability $D(x)$.

Task: Tolerant Testing

Given independent (sample) oracle accesses to D_{0}, D_{1} (both unknown), decide whether they are ϵ_{1}-close or ϵ_{2}-far from each other.

Theorem: Sample Complexity Lower Bound for Tolerant Testing in d_{H}^{2}
(A corollary of Theorem 9 in [DKW18])
There is a constant $\epsilon>0$ such that any algorithm for tolerant testing between D_{0} and D_{1} on [N], namely distinguishing $d_{H}^{2}\left(D_{0}, D_{1}\right) \leq \epsilon^{2} / 8$ from $d_{H}^{2}\left(D_{0}, D_{1}\right) \geq \epsilon^{2} / 2$, requires $\Omega(N / \log N)$ samples, where the square Hellinger distance $d_{H}^{2}:=\frac{1}{2} \|\left|D_{0}\right\rangle-\left|D_{1}\right\rangle \|_{2}^{2}$.

Measuring non-negative states in the Hadamard basis, revisited
First (failed) attempt: proving StoqMA \subseteq MA by distribution testing
Given the state $|0\rangle\left|D_{0}\right\rangle+|1\rangle\left|D_{1}\right\rangle:=V_{x}|w\rangle|0\rangle^{\otimes n_{0}}|+\rangle^{\otimes n_{+}}$(before the measurement), measure the output qubit in the $\{|+\rangle,|-\rangle\}$ basis:
where $\left|D_{k}\right\rangle=\sum_{i} \sqrt{D_{k}(i)}|i\rangle$ for $k=0,1$ and $\left\langle D_{0} \mid D_{0}\right\rangle+\left\langle D_{1} \mid D_{1}\right\rangle=1$.

- It suffices to approximate the squared Hellinger distance $d_{H}^{2}\left(D_{0}, D_{1}\right)$ within $1 / \operatorname{poly}(n)$ accuracy using only poly (n) sample accesses to D_{0}, D_{1}.
- Proving MA containment by distribution testing!
\diamond Bad news: This "MA containment" requires exponentially many samples. ©
\diamond Good news: We probably could take advantage of other models! ©
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens

Proving StoqMA \subseteq MA by taking samples (and failed)
e StoqMA $\subseteq M A$: taking both samples and queries
What's the difference between eStoqMA and StoqCMA?
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

From dual access model to easy witness

Dual (query+sample) access model

- Sample access to D : Run a copy of V_{x} that takes $|w\rangle$ as input, measure all qubits in the $\{|0\rangle,|1\rangle\}$ basis, then viewed the meas. outcome as a sample.
- Query access to D : Given an index i, alg. Q_{D} evaluates $D(i)$ efficiently.

Theorem [CR14]. Approximating the total variation distance $d_{T V}\left(D_{0}, D_{1}\right)$ with an error ϵ requires only $\Theta\left(1 / \epsilon^{2}\right)$ accesses to the oracle.

StoqMA with easy witness (eStoqMA)

- Easy witness: given a witness state $|D\rangle$, there is an algorithm Q_{D} such that the coordinate $D(i)$ can be evaluated efficiently for any index i. e.g. $|S\rangle=\sum_{i \in S} \frac{1}{\sqrt{|S|}}|i\rangle$ where S 's membership is efficiently verifiable.
- eStoqMA's definition modified from StoqMA: For yes instance $x \in \mathcal{L}$ yes where $\mathcal{L}=\left(\mathcal{L}_{\text {yes }}, \mathcal{L}_{n o}\right) \in$ eStoqMA, the witness must be easy witness.

Remark. Constant multiplicative error approximation of the cardinality of an efficient verifiable set is (informally) SBP-complete [Watson16, Vol20].

eStoqMA $=$ MA: proof sketch

Theorem. eStoqMA $=$ MA.
Proof Sketch. Consider state $|0\rangle\left|D_{0}\right\rangle+|1\rangle\left|D_{1}\right\rangle:=V_{x}|w\rangle|0\rangle^{\otimes n_{0}}|+\rangle^{\otimes n_{+}}$, then

$$
\frac{\operatorname{Pr}\left[V_{x} \text { accepts }|w\rangle\right]}{\left\|D_{1}\right\|_{1}}=\frac{\frac{1}{2} \|\left|D_{0}\right\rangle+\left|D_{1}\right\rangle \|_{2}^{2}}{\left\|D_{1}\right\|_{1}}=\underset{i \sim D_{1} /\left\|D_{1}\right\|_{1}}{\mathbb{E}}\left(1+\frac{D_{0}(i)}{D_{1}(i)}\right)^{2}
$$

By Chernoff bound, an empirical estimation indicates $1 / \operatorname{poly}(n)$ additive error approximation of $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]$.

Corollary. StoqMA $A_{1} \subseteq$ MA.

Proof. It is evident that StoqMA $\mathrm{MA}_{1} \subseteq \mathrm{eStoq}^{\prime} \mathrm{MA}_{1}$ since the easy witness is the subset state associated with the set that consists of all nodes that mark "good" on the configuration graph of a $\operatorname{SetCSP}_{0,1 / \text { poly }}$ instance (Def. is postponed).
\star Funny fact. The proof technique of eStoqMA $\subseteq M A$ is also used in quantum inspired classical algorithm, such as [Tang19, CGLLTW20].
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens

Proving StoqMA \subseteq MA by taking samples (and failed)
eStoqMA \subseteq MA: taking both samples and queries
What's the difference between eStoqMA and StoqCMA?
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

Remarks on StoqMA with classical witness (StoqCMA)

Proposition (Alex B. Grilo)
$\forall 1 / 2 \leq b<a \leq 1$, StoqCMA $(a, b) \subseteq \operatorname{MA}(2 a-1,2 b-1)$.
Proof Intuition. Notice $|+\rangle\langle+|=\frac{1}{2}(I+X)$, then for any $|\psi\rangle$,
$\langle\psi| V_{x}|+\rangle\left\langle+\left.\right|_{1} V_{x}^{\dagger} \mid \psi\right\rangle=\frac{1}{2}+\frac{1}{2}\langle\psi| V_{x} X_{1} V_{x}^{\dagger}|\psi\rangle$.
Corollary. PreciseStoqCMA $=$ PreciseMA $=N P^{P P}$.
Corollary ${ }^{2}$. NP ${ }^{\text {PP }} \subseteq$ PreciseStoqMA \subseteq PSPACE.

Remarks

- Classical witness is clearly easy witness, but the opposite is not true. Since preparing $|D\rangle$ from Q_{D} requires the postselection.
- Classical witness is not optimal for any StoqMA verifier, e.g. $V_{x}=I$.
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits

Reversible Circuit Distinguishability is StoqMA-complete Soundness error reduction for StoqMA
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

From SWAP test to Reversible Circuit Distinguishability

SWAP test [BCWdW01]

\diamond SWAP test outputs 1 with prob. $|\langle\psi \mid \phi\rangle|^{2}$.
\diamond Thinking $|\psi\rangle \otimes|\phi\rangle$ as a witness, then SWAP test looks like a trivial StoqMA verifier with maximum accept. prob. 1 (and the optimal witness is classical).

Reversible Circuit Distinguishability, $\operatorname{RCD}\left(a, b ; n_{+}\right)$

Given efficient reversible circuits C_{0}, C_{1} that utilizes ancillary states $|0\rangle^{\otimes n_{0}}$ and
 $\left|D_{k}\right\rangle:=C_{k}|w\rangle|0\rangle^{\otimes n_{0}}|+\rangle^{\otimes n_{+}}$, decide whether $\exists|w\rangle$ s.t. $\frac{1}{2} \|\left|D_{0}\right\rangle-\left|D_{1}\right\rangle \|_{2}^{2} \geq a$; or $\forall|w\rangle, \frac{1}{2} \|\left|D_{0}\right\rangle-\left|D_{1}\right\rangle \|_{2}^{2} \leq b$, where $a-b \geq 1 / \operatorname{poly}(n)$.

The computational complexity of distinguishing circuits

Theorem

Reversible Circuit Distinguishability, viz. $\mathrm{RCD}(\cdot, \cdot ;$ poly $)$, is StoqMA-complete.

- Theorem [JWZ03]. Quantum Circuit Distinguishability is QMA-complete.
- Theorem [Jor14]. Reversible Circuit Distinguishability (without randomized ancillary bit), viz. $\operatorname{RCD}(\cdot, \cdot ; 0)$, is NP-complete.
$\star \operatorname{RCD}(\cdot, \cdot ;$ poly $)$ seems MA-complete but it is actually StoqMA-complete!

Proposition 1

Exact Reversible Circuit Dist., viz. $\operatorname{RCD}(a, 0 ;$ poly $)$, is NP-complete.
Corollary. StoqMA with perfect soundness is contained in NP.

- Theorem [FGMSZ89] Arthur-Merlin games with perfect soundness \subseteq NP.
- Theorem [Tan10] Exact Quantum Circuit Distinguishability is NQP-complete, namely QMA with perfect soundness.

Proposition 2
RCD without randomized ancillary bit, viz. $\operatorname{RCD}(\cdot, \cdot ; 0)$, is NP-complete.
Corollary (Simplified proof of [Jor14]). $\mathrm{RCD}(\cdot, \cdot ; 0)$ is NP-complete.

Reversible Circuit Distinguishability is StoqMA-complete: proof sketch

For $k=0,1$, let $\left|D_{k}\right\rangle:=C_{k}|w\rangle|0\rangle^{\otimes n_{0}}|+\rangle^{\otimes n_{+}}$, then:

- $\operatorname{RCD}(a, b$; poly $)$ is contained in StoqMA $\left(1-\frac{a}{2}, 1-\frac{b}{2}\right)$.
\diamond Dash line:
$\frac{1}{\sqrt{2}}|0\rangle\left|D_{0}\right\rangle+\frac{1}{\sqrt{2}}|1\rangle\left|D_{1}\right\rangle$.

- $\operatorname{RCD}(a, b ;$ poly $)$ is hard for StoqMA $\left(1-\frac{a}{2}, 1-\frac{b}{2}\right)$.
\diamond Set $C_{0}:=V_{x}^{\dagger} X_{1} V_{x}$ and $C_{1}:=I$.
\diamond Let $M:=\langle\overline{0}|\langle\overline{+}| V_{x}^{\dagger} X_{1} V_{x}|\overline{0}\rangle|\overline{+}\rangle$, then $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\frac{1}{2}+\frac{1}{2} \lambda_{\max }(M)$.
Remark. This observation went back to (weak) error reduction for QMA [KSV02].

(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits

Reversible Circuit Distinguishability is StoqMA-complete
Soundness error reduction for StoqMA
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

Soundness error reduction for StoqMA

Theorem (AND-type repetition procedure of StoqMA)
For any $l=\operatorname{poly}(n)$, StoqMA $\left(\frac{1}{2}+\frac{a}{2}, \frac{1}{2}+\frac{b}{2}\right) \subseteq \operatorname{StoqMA}\left(\frac{1}{2}+\frac{a^{l(n)}}{2}, \frac{1}{2}+\frac{b^{l(n)}}{2}\right)$.
Corollary. $\forall 1-a \geq \frac{1}{\operatorname{poly}(n)}, l=\operatorname{poly}(n), \operatorname{StoqMA}(1, a) \subseteq \operatorname{StoqMA}\left(1,2^{-l(n)}\right)$.

Proof Sketch

Recall that $\operatorname{Pr}\left[V_{x}\right.$ accepts $\left.|w\rangle\right]=\frac{1}{2}+\frac{1}{2} \lambda_{\max }(M)$ where $M=\langle\overline{0}|\langle\overline{+}| V_{x}^{\dagger} X_{1} V_{x}|\overline{0}\rangle|\overline{+}\rangle$.
Let us take the tensor product (i.e. "conjunction" or "AND") now:

\diamond Maximum acceptance probability:
$\operatorname{Pr}\left[V_{x}^{\prime}\right.$ accepts $\left.w^{(1)} \otimes \cdots \otimes w^{(l)}\right]$
$=\frac{1}{2}+\frac{1}{2} \lambda_{\max }\left(M^{\otimes l}\right)$
$=\frac{1}{2}+\frac{1}{2}\left(\lambda_{\max }(M)\right)^{l}$
\diamond Yes case: \checkmark
\diamond No case: Entangled witness will not increase the maximum acceptance probability.
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction Why error reduction is important for StoqMA?

SetCSP ${ }_{\text {negl, } 1 / \text { poly }}$ is StoqMA $_{1-\text { negl }}$-complete Proof Sketch: SetCSP $_{\text {negl, } 1 / \text { poly }} \in \mathrm{MA}_{1-\text { negl }^{\prime}}$
(5) Open problems

Error reduction for StoqMA implies StoqMA $=$ MA

Theorem [AGL20]

(Completeness) error reduction for StoqMA implies StoqMA \subseteq MA.
Namely, StoqMA $\left(1-1 / p_{1}(n), 1-1 / p_{2}(n)\right) \subseteq \operatorname{MA}$, where p_{1} is a super-polynomial of n and p_{2} is a polynomial of n.

Proof Intuition

Notice [BBT06, BT09] essentially proves StoqMA $\subseteq \mathrm{MA}_{1}$. It seems plausible to make it robust, namely $\mathrm{StoqMA}_{1-\epsilon} \subseteq \mathrm{MA}_{1-\epsilon^{\prime}}$ where ϵ and ϵ^{\prime} are negligible. MA containment Given a configuration graph $G=(V, E)$ that each node is marked either "good" or "bad", there is a R.W. that starts at node $v \in V$ such that

- Yes: $\exists v$ s.t. R.W. will not reach any "bad" node in any poly (n) steps w.h.p. .
- No: $\forall v$, R.W. will reach "bad" node in $p(n)$ steps where p is some poly. w.h.p. . (See Sergey Bravyi's tutorial for more details.)
* To make this R.W. "robust", we need the probabilistic method!
- Interestingly, the probabilistic method and completeness error reduction are also used in proof of $\mathrm{MA} \subseteq \mathrm{MA}_{1}$ [FGMSZ89]!
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction

Why error reduction is important for StoqMA?
$\operatorname{SetCSP}_{\text {negl }, 1 / \text { poly }}$ is StoqMA 1-negl -complete

$$
\text { Proof Sketch: } \text { SetCSP }_{\text {negl }, 1 / \text { poly }} \in \mathrm{MA}_{1-\text { negl }^{\prime}}
$$

(5) Open problems

SetCSP: a combinatorial StoqMA-complete problem

Definition: k - $\operatorname{SetCSP}_{\epsilon_{1}, \epsilon_{2}}$

Given k-local set constraints $C=\left(C_{1}, \cdots, C_{m}\right)$ on $\{0,1\}^{n}$, where n is the number of variables and $m=\operatorname{poly}(n)$. A set-constraint C_{i} acts on k distinct elements of [n], and it consists of a collection $Y\left(C_{i}\right)=\left\{Y_{1}^{(i)}, \cdots, Y_{l_{i}}^{(i)}\right\}$ of disjoint subsets $Y_{j}^{(i)} \subseteq\{0,1\}^{k}$. Decide whether

- Yes: \exists a subset $S \subseteq\{0,1\}^{n}$ s.t. set-unsat $(C, S) \leq \epsilon_{1}(n)$;
- No: \forall subset $S \subseteq\{0,1\}^{n}$, set-unsat $(C, S) \geq \epsilon_{2}(n)$;
where $0 \leq \epsilon_{1}(n)<\epsilon_{2}(n) \leq 1$ and $\epsilon_{2}(n)-\epsilon_{1}(n) \geq 1 / \operatorname{poly}(n)$.
\diamond Frustration: Let $B_{i}(S):=\{$ bad strings $\}$ and $L_{i}(S)=\{$ longing strings $\}$, then

$$
\text { set-unsat }(C, S)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{set}-\operatorname{unsat}\left(C_{i}, S\right)=\frac{1}{m} \sum_{i=1}^{m}\left(\frac{\left|B_{i}(S)\right|}{|S|}+\frac{\left|L_{i}(S)\right|}{|S|}\right)
$$

Theorem (inspired by [BBT06, AG20])
k-SetCSP ${ }_{\text {negl }, 1 / \text { poly }}$ is $\mathrm{StoqMA}_{1-\text { negl }}$-complete.

SetCSP: a combinatorial StoqMA-complete problem (Cont.)

Definition: Configuration Graph

The configuration graph $G(C)=\left(V_{C}, E_{C}\right)$ is defined by:
$\forall s, t \in\{0,1\}^{n}, \exists$ edge $(s, t) \in E_{C}$ iff $\left.s\right|_{\operatorname{supp}\left(C_{i}\right)},\left.t\right|_{\operatorname{supp}\left(C_{i}\right)} \in Y_{j}^{(i)}$.
A node $s \in V_{C}$ is marked by "bad", i.e. $s \in B_{i}(S)$, if $\left.s\right|_{\operatorname{supp}\left(C_{i}\right)} \notin \cup_{j=1}^{l_{i}} Y_{j}^{(i)}$; Otherwise this node is marked by "good".
\diamond Example: A 2-SetCSP instance $C=\left(C_{1}, C_{2}, C_{3}\right)$ defined on a 4-node line. Set-constraints:

$$
\begin{aligned}
& Y\left(C_{1}\right)=\left\{\{00,11\}_{1,2}\right\} \\
& Y\left(C_{2}\right)=\left\{\{00,11\}_{2,3},\{01,10\}_{2,3}\right\} \\
& Y\left(C_{3}\right)=\left\{\{00,11\}_{3,4}\right\}
\end{aligned}
$$

Consider a subset $S=\{0000,1100,0110,0011,1111\}$, the only bad string is $B_{2}(S)=\{0110\}$, longing strings are $L_{2}(S)=\{1010,1001,0101\}$.

(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction

Why error reduction is important for StoqMA?
SetCSP $_{\text {negl, } 1 / \text { poly }}$ is StoqMA $_{1-\text { negl-complete }}$
Proof Sketch: SetCSP $_{\text {negl, } 1 / \text { poly }} \in \mathrm{MA}_{1-\text { negl }}{ }^{\prime}$
(5) Open problems

k-SetCSP ${ }_{\text {negl, } 1 / \text { poly }}$ is in MA: proof sketch (Completeness)

(1) Well-approximated subset exists:

$$
\begin{gathered}
\text { set-unsat }(C, S) \leq 1 / f(n) \\
\Rightarrow \operatorname{set}-\operatorname{unsat}\left(C, S^{\prime}\right) \leq m / f(n),
\end{gathered}
$$

where S^{\prime} contains only good strings.
(2) Small-frustration subset implies small-size boundary:

$$
\begin{aligned}
& \text { set-unsat }\left(C, S^{\prime}\right) \leq 1 / h(n) \\
\Rightarrow & \left|\partial S^{\prime}\right| /\left|S^{\prime}\right| \leq 2^{k} m / h(n)
\end{aligned}
$$

(3) Any subset with a small-size boundary has a good starting point:

$$
\frac{\left|\partial S^{\prime}\right|}{\left|S^{\prime}\right|} \leq \frac{1}{p_{1}(n)} \Rightarrow \underset{v \sim \pi_{S}}{\mathbb{E}}\left[\operatorname{Pr}\left[\wedge_{l=0}^{T} X_{v}^{(l)} \in S^{\prime}\right]\right] \geq 1-\frac{1}{p_{2}(n)} \text { where } p_{2} \propto \frac{p_{1}}{T}
$$

Ref. [ST08, GT12] Expectation bounds on remained probability
\star There is a starting point v (viz. classical witness) such that any $T(n)$-step lazy random walk remained in S^{\prime} w.h.p. where $T(n)$ is a super-polynomial.
(1) What is the complexity class StoqMA?
(2) StoqMA: a distribution testing lens
(3) Distinguishing reversible circuits
(4) StoqMA vs. MA: the power of error reduction
(5) Open problems

Conclusions and open problems

Take-home messages
(1) StoqMA with easy witness (eStoqMA) is contained in MA, which simply infers $\mathrm{StoqMA}_{1} \subseteq$ MA.
(2) Reversible Circuit Distinguishability is StoqMA-complete (instead of MA-complete as expected!). The exact variant is NP-complete, which signifies that StoqMA with perfect soundness is contained in NP.
© (Completeness) error reduction (still open!) for StoqMA implies StoqMA = MA; we know how to do soundness error reduction for StoqMA.

Open problems

(1) StoqMA vs. MA and SBP vs. MA.
(2) (Completeness) error reduction for StoqMA.
© StoqMA with exponentially small gap (PreciseStoqMA).
(4) The computational power of QMA with perfect soundness (i.e. NQP).
© More StoqMA-complete problems, such as Stoquastic CLDM.

Thank you!

Slides are available on shorturl.at/cmHX1.

