### Complexity Zoo and Local Hamiltonian Problem

#### Yupan Liu College of Computer Science and Technology Zhejiang University

Apr 19, 2017

# Outline

#### Part I: Complexity Zoo

- Decision problem and language
- Circuit model (logic gate and quantum gate)
- $\bullet$  Complexity classes:  $\mathsf{P}$  and  $\mathsf{BQP}$
- More complexity classes: NP, QMA and  $\#\mathsf{P}$
- Reduction

#### Part II: Local Hamiltonian Problem

- $\bullet\,$  Local Hamiltonian and  $\mathsf{LHP}$
- How hard is the local Hamiltonian?
- An approach to show a class of LHP in  $\mathsf{NP}(\mathsf{P})$
- 1D gapped LHP is in P
- Is 2D gapped LHP in NP?

# Preliminary

Decision problem  $f: \{0,1\}^* \to \{0,1\}$ Counting problem  $f: \{0,1\}^* \to \mathbb{N}$ Language  $L = \{s \in \{0,1\}^* = \bigcup_{k=1}^{\infty} \{0,1\}^k : f(s) = 1\}$ Problem size(input size) # input bits Time # gates in circuit

#### decide the language = solving decision problem

- e.g. Factoring
  - Input:  $n, k \in \mathbb{N}$

Output:

- Yes if n has factor < k;
- No, otherwise.

Notice that the problem size(input size) is  $\log(n)$ .

### Circuit Model: logic & quantum gates

### Logic gate

Boolean function on 1 or 2 bits.

 $G_1 : \{0, 1\} \to \{0, 1\}$  $G_2 : \{0, 1\}^{\times 2} \to \{0, 1\}$ 

e.g.  

$$AND(x,y) = \begin{cases} 1, x = y = 1\\ 0, \text{ otherwise} \end{cases}$$

$$NOT(x) = \begin{cases} 0, x = 1\\ 1, x = 0 \end{cases}$$



### Quautum gate

Unitary operator on 1 or 2 qubits:

 $U_1: \mathbb{C}^2 \to \mathbb{C}^2 \\ U_2: \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes \mathbb{C}^2 \\ \text{(where } U^{\dagger}U = \mathbb{I})$ 

e.g. Hadamard  $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$  $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$   $= |0\rangle\langle 0| \otimes (|0\rangle\langle 0| + |1\rangle\langle 1|)$   $+ |1\rangle\langle 1| \otimes (|1\rangle\langle 0| + |0\rangle\langle 1|)$ 



### Circuit Model: Quantum Circuit

### Quantum circuit

finite sequence of quantum gates.

**Input**  $|\psi\rangle$  is "computational basis" state, i.e.  $|\psi\rangle = \bigotimes_i |x_i\rangle, |x_i\rangle \in \{|0\rangle, |1\rangle\}.$ 

**Output** outcome of measuring qubits in computational basis.

i.e. measure  $\{\Pi^{(0)}, \Pi^{(1)} \text{ on each qubit, where } \operatorname{Tr}(\Pi^{(i)}\rho).$ 

#### e.g. Universal set

# Complexity classes: P and BQP

**Uniform circuit family** Sequence of circuits  $C_n$  on *n*-bit is uniform if

- $\exists$  Turing Machine which on input *n*, outputs description of  $C_n$  in poly-time.
- P (Polynomial time) Class of decision problems solvable with uniform family of poly-sized circuit.

e.g. • Frustration-free 2-LHP 
$$\in$$
 P [Bravyi '06]

• Determinant  $\in P$ 

BQP (Bounded-error quantum poly. time, so-called "quantum P")  $\exists$  poly-sized uniform quantum circuit U s.t.

$$\Pr(U \text{ outputs "1"}) = \begin{cases} \geq \frac{2}{3}, \text{ Yes instance} \\ \leq \frac{1}{3}, \text{ No instance} \end{cases}$$

where  $\Pr(U \text{ outputs "1"}) = \mathsf{Tr}[\Pi_1^{(1)} \otimes \mathbb{I}_{2...n}U|x\rangle\langle x|U^{\dagger}] = \langle x|U^{\dagger}\Pi_1^{(1)} \otimes \mathbb{I}_{2...n}U|x\rangle$  and the output is given by the first qubit.

- e.g. Factoring  $\in$  BQP [Shor '94]
  - All equivalent quantum computing model is BQP-complete, such as topological(Jones polynomial), adabatic, ...

# Examples: k-fold Forrelation

### k-fold Forrelation

Given boolean functions  $f_1, \dots, f_k : \{0, 1\}^n \to \{0, 1\}^n$ , its k-fold forrelation is the following quality:

$$\Phi_{f_1,\dots,f_k} = \frac{1}{2^{(k+1)n/2}} \sum_{x_1,\dots,x_k \in \{0,1\}} (-1)^{f_1(x_1)} (-1)^{x_1 \cdot x_2} (-1)^{f_2(x_2)} \cdots (-1)^{x_{k-1} \cdot x_k} (-1)^{f_k(x_k)}$$

**Input** k Boolean circuits  $C_1, \dots, C_k$ , which compute the Boolean functions  $f_j : \{0,1\}^n \to \{0,1\}^n$ .

**Promise** either 
$$\Phi_{f_1,\dots,f_k} \leq \frac{1}{100}$$
 or  $\Phi_{f_1,\dots,f_k} \geq \frac{3}{5}$ .

**Output** decide whether  $\Phi_{f_1,\dots,f_k} > \frac{1}{2}$ .



k-fold Forrelation(k = poly(n)) is BQP-complete [Aaronaon&Ambainis '14]

## Complexity classes: NP and QMA

- NP (non-deterministic poly. time) Class of decision problems for which  $\exists$  polynomial time verifier V s.t. if answer for input x is
  - Yes:  $\exists$  polynomial-sized "witness" w s.t. V(x, w) = 1.

• No: 
$$\forall$$
 witness  $w, V(x, w) = 0$ .

Merlin <sup>4</sup>

- all-powerful
- untrustworthy



- Yes:  $\exists$  poly.-sized quantum witness  $|w\rangle \in \mathbb{C}^{poly(n)}$  s.t.  $\Pr(U \text{ outputs "1" on input } |x\rangle|w\rangle) \geq \frac{2}{3}$ .
- No:  $\forall$  states  $|w\rangle$ ,  $\Pr(U$  outputs "1" on input  $|x\rangle|w\rangle) \leq \frac{1}{3}$ .

#### e.g.

- 1D gapped  $LHP \in NP(P)$  Factoring  $\in QMA$
- Factoring  $\in \mathsf{NP}$
- k-LHP $(k \ge 2)$  is QMA-complete

*convince* → Arthur • poly-time computation

• k-SAT $(k \ge 3)$  is NP-complete • 1D LHP on qudits  $(d \ge 8)$  is QMA-complete

### Local Hamiltonian and LHP

"k-local" (quantum information) = "k-body" (physics)

k-local Hamiltonian Given  $H = \sum_{i} h^{(i)} \in (\mathbb{C}^d)^{\otimes n}$ , we say that H is a k-local Hamiltonian (or H is k-local) if  $\forall$  i,  $h^{(i)}$  is k-local, each interaction involving at most k particles, where  $h = h_s \otimes \mathbb{I}_{[n]/S}$  and  $S \subset [n]$ .

- h acts non-trivially on subset s of the particles, |s| = k if k-local.
- In general, no requirement that local interactions are geometrically local.

#### k-local Hamiltonian problem

Input: k-local Hamiltonian H on n-qudits with m local terms. Promise: where  $\lambda_0(H) \leq a$  or  $\lambda_0(H) \geq b$  with  $b - a \geq \frac{1}{poly(n)}$ . Output: Yes if  $\lambda_0(H) \leq a$ ; No if  $\lambda_0(H) \geq b$ .

- Input is classical description of H, i.e.  $d^{2k}$  elements for each m terms.
- w.l.o.g. Input size  $m \leq C_n^k = O(n^k) = poly(n)$ . So matrix entries are restricted to poly(n) digit of precision.

## Local Hamiltonian: Examples

**Transverse Ising model** 2-local (d = 2), gapped, frustrated

$$H = \frac{1}{2\sqrt{1+h^2}} \left[ \sum_{i=1}^{N-1} S_i^x S_{i+1}^x + h \sum_{i=1}^N S_i^z \right]$$

where h = 1.1 and gap  $\Delta \approx 0.07$ .

2D **AKLT model on square lattice** 2-local (d=5), gapped, frustration-free

$$H_{AKLT}^{s=2} = \frac{1}{14} \sum_{i,j} \left[ S_i \cdot S_j + \frac{7}{10} (S_i \cdot S_j)^2 + \frac{7}{45} (S_i \cdot S_j)^3 + \frac{1}{90} (S_i \cdot S_j)^4 \right]$$

Toric code 4-local (d = 2) or 3-local (d = 4), commute, frustration-free

$$H = -\sum_{v \in V} A(v) - \sum_{p \in P} B(p)$$

where vertex operators  $A = X^{\otimes 4}$ and plaquette operators  $B = Z^{\otimes 4}$ .



## Complexity class: #P

#P (the number of P) A function  $f : \{0,1\}^n \to \mathbb{N} \in \#P$  if  $\exists$  polynomial  $p: \mathbb{N} \to \mathbb{N}$  and a poly-sized uniform classical verifier V s.t.  $\forall x \in \{0,1\}^n$ :

$$f(x) = \left| \left\{ y \in \{0, 1\}^{p(|x|)} : V(x, w) = 1 \right\} \right|$$

where w is poly-sized witness.

• Permanent is 
$$\#$$
P-complete.  
 $perm(A) = \sum_{\sigma \in S_n} \prod_{c=1}^n A_{i,\sigma(i)} \quad det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}$ 

• Partition function of classical Ising model is #P-complete. Consider n sites system with configuration defined by  $\sigma \in \{0, 1\}$  on each site. Energy of a configuration  $\sigma$  is given by

$$H(\sigma) = -\sum_{i,j} V_{ij} \sigma_i \sigma_j - B \sum_k \sigma_k$$

where  $V_{ij}$  is interaction energies and B is magnetic field intensity. And the partition function of the system:

$$Z = \sum_{\sigma \in \{0,1\}^n} exp(-\beta H(\sigma))$$

where  $\beta$  is the inverse temperature.

## Reduction

#### How to compare difficulty of different computational problems?

**Poly-time reduction (Karp reduction)** A reduces to B if  $\exists \text{ map } A \to B$ with instance  $a \mapsto \text{instance } b$  s.t. b has answer Yes iff a has answer Yes. Also the map  $A \to B$  can be computed by poly-size circuit. Note A reduces to B as  $A \leq B$ .

**Hardness** Problem B is NP-hard if  $\forall A \in NP, A \leq B$ .

**Completeness** Problem A is NP-complete if  $A \in NP$ -hard and  $A \in NP$ .

- "hardest problems in NP": if you can solve one, you can solve **all** NP problems.
- It can be used as the definition of complexity classes, such as all equivalent models of quantum computation.
- e.g. NP-complete: 3-SAT
  - QMA-complete: k-LHP $(k \ge 2)$ , 1D LHP on qudit  $(d \ge 8)$
  - $\bullet$  #P-complete: Permanent, classical Ising model's partition function
  - #P-hard: exactly contract PEPS [Schuch&Wolf&Verstraete&Cirac '06]

# Complexity Zoo

Separate or Collapse? $P \subseteq NP \subseteq QMA \subseteq \#P$  $P \subseteq BQP \subseteq QMA \subseteq \#P$ 

• Separate  $P \subset BQP \subset NP \subset QMA \subset \#P$ 

• Collapse P = BQP = NP = QMA = #P



#### How to interpret these relations?

 $P \subseteq BQP, NP \subseteq QMA$ classical = special case of quantum $P \stackrel{?}{=} NP$ \$1,000,000 $P \stackrel{?}{=} BQP$ Are quantum computers useful? $BQP \stackrel{?}{=} QMA$ quantum "P-v.s.-NP" $NP \stackrel{?}{=} BQP$ Are quantum computers such powerful?

# How hard is the local Hamiltonian?

#### Quantum Cook-Levin theorem

[Kitaev '99]k-LHP is QMA-complete  $(k \ge 5)$ .

[Kempe&Kitaev&Regev~'05] 2-LHP is QMA-complete.

- Even for 1D system in general, 1D LHP on qudit  $(d \ge 8)$  is QMA-complete.
- Even for frustration-free systems, 3-LHP is  $QMA_1$ -complete (with perfect completeness).

#### Sometimes it is easier...

**Commute** (for local terms in Hamiltonian)

- [Bravyi&Vyalyi '06] 2-CLH on qudit is in NP
- [Aharonov&Eldar '13] 3-CLH on qubit is in NP
- [Schuch '11] 4-CLH on the square lattice is in NP
- Higher dimension of lattice or higher physical dimension ?

**Gapped** (Hamiltonian with spectral gap > 0)

- [Landau&Vazirani&Vidick '15] 1D gapped LHP is in  ${\sf P}$
- 2D gapped LHP is in NP (?)
- It connects to area law and tensor network.

### An approach to show a class of LHP is in NP

g.s.  $|\Omega\rangle$  admits on efficient classical description  $\Rightarrow$  a class of LHP is inside NP(P)

- 1.  $|\Omega_c\rangle$  is described by poly(N) classical bits.
- 2.  $\langle \Omega_c | A | \Omega_c \rangle$  can be efficiently approximated up to ||A|| / poly(N) for every local observable A.
- 3.  $|\langle \Omega_c | A | \Omega_c \rangle \langle \Omega | A | \Omega \rangle| \le ||A|| / poly(N)$

 $|\Omega_c\rangle$  as a classical witness for LHP, since

$$\langle \Omega | H | \Omega \rangle = \sum_{X} \langle \Omega | h_X | \Omega \rangle \approx \sum_{X} \langle \Omega_c | h_X | \Omega_c \rangle = \langle \Omega_c | H | \Omega_c \rangle.$$
  
local operator

# 1D gapped LHP is inside P(NP)



# Is 2D gapped LHP inside NP?



Quasi-poly time algorithm [Schwarz&Buerschaper&Eisert '16]

Consider the local patch with correlation length  $\log(N)$  (N = # spins) for translation-invariant system. Quasi-polynomial time algorithm  $(Dd)^{O(l^d)}$ , where D is the bond dimension, d is the physical dimension and correlation length  $l = O(\log(N))$ .

# Reference & Further Reading

- Quantum Computation and Complexity Course on 2016 Autrans summer school. Toby Cubitt. (introductory lecture notes)
- Classical and Quantum Computation. Alexei Kitaev, Alexander Shen, Mikhail Vyalyi. 2002. (a little technical textbook)
- Computational Complexity: A Modern Approach. Sanjeev Arora, Boaz Barak. 2009. (technical textbook and a dictionary)
- Chapter 4 in the *Quantum Information Meets Quantum Matter*. Bei Zeng, Xie Chen, Duan-Lu Zhou, Xiao-Gang Wen. 2016. (introductory materials)
- Quantum Hamiltonian Complexity. QIP 2015 Tutorial. Itai Arad. (complexity theory perspective)
- Matrix Product States and Tensor Network States. QIP 2017 Tutorial. Norbert Schuch (tensor network perspective)
- Quantum Hamiltonian Complexity. Sevag Gharibion , Yichen Huang, Zeph Landau, Seung Woo-Shin.

