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Abstract

Learning a local Hamiltonian given samples from its Gibbs (thermal) state is a quantum
analog of the classical problem known as learning graphical models or Boltzmann machines,
which is a well-studied question in machine learning and statistics. In this note, we propose an
algorithm for learning a Pauli commuting local Hamiltonian, namely a sub-class of commuting
local Hamiltonians. In particular, our algorithm first conjugately applies a linear-depth Clifford
circuit on given copies, then performs classical post-processing. Our approach is both sample-
efficient and time-efficient under two specific conditions, which known results are either not
working for commuting cases [BAL19], or only sample-efficient [AAKS20]. The proof utilizes
the tableau representation of Paulis [AG04]. Our result enlightens on the problem of learning a
general commuting local Hamiltonian with efficient time complexity.

1 Introduction

Learning graphical models, such as Boltzmann machines or Markov random fields, is one of
the central problems in machine learning theory and statistical inference. Attempts to understand
Boltzmann machines’ learnability could date back to [AHS85] by Hinton et al. in the early 1980s.
In recent years, significant progress emerges prominently in such fields – efficient provable learning
algorithms for graphical models with optimal sample and time complexity, in particular, results
regarding sparse and bounded-degree graphs [Bre15,VMLC16,KM17].

Learning Boltzmann machines: a classical example. Boltzmann machines are a specific
sub-class of 2-wise Markov random fields, defined by an interaction graph such that each vertex i
corresponds to a random variable xi, and there is an edge between vertex i and j iff the coefficient
associated with xixj is non-zero. Concentrating on this model, we could define a natural probability
distribution as below:

Pr [X = x] =
1

Z
exp

∑
i∼j

Jijxixj +
∑
i

hixi

 ,

where Jij and hi are real coefficients, and the normalization factor Z is called the partition func-
tion. This probability distribution is also as known as the Gibbs distribution. We are aware of
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a series of results regarding Boltzmann machines’ learnability, specifically, how to output an esti-
mate of coefficients Jij and hi, utilizing given samples from the Gibbs distribution. Recent works,
such as [Bre15,KM17,VMLC16], provide efficient classical algorithms for such a problem, viz., the
running-time is a quadratic function of the number of vertices on the graph.

As learning graphical model problems from classical Hamiltonians play a crucial role in the learn-
ing theory with many known great results, an exciting connection arises from the interplay between
these techniques and open problems in quantum computing and many-body physics. Quantum ma-
chine learning for quantum data signifies a new angle to resolve such open problems, which seems
even more natural than quantum PAC learning [AdW17, AdW18] based on semi-quantum data.
Could we provide provable efficient algorithms for such a learning local Hamiltonian problem?

Learning local Hamiltonians: previous results. There are several provable proposals for such
a problem in the past. In [QR19,BAL19], the authors considered learning the Hamiltonian from
local measurements. Their idea is to use a linear equation system determined by the outcomes of
measuring the commutator between different candidate local terms on the Gibbs state. By solving
this linear system, we can approximately recover the Hamiltonian corresponding to the given Gibbs
state. Consequently, this approach managed to solve the Hamiltonian learning problem for non-
commuting cases with the constraint matrix’s non-vanishing spectral gap.

In addition, a sample-efficient algorithm utilizes sufficient statistics, which is based on the strong
convexity of the quantum log-partition function, recently proposed by [AAKS20]. It is worth point-
ing out that their proof circumvents the quantum Markov property [HJPW04,BP12] (namely, con-
ditional independence1 of the Gibbs state), making their approach quite different from solutions to
the classical problem. Whereas we cannot employ quantum Markov property generally, [APS19]
suggests a time-efficient algorithm for learning 2-local commuting Hamiltonians, namely, efficiently
reducing this problem to the problem of learning Markov random field. Utilizing the structure
lemma in [BV05], they propose a locality-preserving constant-depth circuit mapping from a such a
Hamiltonian to a classical Hamiltonian.

However, an algorithm for general Hamiltonian problem with efficient time complexity is still
unknown.

1.1 Main result: learning a Pauli commuting local Hamiltonian

In this note, we propose an approach to learn a sub-class of commuting local Hamiltonians,
namely, Pauli commuting k-local Hamiltonians. The famous Stabilizer codes inspire such a sub-
class; notably, each local terms in the Hamiltonian is a tensor product of k Pauli matrix. We thus
start from a formal definition of Pauli commuting local Hamiltonians (Pauli CLH).

Definition 1.1 (Pauli CLH). We said that a k-local Hamiltonian H(a) =
∑m

i=1Hi(ai) defined on
n qubits is a Pauli commuting local Hamiltonian if the following holds:

• ∀i ∈ [m], Hi(ai) = aiσ
(i)
1 ⊗· · ·⊗σ

(i)
n where ai ∈ R, σ(i)

j ∈ {X,Y, Z, I} and |{j : σ
(i)
j 6= I}| ≤ k.

• ∀i, j ∈ [m], [Hi, Hj ] = 0.

With the help of the tableau representation of Paulis [AG04], we could construct a mapping
from a quantum Hamiltonian to a classical Hamiltonian by applying a specific linear-depth Clifford

1Informally, partitioning a classical physical system associated with a Gibbs distribution p into three regions
A,B,C where B shields A from C, then such a system satisfying the Markov property iff p(A,C|B) = p(A|B)p(C|B).
A quantum analog of such a decomposition property is more involved, and only knowns to hold for commuting local
Hamiltonians [HJPW04,BP12].
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circuit to given quantum Gibbs states. Such a mapping procedure corresponds to column-operation
Gaussian elimination on the tableau. The resulted classical Hamiltonian will be local or sparse only
under some conditions stated as Theorem 1.2.

Theorem 1.2. Given poly(n) copies of the Gibbs state of a Pauli commuting local Hamiltonian
defined on n qubits, one can recover the Hamiltonian by applying a nearest-neighbor linear-depth
Clifford circuit and classical post-processing, under one of the following conditions:

• The tableau has full rank, namely, the number of local terms is at most the number of qubits,
and all rows in the tableau are linearly independent;

• The tableau is sparse, i.e., the number of non-zero elements in each row and column is O(log n).

The limitation of the approach presented in this note is that the resulting classical Hamiltonian’s
locality could be exponentially dependent on the Clifford circuit mapping’s depth. Because we
have to make either X block or Z block in the tableau be all zeros. Still, towards a practical
quantum algorithm in the NISQ era, a provable shallow-depth quantum algorithm for learning
Pauli commuting local Hamiltonians would be promising.

Paper organization. In Section 2, we will present our main algorithm. Section 3 concentrates
on techniques for analyzing such an algorithm: the tableau representation of Pauli (Section 3.1), a
procedure of learning local terms (Section 3.2), the mapping procedure (Section 3.3), and classical
post-processing (Section 3.4). Section 4 will discuss our approach’s limitations and some promising
ideas to circumvent such obstacles.

2 Main algorithm

We hereby present the main algorithm that infers Theorem 1.2.

2.1 Algorithm overview

The algorithm’s flow as described below in Figure 1.

Given copies of the Gibbs state ρ associated with Pauli CLH H

Mapping into a new Gibbs state ρ′ of a classical Hamiltonian

Drawing samples from the classical Gibbs distribution

Learning coefficients of a local Hamiltonian H̃

Applying a Clifford circuit

Performing local measurements on ρ′

Classical post-processing

Figure 1: How to learn a Pauli commuting local Hamiltonian

To illuminate the intuition behind the main algorithm as Figure 1, consider the Hamiltonian H
below and the Gibbs state ρH corresponded to it (setting β := 1 for simplicity),

H = a1XX + a2Y Y + a3ZZ and ρH = exp(−H).
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By applying two Clifford gates CNOT1→2 and H1 on ρH , we observe that

ρH′ = (H1CNOT1→2) ρH (H1CNOT1→2)
†

= exp(−a′1ZI − a′2ZZ − a′3IZ).

As the resulting local Hamiltonian H ′ is on Z basis (i.e., a classical Hamiltonian), one can draw
samples from the corresponding Gibbs state ρH′ by performing Z ⊗ Z product measurements.
Then, combining with a classical algorithm that learns a Markov random field [VMLC16, KM17],
we have derived coefficients associated with H’s local terms within desired errors. Then combining a
classical algorithm for learning a Markov random field [VMLC16,KM17], we have derived coefficients
associated with local terms in H within desired errors.

This illuminating example raises a natural question: Could we extend this approach as Figure 1
to learn any Pauli commuting local Hamiltonian?

2.2 Our main algorithm

We indeed could generalize this approach to the following algorithm:

(1) Learning local terms. By performing measurements of local observables constructed by the
constraint matrix in [BAL19] on the Gibbs state ρH , one can learn local terms Hi such that
its coefficient |ai| ≥ ε, where ε is a small constant such as 10−3. Since local observables here
are tensor products of Paulis, it can be achieved by O(log n) measurement using overlapping
tomography [CW20].

(2) Mapping into a classical Hamiltonian. By applying a Clifford circuit hinted by the tableau
representation of Paulis [AG04], we result in a new Gibbs state ρH′ corresponding to a classical
Hamiltonian H ′. Owing to a recent result by Bravyi and Maslov [BM20], we only require a
linear-depth nearest-neighbor Clifford circuit.

(3) Drawing samples by local measurements. As the resulting HamiltonianH ′ is classical (but
not necessarily local), one can draw m samples of the classical Gibbs distribution corresponding
toH ′ by performing a product measurement on Z⊗n onm copies of ρH′ , wherem is a polynomial
of n under one of the conditions in Theorem 1.2.

(4) Learning a classical Hamiltonian. We consequently learn the resulting classical Hamiltonian
H’ by an algorithm that learns a Markov random field. This step probably is not efficient2 except
for the scenarios stated in Theorem 1.2.

(5) Recovering a good approximation of coefficients associated with H. Employing a
solution of a linear equations system derived from both the mapping Clifford circuit and H ′,
one could recover a good approximation of the coefficients of local terms in H.

It is worthwhile to mention that the tableau representation of Paulis [AG04] only works for com-
muting local Hamiltonians. Therefore it is required to ensure all local terms are indeed commuting
at the first step.

2In a broad sense, it might take an exponential time because of either the non-locality of resulting Hamiltonian
H ′ (such as [KM17]) or O(n) degree on the interaction graph corresponding to H ′ due to an information-theoretic
sample complexity lower bound proved in [SW12].
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3 Proof techniques

3.1 Tableau representation of Paulis

The celebrated Gottesman-Knill theorem states that stabilizer states, namely the resulting state
after applying a Clifford circuit on a computational basis state, are classically efficiently simulatable.
Aaronson and Gottesman [AG04] provide a quadratic-time algorithm for simulating stabilizer states
using a Boolean matrix representation of Pauli matrices. We thus recap their construction.

Overview of the tableau representation. Given an n-qubit Pauli commuting local Hamil-
tonian (see Definition 1.1), each local term Hi = aiσ

(i)
1 ⊗ · · · ⊗ σ

(i)
n is proportion to an n-fold

tensor product of Paulis. We could represent such a tensor product of Paulis by a (2n + 1)-tuple

(ai, x
(i)
1 , · · · , x(i)

n , z
(i)
1 , · · · , z(i)

n ) where σ(i)
j = ix

(i)
j z

(i)
j Xx

(i)
j Zz

(i)
j . Such being the case, we could further

represent a Pauli commuting local Hamiltonian by a tableau as Figure 2:

Figure 2: Tableau representation of Paulis

Such a tableau of the tensor product of Paulis is referred to as the tableau representation of
Paulis. Additionally, we denote this tableau (without the coefficients vector p) by MH .

Note the signed n-qubit Pauli group is closed under conjugation of Clifford circuits. This tableau
representation indicates that applying a Clifford gate, such as Hadamard (H), Phase (S), and
Controlled NOT (CNOT), conjugately on a tensor product of Paulis is correspondent to applying
a column operation on this tableau, as summarized in Figure 3, where the left block is associated
with Pauli Xs; and the right block corresponds to Pauli Zs.

Figure 3: The correspondence between Clifford gates and column operations on the tableau

Useful lemmas. We now then prove three useful lemmas regarding the tableau representation.
For simplicity, we shall utilize the following vectors from the tableau (see Figure 2). Let p :=

(a1, · · · , am) be the coefficient vector on the tableau. Let Xi :=
(
x

(1)
i , · · · , x(m)

i

)
be the vector

corresponds to the i-th column, and let X(j) :=
(
x

(j)
1 , · · · , x(j)

n

)
be the vector associated with the
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j-th row. Likewise, the vectors Zi and Z(j) correspond to the Z-block on the tableau and are defined
similarly.

Lemma 3.1 follows from a direct calculation.

Lemma 3.1 (Commutation criterion). For any i 6= j ∈ [m], two local terms Hi and Hj are
commuting, i.e. [Hi, Hj ] = 0 if and only if X(i) · Z(j) ⊕X(j) · Z(i) = 0.

Lemma 3.2 (Tableau’s rank upper bound). For any k-local Pauli CLH H =
∑m

i=1 aiPi on n qubits,
rank(MH) ≤ n.

Proof. Notice that all rows in MH are linearly independent if and only if these rows form a set of
a stabilizer’s generators. For simplicity, each Pi is needless local. For the first row P1, there are
4n − 1 choices because this row cannot be an identity. The second row P2 must commute with P1

and cannot be either identity or P1; Due to Lemma 3.1 and the fact that P2 cannot be any operator
in the group generated by identity and P1, there are 4n/2 terms commutes with P1. Inductively,
the k-th row Pk have to commute with {Pi}1≤i<k and cannot be generated by {I, P1, · · · , Pk−1};
hence, there are 4n/2k − 2k choices of such row. It is straightforward to see that 4n/2k − 2k ≥ 0 if
and only if 0 ≤ k ≤ n, which infers rank(MH) ≤ n.

Finally, we prove the correspondence indicated in Figure 3.

Lemma 3.3 (Correspondence between Clifford gates and column operations). A Pauli commuting
local Hamiltonian H is closed under the conjugation of any Clifford circuit U , namely, the resulting
Hamiltonian UHU † remains to be a Pauli CLH. Moreover, each Clifford gate (such as Hadamard,
Phase, Controlled NOT) corresponds to a column operation on the tableau matrix MH .

Proof. Recall the conjugation relation between Paulis X,Y, Z and Clifford gates H, S, CNOT:

HXH† = Z,HY H† = −Y,HZH† = X;

SXS† = Y, SY S† = X,SZS† = Z;

CNOT1→2(X
a1Zb1)⊗ (Xa2Zb2)CNOT†1→2 = (−1)a1b2(a2⊕b1⊕1)(Xa1Zb1⊕b2)⊗ (Xa1⊕a2Zb2).

Remark that a Clifford gate applying conjugately on a tensor-product of Paulis could only
change each entry’s sign in the coefficient vector p. We thus have derived the correspondence
between Clifford gates and column operation on the tableau matrix MH :

• CNOTi→j (i-th qubit: control; j-th qubit: target):

p′ := p⊕ (Xi � Zj � (Xj ⊕ Zi ⊕ 1)) ; X′j := Xi ⊕Xj and Z′i := Zi ⊕ Zj .

• H on i-th qubit: p′ := p⊕ (Xi � Zi) and swap Xi with Zi.

• S on i-th qubit: p′ := p⊕ (Xi � Zi) and Z′i := Xi ⊕ Zi.

Notice � denotes entry-wise multiplication between two vectors. It is apparent to verify that Clifford
operations acting on a Pauli CLH preserve the commutation criterion in Lemma 3.1.

As a remark, combining Lemma 3.2 and Lemma 3.3, we are able to perform a Gaussian elimi-
nation using only column operations on the tableau matrix. It is crucial for the mapping procedure
in Section 3.3.
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3.2 Learning local terms by local measurements

We exhibit below an efficient algorithm for learning commuting local terms associated with
given Gibbs states using only local measurement. As in [BAL19], the starting point is the fact
∀n,Tr(iρ[HL, An]) = 0, where HL is a Hamiltonian associated with a local patch L and {An} is
a set of all local observables inside the local patch L. By rewriting HL as HL =

∑M
m=1 cmSm, we

have derived a constraint for the Gibbs state ρ:

∀An,
M∑

m=1

cmTr(iρ[Sm, An]) = 0.

In the scenario of k-local Pauli CLH, the set of all possible Sm consists of all n-fold tensor
products of Paulis σ(m)

1 ⊗· · ·σ(m)
n such that the number of non-identity entries is at most k. Likewise,

we could obtain the set {An} of local observables inside L. Because of the cyclicity Tr(A[B,C]) =
Tr(C[A,B]), we further infer Tr(iρ[Sm, An]) = Tr(iAn[ρ, Sm]). Obviously, if Sm is indeed a local
term in H, then [ρ, Sm] = 0 indicates that ∀n,Tr(iρ[Sm, An]) = 0 because Sm is supposed to
commute with all other possible local terms.

Let the constraint matrix K be (K)mn := Tr(iρ[Sm, An]), which is defined in [BAL19], we
summarize this construction as Figure 4:

Figure 4: Learning local terms by constructing the constraint matrix

Informally, the algorithm learns all local terms by finding all-zero rows in the constraint matrix
K, where outcomes of local measurements constitute the constraint matrix concerning desired local
observables. We henceforth write this procedure of learning local terms formally below as Lemma .

Lemma 3.4 (Learning local terms by local measurements). Given poly(n) copies of the Gibbs state
ρH corresponding to an n-qubit Pauli commuting local Hamiltonian H, an efficient algorithm for
learning the candidate set S consists of all k-local tensor products of Paulis generated by the stabilizer
group of H. Moreover, let the candidate Hamiltonian H ′ be H ′ :=

∑
Si∈S aiSi, where {ai}Si∈S are

unknown coefficients.

Proof. We first provide an algorithm that learns possible local terms in H:

(1) For all commutators [Sm, An], where Sm and An are k-local tensor products of Paulis on n
qubits, measuring 2k-local observables i[Sm, An] provided [Sm, An] 6= 0; otherwise, let (K)mn :=
Tr(iρ[Sm, An]) = 0.

(2) For each k-local tensor product of Paulis Sm on n-qubit, adding Sm into the candidate set
S = S ∪ {Sm} if Tr(iρ[Sm, An]) = 0 for any n.

(3) For each Sm ∈ S, remove Sm from the candidate set S if Sm is not commuting with all local
terms in S.
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Let Ŝ be the candidate set of local terms after the step (3).

It remains to prove the correctness of such an algorithm. Owing to Tr(iρ[Sm, An]) = Tr(iAn[ρ, Sm]),
we obtain [ρ, Sm] = 0 if Sm is a local term in H. Such equality hints that Tr(iAn[ρ, Sm]) = 0 holds
for any local observable An inside the local patch L. The set of all such local terms Sm, as stated
above, is candidate set S of local terms at the step (2).

It is evident that all local terms in a Pauli CLH commute; however, these local terms found
by step (2) of the algorithm probably not commute. Hence, an additional step as the step (3) is
required. Specifically, we have to remove local terms in S that is not commuting with other local
terms in S. Still, we cannot get rid of local terms that is a product of local terms in H. S thus
is a set of all k-local tensor product of Paulis in the stabilizer associated with the Hamiltonian of
given Gibbs state ρ. Remark that the number of n-qubit tensor product of Paulis with locality k is
poly(n). We immediately deduce such an algorithm requires the expectation value of poly(n) local
observables. One can calculate such expectation values using the result of local measurements, so
the classical post-processing is efficient.

Furthermore, employing perfect hash families mentioned in [CW20], we could further reduce the
number of product measurements from poly(n) to log(n). In particular, as the commutator [An, Sm]
is a 2k-local tensor product of Paulis3, we could utilize the overlapping tomography scheme [CW20].

3.3 Mapping a Pauli CLH into a classical Hamiltonian

We now provide a procedure that maps a Pauli commuting local Hamiltonian H into a classical
Hamiltonian H ′ by applying a nearest-neighbor linear-depth Clifford circuit. Such mapping produce
is essentially performing a Gaussian elimination on the tableau matrix’s X block (or Z block), and
then resulting Hamiltonian is clearly classical.

For simplicity, we would first assume that the associated tableau MH has rank n, then we will
show an efficient procedure to construct a full-rank variant of MH by adding additional local terms
in Hamiltonian.

Mapping procedure. Consider a Pauli commuting LHH =
∑m

i=1 aiHi, which can be represented
as the coefficient vector p ∈ Rm and the tableau MH ∈ F2n×m

2 . Employing the correspondence
between Clifford gates and column operations on the tableau, namely Lemma 3.3, we can mapping
H into a classical Hamiltonian on the Z basis. W.O.L.G., we further assume that the X-block of
the tableau MH has rank n, since any tableau MH satisfying rank(MH) = n could be transformed
into such form by the procedure in Lemma 6 in [AG04].

We thus proceed with an explicit mapping procedure.

(1) Performing Gaussian elimination on the X-block of MH , which requires O(n2) CNOT gates.
Also, such a step will change the Z-block simultaneously.(

p A B
) CNOT−→

(
p(1) I B1

A2 B2

)
(2) Making the Z-block has full-rank. Lemma 7 in [AG04] achieves this by applying S gates.(

p(1) I B1

A2 B2

)
S−→

(
p(2) I B

(1)
1

A2 B
(1)
2

)
=

(
p(2) I NNT

A2 B
(1)
2

)
3It is because all An and Sm are k-local tensor products of Paulis.

8



The last equality is owing to the commutation criterion (i.e., Lemma 3.1), as it implies that
B

(1)
1 is a rank-n symmetric matrix.

(3) Multiplying I by N on the Z-black by applying O(n2) CNOT gates. Likewise, NNT on the
X-block will concurrently multiply

(
NT
)−1 and result in N .(

p(2) I NNT

A2 B
(1)
2

)
CNOT−→

(
p(3) N N

A
(1)
2 B

(2)
2

)

(4) Cancelling N on the X-block by applying S gates.(
p(3) N N

A
(1)
2 B

(2)
2

)
S−→

(
p(4) 0 N

A
(2)
2 B

(2)
2

)

(5) Performing Gaussian elimination on Z-block by applying O(n2) CNOT gates.(
p(4) 0 N

A
(2)
2 B

(2)
2

)
CNOT−→

(
p(5) 0 I

A
(3)
2 B

(3)
2

)
=

(
p(5) 0 I

0 B
(3)
2

)
.

The last equality due to the commutation criterion (namely, Lemma 3.1).

Let H ′ be the classical Hamiltonian associated with p(5). We complete the analysis of this
mapping procedure by Lemma 3.5.

Lemma 3.5 (Mapping procedure). There exists an efficient mapping procedure that maps a Pauli
commuting k-local Hamiltonian H into a classical Hamiltonian H ′. Such a procedure only needs to
apply a nearest-neighbor linear-depth Clifford circuit.

Proof. It suffices to analyze the algorithm presented in this section. It is straightforward to see that
implementing the step (2) and the step (4) requires only depth-1 circuits. Regarding other steps,
utilizing the canonical form proposed in [BM20], implementing these steps needs a nearest-neighbor
linear-depth Clifford circuit. We hereby conclude that the depth of the mapping Clifford circuit is
indeed O(n).

Furthermore, if all rows in the tableau are linearly independent, then it is simple to see B(3)
2 = 0,

namely, the resulting classical Hamiltonian H ′ is 1-local. In other words, we could learn such a
Hamiltonian by approximating the expectation value of local observables {Tr(ρZi)}1≤i≤n, which
only requires O(log n) product measurement on Z basis.

Making H full-rank by adding additional local terms. If the stabilizer tableau MH has
rank(MH) = r < n, then the mapping procedure stated as Lemma 3.5 is still useful. Notice there
are r linearly independent rows that only have one Z, we can add n − r additional rows such
that there is only one Z and all n rows is an n × n identity matrix on the Z-block. To find such
n− r additional local terms, one can perform the Clifford circuit that corresponds to the algorithm
presented in this section reversely on these additional local terms, and then we can make H full
rank.
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3.4 Classical post-processing

Learning a classical Hamiltonian. As the resulting Hamiltonian H ′ in Section 3.3 is classical,
we could learn the coefficients by employing a classical algorithm for learning a Markov random
field. It is worthwhile to mention that the classical post-processing seemingly requires exponential
time, provided either the resulting Hamiltonian H ′ is non-local, such as [KM17]; or the degree of
the interaction graph associated with H ′ is O(n) (see [SW12] for further discussion). That is why
our approach only learns a Pauli commuting local Hamiltonian efficient under specific conditions.

Conditions of efficient learning Pauli CLH. Our approach’s limitation arises from the differ-
ence between Gaussian elimination using only column operations and the regular Gaussian elimina-
tion. The equivalence between the column-operation-only Gaussian elimination and the regular one
only holds for full-rank tableau matrices. Specifically, for a Pauli CLH with only linearly independent
local terms, the resulting classical Hamiltonian is 1-local, as stated in Section 3.3.

Otherwise, the resulting Hamiltonian’s locality is exponentially dependent on the depth of the
mapping Clifford circuit. So the resulting Hamiltonian is sparse only if we begin with a Hamiltonian
corresponding to a sparse tableau. That explains the conditions required in Theorem 1.2.

Recover an approximation of H’s coefficients. Certainly, the magnitude of coefficients as-
sociated with local terms in H remains the same after applying a Clifford circuit. Utilizing the
correspondence between Clifford gates and column operations on the tableau (i.e., Lemma 3.3), we
have derived a linear equations systems Ap = p′, where p is the coefficient vector corresponding
to the original Hamiltonian H, and p′ is the coefficient vector associated with the resulting Hamil-
tonian H ′. Since the matrix A is precisely following the mapping procedure in Section 3.3, we
could approximately recover the coefficient of the original Hamiltonian H by solving such a linear
equations system.

4 Discussion

Caveats for efficient classical post-processing. Because the resulting classical Hamiltonian
in Section 3.3 is probably non-local, our approach is efficient (both in time and sample complexity)
only under two specific conditions, as stated in Theorem 1.2. In general, the classical post-processing
procedure could take exponential time due to the sample complexity lower bound 2Ω(t) for learning
t-wise Markov random field [SW12].

It seems hopeless to efficiently learn resulting classical Hamiltonians, since this column-operation-
only Gaussian elimination approach is quite brute-force and destroys the local structure of the
original Hamiltonian.

Learning Pauli CLH with a shallow-depth Clifford circuit. The mapping Clifford circuit
produced by the mapping procedure in Section 3.3) could be linear depth. It raises a natural
question:

Open Problem 4.1. Could we learn a Pauli commuting local Hamiltonian by applying a shallow-
depth quantum circuit on the Gibbs state?

In [APS19], the authors suggest positive evidence, in particular, we can learn the modified Toric
code model4 without applying any quantum circuit. Moreover, classical post-processing is even

4The coefficients of this modified Toric code model is not necessarily 1.
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efficient. This observation leads to a relaxed commutation criterion – X-Z commutation criterion,
namely, replacing X(i) · Z(j) ⊕ X(j) · Z(i) = 0 (in Lemma 3.1) by X(i) · Z(j) = X(j) · Z(i) = 0.
Particularly, all local terms on the X-block in the tableau commute with all local terms on the
Z-block. This condition further infers a new mapping in Proposition 4.2:

Proposition 4.2 (Mapping into primal-dual Markov random fields with hidden variables). For any
Pauli commuting local Hamiltonian H satisfying the X-Z commuting criterion, namely, ∀i, j ∈ [m],
X(i) ·Z(j)⊕X(j) ·Z(i) = 0. We can map this family of Hamiltonians to a primal-dual pair of Markov
random fields (HX , HZ) with hidden variables, where HX corresponds to the distribution

Pr [X = (x1, · · · , xn)] ∝
∑

z1,··· ,zn∈{±1}

exp

−∑
i∈[m]

Hi(x1, · · · , xn, z1, · · · , zn)

 ,

and HZ corresponds to the distribution

Pr [Z = (z1, · · · , zn)] ∝
∑

x1,··· ,xn∈{±1}

exp

−∑
i∈[m]

Hi(x1, · · · , xn, z1, · · · , zn)

 .

(HX , HZ) are so-called a primal-dual pair if visible variables x1, · · · , xn of HX are hidden variables
of HZ , and visible variables z1, · · · , zn of HZ are hidden variables of HX .

The proof follows from a straightforward calculation, namely, as the distribution corresponding
to HX (the same to HZ) follows 〈x1, · · · , xn| exp(−

∑
i∈[m]Hi)|x1, · · · , xn〉.

Furthermore, it is worthwhile to mention that our setting differs from known results on the learn-
ing Boltzmann machine with hidden variables [BKM19,BB20]. The obstacles showed by [BKM19]
arises from a single Markov random field with hidden variables. In contrast, our problem circumvents
such issues since a primal-dual pair with hidden variables could complete each other’s information.

Even though this tableau representation of Paulis specified in Section 3.1 seems helpful, it is
unclear how to take advantage of such techniques yet.
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